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Abstract
Mathematical models in ecology and epidemiology often consider populations “at equilib-

rium”, where in-flows, such as births, equal out-flows, such as death. For stochastic models,

what is meant by equilibrium is less clear – should the population size be fixed or growing

and shrinking with equal probability? Two different mechanisms to implement a stochastic

steady state are considered. Under these mechanisms, both a predator-prey model and an

epidemic model have vastly different outcomes, including the median population values

for both predators and prey and the median levels of infection within a hospital (P < 0.001

for all comparisons). These results suggest that the question of how a stochastic steady

state is modeled, and what it implies for the dynamics of the system, should be carefully

considered.

Introduction
Dynamic models have a long and well-established history of providing insight into biological
systems by allowing the synthesis of disparate empirical data into cohesive theory[1,2]. One of
the most common ways of formulating these dynamic models is with the use of differential
equations. Such models enjoy the potential for an analytic solution and the widespread avail-
ability of numerical toolkits for solving even extremely complex systems of equations
computationally.

These models are not without their drawbacks. They model populations continuously, rather
than discretely, which often results in populations within the model being reported in small frac-
tional numbers at the system asymptotically approaches zero. For large populations, this ten-
dency is of no concern, as 0.01 percent of the U.S. population, for example, is still a meaningful
number. For small populations however, this tendency becomes extremely problematic, as the
model begins to report the existence of fractional individuals, a biologically meaningless concept.
This phenomenon, known as the “atto-fox problem” [3], makes these purely deterministic, con-
tinuous scale models inappropriate for use in small populations[4]. Biologically, there can be one
or more foxes or no foxes, but the population cannot be 10−18 foxes.

One solution to this problem has been to use a stochastic simulation approach with discrete
values for the population[5]. This approach allows for the direct adaptation of the differential
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equation based models into a stochastic framework. Not only does this approach more realisti-
cally model integer-valued individuals, but also it allows for stochastic extinction–the complete
loss of one population from the model due to random demographic noise. In contrast, a differ-
ential equation based model will always maintain some vanishingly small residual population
that may some day rebound.

Stochastic extinction can even arise in populations that are being modeled as being in a
steady state, where in-flows (i.e. births and immigration) are equal to out-flows (i.e. deaths and
emigration), representing a population at equilibrium save for the dynamic process the
researcher is exploring. How one approaches formulating the stochastic simulation has a pro-
found impact on the dynamics of the system as a whole. Here, I present two different formula-
tions of steady state for a model that have identical outcomes when modeled using differential
equations, but have vastly different outcomes when simulated stochastically. I have termed
these “Pool” and “Queue” stability. I also suggest there are not one but two types of stochastic
extinction present in most stochastic dynamic models: C-extinction (the extinction of a given
group within the model) and N-extinction (the extinction of the entire model population),
either one of which may be potentially interesting as a model outcome.

Pool stability versus Queue stability
Consider a single differential equation, part of a set of equations that make up a deterministic
model,

dXi

dt
¼ giXi � diXi ð1Þ

Trivially, so long as γ and δ are equal to each other, the population of Xi is at equilibrium. The
population of Xi will remain at equilibrium with the addition of arbitrarily many additional
terms within the equation so long as these too sum to zero. When extended to the equation sys-
tem as a whole, the system’s population is in equilibrium so long asXn

i¼1
giXi �

Xn

i¼1
diXi ð2Þ

where n is the total number of equations in the system, even if γiXi 6¼ δiXi for any particular
equation i so long as γ and δ are the only parameters that allow the increase or decrease of the
system’s population as a whole. However, when these equations are adapted to stochastic simu-
lation, there are two different ways of representing a population steady state that have identical
deterministic interpretations, but very different stochastic outcomes.

