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Abstract: Melt electrospinning is widely used to manufacture fibers with diameters in the low mi-
crometer range. Such fibers are suitable for many biomedical applications, including sutures, stents
and tissue engineering. We investigated the preparation of polybutylene succinate microfibers using a
single-nozzle laboratory-scale device, while varying the electric field strength, process throughput,
nozzle-to-collector distance and the temperature of the polymer melt. The formation of a Taylor cone
followed by continuous fiber deposition was observed for all process parameters, but whipping
behavior was enhanced when the electric field strength was increased from 50 to 60 kV. The narrowest
fibers (30.05 µm) were produced using the following parameters: electric field strength 60 kV, melt
temperature 235 ◦C, throughput 0.1 mL/min and nozzle-to-collector distance 10 cm. Statistical analy-
sis confirmed that the electric field strength was the most important parameter controlling the average
fiber diameter. We therefore report the first production of melt-electrospun polybutylene succinate
fibers in the low micrometer range using a laboratory-scale device. This offers an economical and
environmentally sustainable alternative to conventional solution electrospinning for the preparation
of safe fibers in the micrometer range suitable for biomedical applications.

Keywords: polybutylene succinate; fiber spinning; nonwoven; environmental sustainability; melt
spinning; fiber production; electrospinning; melt electrospinning; process development; biomedi-
cal applications

1. Introduction

Biocompatible and biodegradable polyesters are increasingly important in biomedical
procedures, especially when used as sutures, bone fixation devices, plates, stents and
screws, as well as tissue repair and tissue engineering matrices [1]. Polylactic acid (PLA)
and polybutylene succinate (PBS) are widely available thermoplastic biopolymers that
could replace petrochemical polymers in the future [2]. Biobased polyesters for medical
applications are typically used in the form of films [3] or scaffolds in tissue engineering [4].
They can be manufactured by salt leaching [5], extrusion [6] or electrospinning [7].

Electrospinning is an efficient method for the manufacture of fibers ranging in diame-
ter from a few micrometers to hundreds of nanometers [8–10]. Such fibers are beneficial
because they combine an enormous surface area with high flexibility [11]. They are partic-
ularly useful for tissue engineering because fibers can be spun directly onto the surface
of another material [12]. Further applications beyond the sphere of biomedicine include
filtration and separation [13], as well as electronics and energy [14,15].

The global microfibers/nanofibers market was valued at US$477.7 million in 2016 and
electrospinning was one of the most widely-used techniques for the production of such
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fibers [16]. The two major electrospinning methods are solution electrospinning and melt
electrospinning, both of which involve the exposure of a liquid to a strong electric field as
it flows through a capillary in order to draw out fibers [12]. The large potential difference
(tens of kilovolts) applied to the liquid leads to the formation of a jet that undergoes
whipping movements, which in turn cause stretching and ultimately the deposition of
microscale or nanoscale fibers onto a collector [17]. Solution electrospinning uses polymer
substrates dissolved in an organic solvent, which evaporates as the fiber is spun, whereas
melt electrospinning uses a high-temperature molten polymer. The lower viscosity and
higher electrical conductivity of polymer solutions enables solution electrospinning to
produce thinner fibers than melt electrospinning. However, PLA and PBS must be dissolved
in toxic solvents such as chloroform and dichloromethane, which can be carried over to the
final product. To make the process more environmentally friendly, researchers are currently
focusing on the use of more benign solvents such as formic acid and acetic acid [18,19].
Nevertheless, an additional solvent recovery step is required, increasing the overall process
costs [12]. For example, the production of 1 kg of PLA fibers, when processed as a 10%
solution, requires 10 L of solvent with only 90% recovered in a typical process [20]. In
contrast, melt electrospinning does not require solvents, but the melt must be held at high
process temperatures in order to facilitate extrusion [21]. Furthermore, the high viscosity
and low conductivity of the melt yields fibers with a thicker average diameter than solution
electrospinning [11]. Nevertheless, because melt electrospinning has no requirement for
solvents, and therefore no need for a solvent recovery step, it is more cost effective and
environmentally sustainable than solution electrospinning [22–26]. The wider adoption of
melt electrospinning could help to reduce the environmental footprint of current industrial
electrospinning processes for medical-grade fibers, but solution electrospinning remains
the favored industrial process because it has already been scaled up (and is therefore more
economical) and also produces finer fiber products [9].

Solution electrospinning with PBS and PLA has successfully yielded fibers with
average diameters in the sub-micrometer range for biomedical applications such as wound
dressings. Melt electrospinning has also been carried out with PLA, but the brittleness and
low conductivity of the material hinder the production of nanofibers and their applications,
and various machine and material modifications have been tested to overcome this [27–37].
Compared to PLA, PBS is more ductile with a lower glass transition temperature (below
room temperature). Accordingly, modifications to improve the ductility of this polymer
may not be necessary.

A porous nonwoven PBS mesh with a low pore size has been produced by solution
electrospinning and developed for filtration applications [31]. The evaluation of solution-
electrospun microscale and nanoscale PBS fibers for biomedical applications confirmed that
their high porosity and hierarchical structure offers sufficient mechanical properties for
applications in wound healing and soft tissue engineering [4]. The PBS backbone has more
polar functional units than PLA, which means that PBS may be more electrically conductive
than PLA in its molten form. But, despite the advantages set out above, melt electrospinning
with PBS has, to the best of our knowledge, not been attempted before.

Here we report the preparation of the first melt-electrospun PBS microfibers using
our single-nozzle laboratory-scale device. We investigated the influence of four different
process parameters on fiber diameter: temperature, electric field strength, throughput and
nozzle-to-collector distance. We measured the effect of temperature on the viscosity and
electrical conductivity of PBS melts. We also examined the thermal properties of the polymer,
its susceptibility to degradation during processing and the influence of process parameters
on fiber crystallinity. Finally, statistical analysis was used to predict the parameter with the
greatest influence on the fiber diameter.

2. Materials and Methods
2.1. Materials

Melt electrospinning was carried out using PBS fiber-grade resin (FZ78TM) produced
by the polymerization of biobased succinic acid and 1,4-butanediol. The manufacturer
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(MCPP, Düsseldorf, Germany) reported the following specifications: a melt flow rate of
22 g/10 min at 190 ◦C and using a weight of 2.16 kg, and a crystalline melting temperature
of 115 ◦C. The polymer was vacuum dried at 60 ◦C for 12 h before processing.

2.2. Methods
2.2.1. Melt-Electrospinning Equipment

For the evaluation of general processability and fiber formation characteristics, we
used our laboratory-scale single-fiber melt-electrospinning device, including a temperature
controller, high-voltage power supply, heating elements, syringe, pump and collector.
The device was equipped with JCS-33A temperature process controllers (Shinko Technos,
Osaka, Japan) and PT 100 platinum thermocouples (Omega Engineering, Deckenpfron,
Germany) to control the melting temperature (Figure 1).
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Figure 1. Schematic illustration of the laboratory-scale melt-electrospinning device.

In previous studies with PBS, the reported melt-processing temperature was 190 ◦C [38].
Our laboratory-scale melt-electrospinning device does not use an extruder but uses a glass
syringe instead. Because we are unable to apply any shear to make the polymer melt flow,
we started with higher temperatures for the trials to compensate. Material flowed from the
syringe at 205 ◦C but the viscosity was too high. Only temperatures > 235 ◦C supported
constant and continuous fiber formation with a Taylor cone. Therefore, we carried out the
trials with polymer melts at 235 and 265 ◦C. We used a KNH65 high-voltage generator
(Eltex-Elektrostatik, Weil am Rhein, Germany) with a range of 6–60 kV. Potential differences
of 50 and 60 kV were applied during the melt-electrospinning experiments, with positive
voltage on the collector and a grounded spinneret. The collector was a 6 cm flat aluminum
plate overlaid with a thin paperboard. Different distances between the spinneret and
collector were tested, such as nozzle-to-collector distances of 8 and 10 cm. An 11 Plus spin
pump (Harvard Apparatus, Cambridge, MA, USA) was used with delivery rates of 0.1 or
4 mL/min. A 2-mL glass syringe (Poulten & Graf, Wertheim, Germany) equipped with
an additional metal orifice of 0.90 mm served as the spinneret nozzle. The experimental
parameters are summarized in Table 1.