The first is what I term “Pool Stability” and is a direct adaptation of conventional ordinary
differential equations. When an algorithm such as Gillespie’s Direct Method [5] is applied to
stochastically simulate an ODE-like system without any adaptation, it is this stability mecha-
nism that is implicitly used. Instead of treating γ and δ as deterministic rates of population in-
flow and out-flow, they are treated stochastically–the overall rate at which an event happens.
Which event happens is determined probabilistically based on their relative frequencies [5], in
this case set to be equal. In essence this posits an infinite pool of potential members of the pop-
ulation from which members are drawn and to which members return when they exit the sys-
tem. While these deterministic versus stochastic rates might appear to be direct analogs, they
will not necessarily have equal outcomes in the small N populations for which stochastic simu-
lations are often conducted. In the stochastic implementation, the population, despite having
members entering and leaving the system at equal rates, may grow above its theoretical equilib-
rium point, drop below it, or, in some cases, reach zero–a stochastic extinction event.
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An alternate strategy for handling stochastic steady states is what I will refer to as “Queue
Stability”. In this scenario, rather than setting γ and δ to be equal to each other, in- and out-
rates are dispensed with entirely. Instead the model incorporates a series of rates that govern
when a member of the populations “exit” from the model, whereupon they are immediately
replaced by a new individual. This method posits that exiting members of the population free
up a space within the model that is then filled by a new member drawn from an infinite queue,
rather than being replaced at an equal rate. While not a direct adaptation of the deterministic
form of the model, this method stays faithful to the intent of the steady-state terms–the mainte-
nance of a constant population of fixed size.

The latter method seems to eliminate one of the great strengths of stochastic simulation
models, the possibility for stochastic extinction of the population, in exchange for maintaining
a constant population. This is only partially accurate. While the extinction of the entire model
system because of demographic stochasticity is no longer possible, extinction may occur in any
given component of the model. This difference gives rise to the need to disambiguate two dif-
ferent potential types of stochastic extinction.

N- and C-extinction
Two unique types of stochastic extinction events are possible within the compartmental model
framework. The first, which is allowed by Pool stability models but prohibited in Queue stabil-
ity models, is the complete extinction of the model system, where the sum of all compartments
is 0, which I term N-extinction[6,7]. The second form of stochastic extinction, which is possible
with either form of stability, is the extinction of one of several compartments or subpopulations
within the model without the extinction of the entire model population. This phenomenon,
which I term C-extinction, is less dramatic but may be of central interest to many research
questions[8–12]. For example, the vast majority of epidemiological models are more concerned
with the population of infected individuals within a model than with the state of the modeled
population as a whole[13].

Like different mechanisms for modeling population mixing and interaction, or changes in
model structure, the choice of stabilization method is a fundamental choice about the biological
process being modeled, namely whether or not it is possible, within the scope of the model, for
the population as a whole to go extinct. For some models, the answer is “Yes”, especially for the
small populations most frequently modeled using stochastic techniques, but for other models
allowing N-extinction may be irrelevant or actively detrimental to the model’s mapping with
reality.

Two models are used as motivating examples to explore this choice and under which condi-
tions one might with to disallow N-extinction within their model system. The first is an ecologi-
cal model of a predator-prey system where the prey species is a secondary or opportunistic
source of resources for a predator with a separate birth and death process. The second is a
model of Clostridium difficile transmission within an intensive care unit (ICU). These two
models were chosen both to show the breadth of modeling questions that must address this
issue, and also because in each one of the stabilization methods seems intuitively correct, and
the other contrary to reality–though which method is which varies between them.

Methods

Predator-prey model
The first example model is a straightforward adaptation of a classical Lotka-Volterra predation
model[14] with the addition of a separate birth and death process (μ and U respectively) for
the predator species (X) (Eq 3). This separate process can be viewed as emigration and
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immigration of the predator from a nearby patch in a larger meta-population model, or from a
second, abstracted predation system. The prey (Y) exists within the model as a secondary spe-
cies subject to opportunistic predation (β in the prey and δ in the predators). The prey species
has an intrinsic birth rate (α). Predator births and deaths were fixed to a steady state using
either Pool or Queue stability, and the outcomes of interest were the average (both mean and
median) population size of both the predator and prey species over time, as well as whether or
not the predator species, the prey species, or both had gone extinct.