2.2.2. Polymer Characterization

Thermogravimetric analysis (TGA) was carried out using a Q5000 device (TA Instru-
ments, Asse, Belgium). We heated 5-mg PBS granules at a rate of 10 ◦C/min under nitrogen
flowing at 50 mL/min until the temperature reached 700 ◦C. The temperatures at which
5% and 50% weight loss occurred were determined using TA universal analysis software.
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Table 1. Experimental parameters used for the melt electrospinning of polybutylene succinate (PBS) fibers.

Temperature (◦C) Electric Field (kV) Nozzle-to-Collector Distance (cm) Throughput (mL/min)

235

50 8 0.1
50 8 4
50 10 0.1
50 10 4
60 8 0.1
60 8 4
60 10 0.1
60 10 4

265

50 8 0.1
50 8 4
50 10 0.1
50 10 4
60 8 0.1
60 8 4
60 10 0.1
60 10 4

The rheological properties of PBS were characterized using a Discovery HR1 hybrid
rheometer (TA Instruments) focusing on the frequency-dependent complex viscosity G*. We
carried out a frequency sweep from 1 to 628 rad/s. For all experiments, we used a 25-mm
plate-to-plate geometry with the distance set to 1000 µm, and the strain amplitude was
maintained at 1%. Measurements were taken at temperatures of 145, 175, 205, 235 and 265 ◦C.
The complex viscosity of PBS is presented at an angular frequency of 10 rad/s at different
temperatures to facilitate comparative analysis. We made the rheological measurements
3 times at each temperature and we have presented the mean values along with the standard
deviation for comparison.

The electrical resistance of molten PBS was measured at the same temperatures as the
rheological properties using a Keithley 617 electrometer (Tektronix, Beaverton, OR, USA).
The polymer granules were melted using band heaters, and two electrodes (6 mm apart)
were dipped in the melt and connected to the electrometer. The current flowing between
the electrodes was measured at 10 V (Figure 2). The electrical resistance was measured
3 times at each temperature and the mean is presented for comparison.
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Figure 2. Electrometer apparatus for the analysis of electrical resistance in the PBS melt.

2.2.3. Characterization of PBS Fibers

Fiber diameters were measured using an Olympus BX53 microscope fitted with an
Olympus DP26 camera (Olympus, Leiderdorp, The Netherlands). For each sample, the fiber
diameter was measured 100 times in different positions based on the 50× magnified image.

Differential scanning calorimetry (DSC) was carried out using the Q2000 device fo-
cusing on changes to the glass transition temperature (Tg), melting temperature (Tm) and
crystallinity (Xc) caused by different process parameters. DSC was applied to PBS granules
as well as fibers with the smallest and largest diameters. Any change in fiber crystallinity
during spinning is typically caused by the drawing process. Therefore, we selected samples
that had undergone the most drawing (smallest diameter) and the least drawing (biggest
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diameter) to compare with the PBS granules. No change in crystallinity indicated that the
process parameter did not influence the physical properties of PBS. We used a temperature
range of −40 to +300 ◦C and a heating rate of 10 ◦C/min. The melt enthalpy of 100% crys-
talline PBS was considered to be 110.3 J/g [39]. For each sample, we made 3 measurements
and the mean values are presented.