dX
dt

¼ dXY1 ¼ 1� X
kX

� �
þ mX 1� X

kX

� �
� gX 1� X

kX

� �

dY
dt

¼ aY 1� Y
kY

� �
� bXY

ð3Þ

Hospital infection model
The hospital infection model concerns the spread of C. difficile within a 12-bed ICU and is
based on a previously published model[15] (see also [16–18]). Healthcare personnel were mod-
eled as either uncontaminated (US) or contaminated (H), representing hands or gloves con-
taminated by C. difficile. Patients were modeled in a number of treatment and infection states.
UP and UA, represent patients uncolonized with C. difficile at low and high risk of infection,
respectively, based on whether or not they were on proton pump inhibitors. CP and CA simi-
larly represented colonized patients in low- and high-risk states. Finally, D denoted patients
who had developed an active C. difficile infection (Fig 1 and Eq 4). For specific parameter
meanings and values see [15].

dUS

dt
¼ iH � rPsPCP

US

N
� rDsDD

US

N
� rAsACA

US

N
dH
dt

¼ rPsPCP

US

N
þ rDsDD

US

N
þ rAsACA

US

N
� iH

dUP

dt
¼ �rPcPUP

H
N

� yPUP þ nUP
ðyM þ zDþ gDÞ

dUA

dt
¼ �rAcAUA

H
N

� yAUA þ nUA
ðyM þ zDþ gDÞ

dCP

dt
¼ rPcPUP

H
N

� kCP � yPCP þ nCPðyM þ zDþ gDÞ
dCA

dt
¼ rAcAUA

H
N

� �CA � ktCA � yACA þ nCAðyM þ zDþ gDÞ
dD
dt

¼ kCP þ ktCA þ nDðyM þ zDþ gDÞ � zD� goD� gð1� oÞD
M ¼ UA þ Up þ CA þ Cp þ D

N ¼ Us þ H þ UA þ Up þ CA þ Cp þ D

ð4Þ

All patients are eventually discharged from the hospital with one of three possible outcomes:
discharge from the hospital in good health, discharge from the hospital with the subsequent
development of a recurrent C. difficile infection, and death. Admissions were set to be equal to
discharges using either Pool or Queue stability. The outcomes of interest were incident infec-
tions within the hospital and discharges that go on to develop recurrent infections, as well as
whether or not the patient population went extinct.
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Statistical analysis
The distribution of model outcomes for each model (population medians of predator and prey
species and recurrent and incident cases of C. difficile, respectively) were compared using a
two-way Kruskal-Wallis Rank Sum Test, comparing 10,000 model runs, 5,000 each with Pool
versus Queue stability. Whether or not the proportion of model runs resulting in a population
extinction event was drawn from the same distribution with Pool versus Queue stability was
evaluated using a χ2 test. The stochastic results are also compared to the models’ deterministic
ODE analog, to evaluate whether either approach necessarily has the ODE’s result as its
average.

Fig 1. Schematic representation of a mathematical model of within-hospital transmission ofC. difficile, adapted from (4).Healthcare personnel are
considered uncontaminated (US) or contaminated (H), and patients are considered to be low risk and uncolonized (UP), low risk and colonized (CP), high risk
and uncolonized (UA), high risk and colonized (CA) or actively infected (D). Solid arrows denote transitions between states, while dashed lines indicate routes
of transmission and contamination between patients and healthcare personnel.

doi:10.1371/journal.pone.0130574.g001

Table 1. Results of 5,000 runs of a Pool and Queue Stabilized Predator-Prey Model.

Pool Stable Queue Stable Difference (95% CI)*† P-value

Mean Predators 8.58 9.79 -1.21 0.347

Median Predators 10.50 11 -0.50 >0.001

Mean Prey 4.06 2.93 1.13 >0.001

Median Prey 0 0 0 >0.001

Mean Total Population 12.64 12.72 -0.08 0.001

Median Total Population 13.5 12 1.50 >0.001

Probability of Predator Extinction 0.19 0.00 0.19 (0.18,0.21) >0.001

Probability of Prey Extinction 0.80 0.99 -0.19 (-0.21, 0.17) >0.001

Probability of Total Extinction 0.03 0.00 0.03 (0.02,0.03) >0.001

*95% CI: 95% Confidence Interval.
†Confidence intervals not calculated for Kruskal-Wallis tests.

doi:10.1371/journal.pone.0130574.t001
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Finally, the mean and median model run times (measured in seconds) were taken for a sub-
set of 100 iterations of each model using both pool and queue equilibrium. All models were
implemented in Python using the StochPy library (Version 1.1)[19], and the statistical analysis
was performed in R (Version 2.15). Source code and data for the simulations is available at
http://dx.doi.org/10.6084/m9.figshare.1047825.