The effect of processing on the molecular weight of PBS was determined by gel perme-
ation chromatography (GPC) using a 1260 Infinity System (Agilent Technologies, Santa Clara,
CA, USA). We used hexafluor-2-isopropanol (HFIP) containing 0.19% sodium trifluoroac-
etate as the mobile phase, flowing at a rate of 0.33 mL/min. GPC was used to compare PBS
granules with fibers spun at the lowest throughput at different processing temperatures
(235 and 265 ◦C). By testing the low-throughput samples (longest dwell time), we were
able to conclude that no degradation under these conditions would infer the absence of
degradation at higher throughputs. Solutions were prepared by dissolving 5-mg samples in
HFIP for ~2 h before passing through a 0.2-µm polytetrafluoroethylene filter and injecting
them into a modified silica column filled with 7-µm particles (Polymer Standards Service,
Mainz, Germany). The relative molecular weight (Mw), number average molar mass (Mn),
and polydispersity index (PDI) were determined using refractive index detectors calibrated
with a standard polymethyl methacrylate polymer (1.0 × 105 g/mol). We performed GPC
analysis 3 times with each sample and presented the mean values for comparison.

2.2.4. Statistical Analysis

We used a full factorial design with four factors and two levels (Table 1) for multi-
way analysis of variance (ANOVA) in SPSS (IBM, New York, NY, USA) to determine the
statistical significance of each parameter with a general univariate analysis. We tested
the effect of independent factors (temperature, electric field strength, throughput and the
distance between nozzle and collector) and their interactions on the fiber diameter. We
also compared effect strength η2 values of different process parameters to determine which
exerted the greatest influence.

3. Results and Discussion
3.1. Thermal Analysis of the Polymer

TGA revealed that PBS granules undergo single-step degradation (Figure 3), with 5%
weight loss at 347 ◦C and 50% weight loss at 398 ◦C, in agreement with previous reports [40].
The processing temperatures we selected are lower than the degradation temperatures
determined by TGA.
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3.2. Effect of Temperature on Viscosity

The complex viscosity of PBS was plotted as a function of angular frequency at differ-
ent temperatures (Figure 4a). This revealed that the melts approach a plateau of Newtonian
behavior at low angular frequencies, but non-Newtonian (pseudoplastic) behavior is ob-
served as the angular frequency increases. Accordingly, the complex viscosity declines
sharply, as previously reported for PBS [41]. Entanglements and chain interactions such
as van der Waals forces and hydrogen bonds in the polymer can hinder the polymer flow.
At lower shear, the polymer chains move so slowly that these interactions do not impede
the flow and the shear is not sufficient to break these interactions. Therefore, we observed
Newtonian behavior, where viscosity is independent of shear. Such interactions can be
broken by increasing the shear and/or the temperature. As the shear rate increases and
the interactions are broken, the polymer chains become oriented in the direction of shear
making the polymer flow easier. The declining complex viscosity we observed with increas-
ing angular frequency thus reflected the corresponding increase in shear. To visualize the
effect of temperature on the complex viscosity, the complex viscosity of PBS as a function
of temperature is shown in Figure 4b at an angular frequency of 10 rad/s.
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As anticipated, the complex viscosity of PBS declined with increasing temperature.
There are two potential explanations for this observation. First, as set out above, the entan-
glements and chain interactions are broken at high temperatures, facilitating the flow of the
polymer chains. Similar results have been reported for PLA [42]. We found that the complex
viscosity of PBS declined by ~42% when the temperature increased from 145 to 175 ◦C, and
by ~35% when the temperature increased from 175 to 205 ◦C. However, as we move further
from the melting point (110 ◦C), there is a less significant decline in viscosity with increasing
temperatures. The decline in viscosity was only ~20% when the temperature increased from
205 to 235 ◦C and a similar value was observed when the temperature increased from 235 to
265 ◦C, perhaps because most of the chain interactions and entanglements in the polymer
are already broken at 205 ◦C so increasing the temperature has no further effect. The second
potential explanation is the degradation of the polymer at higher temperatures, which we
investigated by GPC (Section 3.4).

3.3. Effect of Temperature on Electrical Conductivity

The electrical resistance of PBS was measured at melt temperatures of 145, 175, 205,
235 and 265 ◦C to determine the effect of temperature on conductivity. We found that
higher temperatures generally reduced the electrical resistance (Figure 5). The resistance of
the polymer melt was ~8 GΩ at 145 ◦C, but increasing the temperature by 30 ◦C to 175 ◦C
reduced the electrical resistance by 10-fold. Further reductions, albeit much smaller in
magnitude, were observed at 205, 235 and 265 ◦C. The lowest electrical resistance of 20 MΩ
was observed at 265 ◦C.
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Polymers are insulators and the electrical conductivity is intrinsically dependent on
the temperature [43]. For polymers with polar functional groups (such as PBS), higher
temperatures increase the mobility of the polymer chains, leading to ionic conduction
via the polar groups and micro-Brownian motion [44]. The observed trend in electrical
resistance as a function of temperature supports the rheological data (Figure 4b). The change
in viscosity of the polymer reached a plateau at temperatures exceeding 205 ◦C. Increasing
the temperature beyond this point did not substantially increase the mobility of the polymer
chains. The change in electrical resistance followed the same trend, further supporting the
hypothesis that ionic conduction in PBS is mediated by the mobility of the polymer chains.

3.4. Molecular Weight of the Melt Electrospun Fibers

The GPC curves of unprocessed PBS granules and PBS fibers processed at 235 and
265 ◦C are presented in Figure 6.
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Figure 7. Weight average relative molecular weight (Mw), number average molar mass (Mn) and
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The Mn, Mw and PDI of unprocessed PBS granules were 27,210 Da, 88,760 Da and 3.26,
respectively. The Mn, Mw and PDI of the PBS fibers processed at 235 ◦C were 26,210 Da,
77,350 Da and 2.95, respectively. The corresponding values for the fibers processed at 265 ◦C
were 30,660 Da, 96,340 Da and 3.14, respectively. The results indicated that processing PBS
at these specific temperatures resulted in no significant change in the MW, Mn or PDI. This
confirms that any reduction in viscosity is explained by the higher temperature increasing
chain mobility and not by polymer degradation.

3.5. Fiber Diameter and Distribution

We next investigated the processability of PBS and the effect of temperature, electric
field, throughput and nozzle-to-collector distance on the fiber diameter. When the polymer
melt droplet becomes charged in a field of sufficient strength, the electrostatic repulsion is
strong enough to overcome the surface tension and stretch the droplet. When this charge
becomes higher than a certain threshold, a jet known as a Taylor cone erupts from the
polymer droplet [45]. We observed the formation of a Taylor cone under all the process
conditions we tested.