Results

Predator-prey model
The mean and median population for the predator and prey populations, as well as the proba-
bility of either species or the entire system going extinct, is reported in Table 1. Queue stability
based simulations had higher median and mean predator populations, though the latter was
not statistically significant (P> 0.001 and p = 0.347 respectively), and correspondingly smaller
median and mean prey populations (P>0.001 for both measures). While the median prey pop-
ulation in both scenarios was 0, the Pool stable models had a higher mean value (4.06 animals)

Fig 2. Population trajectories for prey populations for a 10% sample of iterations of Pool and Queue stabilized predator-prey models.Green lines
depict the trajectories of Pool stabilized simulations, while blue lines indicate the trajectories of Queue stabilized simulations. All lines are semi-transparent,
with areas of more opaque color indicating more frequent results. Dashed line indicates the trajectory of an identically parameterized deterministic model.

doi:10.1371/journal.pone.0130574.g002
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due to a longer tail of the prey population distribution arising from a small number of scenarios
(411) where the predator species experienced stochastic extinction before the prey species,
such that the growth of the prey species was then bounded only by the carrying capacity of
their habitat. Queue stable models prevent the predator species from going extinct, making
such unrestrained population growth impossible for the prey species (mean = 2.93 animals).
As it is difficult to summarize stochastic modeling results purely through statistical moments

Fig 3. Population trajectories for predator populations for a 10% sample of iterations of pool- and Queue stabilized predator-prey models.Green
lines depict the trajectories of Pool stabilized simulations, while blue lines indicate the trajectories of Queue stabilized simulations. All lines are semi-
transparent, with areas of more opaque color indicating more frequent results. Dashed line indicates the trajectory of an identically parameterized
deterministic model.

doi:10.1371/journal.pone.0130574.g003

Table 2. Patient Outcomes from 5,000 Runs of a Pool and Queue StabilizedC. difficileWithin-hospital Transmission Model.

Pool Stable Queue Stable Difference 95% CI* P-value

Probability of N-extinction 0.71 0.00 0.71 0.69, 0.73 >0.001

Pool Stable Queue Stable

Mean Median Mean Median P-value

Incident Cases 0.72 0 0.86 1 >0.001

Recurrent Cases 4.13 2 4.24 4 >0.001

*95% CI: 95% Confidence Interval.

doi:10.1371/journal.pone.0130574.t002
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[20], a 10% subsample of population trajectories for both predator and prey populations under
each stability mechanism are shown in Figs 2 and 3.

Hospital infection model
The cumulative number of incident and recurrent infections, as well as the probability of the
patient population going extinct, is reported in Table 2. Queue stabilized simulations of the
hospital system were vastly less likely to experience stochastic extinction, with 71.2% of Pool
stabilized model runs resulting in N-extinction, compared to 0.0% of Queue stabilized runs,
where such extinction is impossible (P> 0.001). As a consequence of more stable patient popu-
lations, Queue stabilized models had higher mean and median numbers of cumulative incident
and recurrent C. difficile cases (P> 0.001 for all tests). The distributions of cumulative incident
and recurrent cases under both stabilization mechanisms are shown in Fig 4.