Figure 8 shows the average fiber diameter (±standard deviation) produced at spin-
neret temperatures of 235 and 265 ◦C, with nozzle- to-collector distances of 8 and 10 cm,
throughputs of 0.1 and 4 mL/min and the electric field strength set to 50 kV. Reducing the
throughput from 4 to 0.1 mL/min generated finer fibers at both temperatures. Because the
polymer melt emerging from the nozzle is pulled down by gravity and by its interaction
with the electric field, we hypothesized that reducing the throughput gives more time for
the polymer to interact with the electric field, increasing the probability of whipping be-
havior. The fiber diameter produced at a throughput of 0.1 mL/min was also significantly
reduced by increasing the nozzle-to-collector distance from 8 to 10 cm. For example, at
265 ◦C and a throughput of 0.1 mL/min, increasing the distance from 8 to 10 cm reduced
the average fiber diameter by 15.6% (from 65 to 54 µm). As proposed above, increasing the
nozzle-to-collector distance would also give the fiber more time to interact with the electric
field, thereby promoting whipping behavior. But if the collector were placed too far from
the nozzle, there would be less interaction with the electric field leading to thicker fibers.
Under similar conditions with a throughput of 4 mL/min, the same change in distance
achieved only a 6.7% reduction in fiber diameter. A similar trend was observed at 235 ◦C.
When increasing the throughout from 0.1 to 4 mL/min, the material flow increased 40-fold.
Given this higher material flow, it is likely that increasing the nozzle-to-collector distance
by 2 cm is not sufficient to provide enough additional time for the fibers to interact with
the field.
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We found that the temperature had no significant effect on fiber diameter compared
to throughput or nozzle-to-collector distance. For example, the mean fiber diameter at a
throughput of 0.1 mL/min and a nozzle-to-collector distance of 10 cm was 56 µm at 235 ◦C
and 54.22 µm at 265 ◦C, the latter being the narrowest fiber produced at 50 kV. However,
much finer fibers were produced when we increased the electric field strength to 60 kV
(Figure 9). Although Taylor-cone formation and whipping behavior occurred under all the
process parameters we tested, the whipping behavior was enhanced at 60 kV. Accordingly,
the average fiber diameter at a temperature of 235 ◦C, a throughput of 0.1 mL/min, and a
nozzle-to-collector distance of 10 cm was reduced by 46% (from 56 to 30 µm) in the stronger
electric field. This result is consistent with previous studies [2].
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Figure 9. Diameter of PBS fibers at polymer melt temperatures of 235 or 265 ◦C, throughputs of 0.1 or
4 mL/min, a nozzle-to-collector distance of 8 or 10 cm, and the electric field strength set to 60 kV. The
x-axis shows the temperature with the nozzle-to-collector distance in parentheses. Data are means
with standard deviations (n = 100).

The trend toward narrower fibers at a lower process throughput was maintained at
the higher voltage. By reducing the throughput from 4 to 0.1 mL/min, the average fiber
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diameter decreased by 30% (from 50 to 35 µm) at a temperature of 235 ◦C and a nozzle-to
collector distance of 8 cm. This phenomenon was observed regardless of the processing
temperature or nozzle-to-collector distance.

When we compared fiber diameters as a function of temperature while keeping the
remaining parameters constant, we found that temperature had no significant influence.
An interesting phenomenon observed during high-throughput processing at 265 ◦C and
60 kV was that changing the nozzle-to-collector distance did not affect the fiber diameter.
The average fiber diameter at a throughput of 4 mL/min was 33 and 32 µm when the
nozzle-to-collector distance was 8 and 10 cm, respectively. The viscosity and resistance
of PBS were also marginally lower at 265 than at 235 ◦C. As the material comes through
the nozzle, fibers are formed due to a combination of gravitational pull and the electric
field. One hypothesis to explain the effect observed at the high temperature in the strongest
electric field is that the material flows so quickly under these conditions that increasing
the nozzle to collector distance by 2 cm does not increase the whipping behavior and thus
has no significant effect on the fiber diameter. When the electric field strength was 60 kV,
the finest fibers (30.05 µm) were produced at 235 ◦C with a throughput of 0.1 mL/min and
a nozzle-to-collector distance of 10 cm. The Taylor cone formation observed during melt
electrospinning and microscopy images of the resulting PBS fibers produced are presented
in Figure 10.
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Figure 10. Taylor cone formation during melt electrospinning and images of the resulting fibers. (a)
Taylor cone formation. (b–d) Microscopy images of PBS electrospun fibers under different processing
conditions. (b) Temperature: 235 ◦C, throughput: 0.1 mL/min, electric field: 60 kV, nozzle-to-collector
distance: 10 cm. (c) Temperature: 265 ◦C, throughput: 0.1 mL/min, electric field: 60 kV, nozzle-
to-collector distance 8 cm. (d) Temperature: 265 ◦C, throughput: 4 mL/min, electric field: 50 kV,
nozzle-to-collector distance: 8 cm.

The melt electrospinning of PLA under similar conditions (identical apparatus, electric
field strength 60 kV, nozzle-to-collector distance 10 cm, throughput 4 mL/min, tempera-
ture 300 ◦C) generated fibers with an average diameter of 112.5 µm, whereas at a lower
temperature of 235 ◦C, the diameter of PBS fiber produced were 43.42 µm (61% lower).
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These results suggest that PBS is more suitable as a material for melt electrospinning than
PLA [34].

Statistical analysis of the datasets in Figures 8 and 9 by multi-way ANOVA revealed the
statistical significance of differences in fiber diameter as a function of the process parameters
(temperature, throughput, electric field strength, and nozzle-to-collector distance) and their
interactions. The relationships between individual process parameters (factors) and the
average fiber diameter are summarized in Figure 11. Narrower fibers were produced by
reducing the process throughput or by increasing the electric field strength or nozzle-to-
collector distance. Higher temperatures also tended to produce narrower fibers but the
effect of this parameter was not significant.
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Figure 11. Variations in PBS fiber diameter as a function of different process parameters. (a) Electric
field strength vs. diameter, (b) throughput vs. diameter, (c) nozzle-to-collector distance vs. diameter,
(d) temperature vs. diameter.

The effective strength of the various factors we considered and their interactions are
summarized below in Figure 12.
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Figure 12. Pareto chart representing the effective strength of the factors we tested and their interac-
tions. EF = electric field, Th = throughput, D = nozzle-to-collector distance, Te = temperature.
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The significance level of the factors and their interactions are presented in Table 2.

Table 2. Significance level of the factors we tested and their interactions. EF = electric field, Th =
throughput, D = nozzle-to-collector distance, Te = temperature.

Factor Significance Level (p)

EF <0.001
Th <0.001
D <0.001
Te 0.209

Te*EF <0.001
Te*Th 0.015
Te*D 0.113

EF*Th 0.001
EF*D 0.009
Th*D 0.183

Te*EF*Th 0.003
Te*EF*D 0.055
Te*Th*D 0.439
EF*Th*D 0.051

Te*EF*Th*D 0.343

Statistical analysis revealed that the electric field, throughput, and nozzle-to-collector
distance all had a significant impact (p < 0.05) on the diameter of the fiber whereas temper-
ature was not statistically significant (p > 0.05). This agrees with the data reported earlier.
Under fixed conditions of a 0.1 mL/min throughput, a 10 cm nozzle-to-collector distance
and a 50 kV electric field, the diameter of the fiber obtained only changed from 56 µm at
235 ◦C to 54.22 µm at 265 ◦C. The possible hypothesis for this was explained using the
changes observed in the rheological behavior and electrical conductivity of the polymer as
a function of temperature.

We also observed statistically significant interactions (p < 0.05) between the factors
temperature and electric field, temperature and throughput, electric field and throughput,
electric field and nozzle-to-collector distance, and finally temperature, electric field and
throughput. As shown in Figure 12, the electric field has the strongest influence on the
fiber diameter, followed by throughput, then nozzle-to-collector distance. This also agrees
with the data presented earlier. Among all the factors we tested, increasing the electric field
from 50 kV to 60 kV led to the most substantial reduction in fiber diameter.

3.6. Thermal Properties of the Electrospun Fibers

The DSC thermograms of PBS granules and PBS fibers with the highest diameter
(76.68 µm) and lowest diameter (30.05 µm) produced under our processing conditions are
presented in Figure 13.

The Tg, Tm and Xc values are summarized in Table 3.
The DSC thermograms of the granules and both fibers featured a melting peak (Tm2)