Comparison to deterministic implementations
Both stochastic predator-prey model implementations had median predator populations well
below the deterministic model’s equilibrium state of 15, with the Queue stabilized model’s
median predator population of 9.79 slightly closer than the Pool stabilized model’s median of
8.58. Both stochastic models had a median prey population of 0 compared to the deterministic

Fig 4. Violin plots of the number of recurrent and incidentC. difficile cases in 5,000 runs of Pool and Queue stabilized stochastic, within-hospital
transmission models. Each ‘violin’ represents a smoothed kernel-density estimation of the distribution of cases, mirrored along the y-axis.

doi:10.1371/journal.pone.0130574.g004
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model’s 3.5 animals. The mean prey population of the deterministic model (3.43) fell between
the Pool stabilized model’s mean of 4.06 and the Queue stabilized model’s mean of 2.93

The Queue stabilized hospital infection model more closely resembled the deterministic
model’s 0.83 incident and 4.22 recurrent cases, with a median of 1 incident and 4 recurrent
cases compared to the Pool stabilized model’s 0 incident and 2 recurrent cases. The mean val-
ues for incident and recurrent cases for both stabilization types were closer to the deterministic
results (see Table 2), but the Queue stabilized model remained more similar.

Computational time and limitations
For both the predator-prey and epidemic models, the Queue stabilized implementations had a
markedly longer runtime, each requiring approximately twice the computation time per itera-
tion when run on an identical 3.2 GHz Intel Core i5 system. The predator-prey model had a
median per-iteration runtime of 0.007 seconds for the Pool stabilized version and 0.014 sec-
onds for the Queue stabilized version (P< 0.001). The hospital model had a median per-itera-
tion runtime of 3.76 seconds for the Pool stabilized model and 7.36 seconds for the Queue
stabilized model (P< 0.001). The overall shapes of the runtime distributions were also quite
distinct based on which method was used, and the resulting change in the model’s dynamics
(Fig 5).

Fig 5. Violin plots of the execution time (in seconds) for a single run of Pool or Queue stabilized predator-prey andC. difficilewithin-hospital
transmission models. Each ‘violin’ represents a smoothed kernel-density estimation of the distribution of runtimes, mirrored along the y-axis.

doi:10.1371/journal.pone.0130574.g005
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Discussion
The choice of how one approaches the stochastic modeling of steady-state systems can pro-
foundly influence the results of otherwise identically implemented and parameterized models.
Some outcomes, such as the stochastic extinction of an entire system, move from impossible to
relatively common. The stability of a system is often considered a “given” within a modeled
scenario, rather than a deliberate choice. These differences have the potential to obfuscate
results of more direct interest or inject additional disagreement between two different models
that predict the same system dynamics but have different equilibrium schemes.

Neither Pool nor Queue stability is inherently superior. The results of the two example mod-
els illustrate that the choice of stabilization method is not a straightforward algorithm. In the
hospital infection model, Queue stability more closely resembles the results of a deterministic
model because it disallows N-extinction. Yet in the predator-prey model, both model imple-
mentations differ from their deterministic analog, and in one case the disagreement between
them is equal in magnitude and opposite in direction. Despite the Pool stabilized models being
seemingly direct adaptations of deterministic ODE models in fact neither stability method
clearly mirrors a deterministic model. The only clear, unambiguous difference is the longer
computing time for Queue stabilized models.

Instead, the nature of the biological process being modeled should dictate the choice of sta-
bilization method. Specifically, consider whether or not allowing N-extinction is realistic and
desirable. For example, it is easy to see how a small wildlife population might be subjected to
N-extinction due to string of random events all of which negatively impact survival, and thus
how pool-stabilization is an appropriate means to reflect a population at a stochastic steady
state. In contrast, Queue stabilization implies something like an infinite line of predators
patiently waiting their turn to begin hunting and breeding–an implausible situation suggesting
a poor fit for Queue stabilization.

However, despite similarly small population size, intensive care units in major hospitals are
relatively stable, and closure to random fluctuations in patient demand is highly unlikely. As
such, disallowing N-extinction through a Queue stabilization mechanism is a reasonable choice
for modeling such a system. It is significantly easier to picture a line of patients waiting to be
admitted into an ICU–indeed, this situation confronts the medical system every day.

This is not an exhaustive study of the effects of how stochastic steady states are modeled,
nor even a comprehensive description of all steady-state mechanisms. It is meant to illustrate
the importance of considering how each term within a model, even those not of research inter-
est that might be easily overlooked translate to reality, and how reasonable that translation is.
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