at ~110 ◦C, which is also the PBS melting point reported by the manufacturer. The values
we observed agree with those reported in previous studies [46]. Another small peak was
observed at ~50 ◦C, possibly representing an additive such as a plasticizer used to improve
the processability of PBS. The PBS granules feature a second melting peak just below 100 ◦C
(Tm1). This is mirrored by exothermic peaks in the thermograms for each of the fibers
(Trc) possibly associated with the recrystallization (or recrystallization and melting) of PBS.
The crystallization process occurring during fiber formation can involve the formation
of crystals differing in size and containing various defects. As the PBS is heated, these
small crystals or in some cases, crystal defects, can melt and recrystallize or combine
to form larger crystals, which melt again at the higher temperature. This could also be
from amorphous polymer chains, due to higher mobility at these temperatures, forming a
structure that is more ordered and therefore leading to crystallization. Similar observations
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have been reported in earlier studies [47]. The enthalpies of melting of the melting peaks at
35 ◦C were not considered for the calculation of Xc because they are thought to correspond
to the melting of an additive. However, the enthalpy of recrystallization was taken into
account and subtracted from the melting enthalpy to calculate the total crystallinity of PBS.
In the case of PBS granules, the enthalpy of melting from the first melting peak (Tm1) was
taken into consideration and added to the enthalpy obtained from the Tm2 to obtain the Xc
value. The Xc of all samples remained constant at ~57%. Our DSC results therefore suggest
that the range of process parameters we tested did not affect the physical properties of the
PBS fibers.
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Figure 13. DSC thermogram of PBS granules (G) and PBS fibers with the smallest (S) and biggest (B)
diameters we achieved using our processing conditions.

Table 3. The melting temperature (Tm), re-cooling temperature (Trc) and degree of crystallinity (Xc)
of PBS granules (G) and PBS fibers with the smallest (S) and biggest (B) diameters we achieved using
our processing conditions. Data are means with ± standard deviations (n = 3).

Material Tm1 (◦C) Trc (◦C) Tm2 (◦C) Xc (%)

G 91.1 ± 2 - 116.3 ± 2 59.97 ± 1
S - 88.6 ± 3 114.2 ± 1 55.6 ± 1
B - 90.4 ± 2 115.2 ± 2 58.9 ± 1

4. Conclusions

We have investigated the melt electrospinning of PBS microfibers using a single-nozzle
laboratory-scale device, testing different process parameters (temperature, electric field
strength, throughput and nozzle-to-collector distance) to determine their effect on fiber
diameter. To the best of our knowledge, we have reported the first melt-electrospun PBS
fibers produced in the low micrometer range. We observed the formation of a Taylor cone
followed by continuous fiber deposition throughout the range of process parameters we
tested. The coarsest fibers (diameter = 74.05 µm) were produced at 265 ◦C with an electric
field strength of 50 kV, a throughput of 4 mL/min and a nozzle-to-collector distance of
8 cm. The whipping behavior was enhanced by increasing the electric field strength from
50 kV to 60 kV. The finest fibers (diameter = 30.05 µm) were produced at 235 ◦C and 60 kV,
with a throughput of 0.1 mL/min and a nozzle-to-collector distance of 10 cm.

We found that low-throughput melt electrospinning (0.1 mL/min) reduced the fiber
diameter at both temperatures and field strengths we tested. The effect of changing the
nozzle-to-collector distance from 8 to 10 cm was also more significant at low throughput. It
is likely that increasing the nozzle-to-collector distance during a low-throughput process
allows more time for whipping behavior, thus stretching the melt and generating narrower
fibers. In contrast, the fast flow of the polymer during the high-throughput process means
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that a 2-cm increase in the nozzle-to-collector distance does not have a significant effect on
whipping behavior and thus on the fiber diameter.

Multi-way ANOVA revealed that three factors (electric field strength, throughput, and
nozzle-to-collector distance) had a significant effect on fiber diameter, whereas the effect of
temperature was nonsignificant when the other factors remained constant. Our rheological
and conductivity data showed that the change in viscosity and electrical conductivity was
not significant within the temperature range we considered, and this may explain the
results of the ANOVA test. Based on the effect strength η2, the electric field strength was
the factor with the greatest influence on the fiber diameter.

By varying four process parameters, we reduced the average diameter of our melt
electrospun PBS fibers by 59% (from 74.05 to 30.05 µm). The narrowest fibers we produced
were significantly finer than those we previously generated from PLA using the same exper-
imental setup. Our results suggest that PBS could replace PLA and other polymers for the
melt electrospinning of biomedical fibers. This provides a sustainable alternative to solution
electrospinning, which is normally used to manufacture fibers for biomedical applications.
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