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In recent years, machine learning approaches have been successfully applied for analysis of neuroimaging data, to help in the
context of disease diagnosis. We provide, in this paper, an overview of recent support vector machine-based methods developed and
applied in psychiatric neuroimaging for the investigation of schizophrenia. In particular, we focus on the algorithms implemented
by our group, which have been applied to classify subjects affected by schizophrenia and healthy controls, comparing them in
terms of accuracy results with other recently published studies. First we give a description of the basic terminology used in
pattern recognition and machine learning. Then we separately summarize and explain each study, highlighting the main features
that characterize each method. Finally, as an outcome of the comparison of the results obtained applying the described different
techniques, conclusions are drawn in order to understand how much automatic classification approaches can be considered a
useful tool in understanding the biological underpinnings of schizophrenia. We then conclude by discussing the main implications
achievable by the application of these methods into clinical practice.

1. Introduction

Investigating the neurobiological bases of psychiatric disor-
ders requires a large sample studied in a longitudinal perspec-
tive from early stages of the diseases. In this context, magnetic
resonance imaging (MRI) is the gold-standard technique to
explore the anatomical and functional underpinnings of such
illnesses [1-3].

In order to accurately analyze such large amount of
imaging data, automated methods are becoming essential [4].
As outlined by Lao and colleagues [5], to develop an accurate
detector of pathology from a set of images, two issues need to
be addressed. First, an image analysis methodology is needed
in order to extract the most relevant information from the
images. Second, a pattern classification method has to be

designed to process the extracted information, in order to
determine the likelihood of the disease.

Feature extraction is aimed at characterizing an object in
terms of properties, or features, such as dimensions, shape,
color, and texture. Chosen features are those that, when
belonging to objects of the same category, or class, are very
similar; on the contrary, they should be very different from
objects in different categories. The set of features extracted
from an object can be considered as a signature which
describes the object itself. Features are usually organized in
the so-called feature vector, a vector of arbitrary length which
collects all the properties that are considered useful in order
to describe the objects under analysis. A good feature vector
should be able to discriminate objects belonging to different
classes.
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Classification is aimed at finding a rule that, based on
the available features, distinguishes all the objects and assigns
them to the specific category.

These two issues are typically referred to as feature extrac-
tion and classification. Particularly, the aim of feature extrac-
tion is to characterize an object in terms of features (such as
dimensions, shape, color, and texture) whose values should
be on one hand very similar for objects in the same category,
or class, and, on the other hand, very different for objects
in different categories. The set of the features extracted from
an object can be considered as a signature which describes
the object itself. Features are usually organized in the so-
called feature vector.

Pattern recognition is the science which uses statistics and
mathematics to program a computer in order to recognize
patterns in a dataset. In the field of medical science, pattern
recognition is the basis of computer aided diagnosis (CAD)
systems. Other fields of application include, for instance, fin-
gerprint identification, automatic speech recognition, DNA
sequence identification, and so on.

The aim of classification, instead, is to find a rule that,
based on the available features, distinguishes all the objects
and assigns them to the specific category.

The problems of features extraction and classification are
standard issues in the field of computer vision and artificial
intelligence. We use the term pattern recognition to identify
the science which employs statistics and mathematic tools
to teach a computer to recognize patterns in a data set. In
the field of medical science, pattern recognition is the basis
of computer aided diagnosis (CAD) systems. Among the set
of tools, machine learning refers to the ability of a system
to change its behavior without being explicitly programmed.
It is linked to artificial intelligence, and it allows computers
to handle new situations by means of previous experience,
analysis, and self-training. In machine learning the classifi-
cation aims at automatically identifying to which of a set of
classes a new observation belongs.

Machine learning is linked to artificial intelligence, and it
designs algorithms in order to allow a computer to learn from
data. In this context, the term learn means finding statistical
regularities on a set of data. Machine learning allows comput-
ers to handle new situations by means of previous experience,
analysis, and self-training. The ability of machine learning
in turning data into information is exploited in problems of
pattern recognition. For example, spam email can be auto-
matically detected by looking, for instance, at the occurrence
of a set of words in the object and in the body of the email,
combined with the length of the text, the presence of attached
files, and so forth.

In particular, features in the data are automatically
searched, in order to use them to classify the data into dif-
ferent predefined classes. This is done on the basis of a set
of data containing observations of which class membership
is known, called training set. A classifier is any algorithm
that implements classification. Typically a classifier takes the
values of various features of an instance to be classified and,
exploiting the provided training set, predicts to which class
the instance belongs. As summarized in Pereira et al. [6], a
classifier has a number of parameters that have to be learned
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from the training set. This step of learning makes the classifier
amodel of the relationship between the features and the class
label in the training set. Once trained, the classifier has to be
tested, in order to determine whether the selected features
contain information about the class of the example or not.
The performance of the classifier is tested by trying to classify
a different set of examples, called validation set: in this way it
is possible to evaluate the ability of the classifier of correctly
categorizing a previously unseen instance.

A training set is necessary in pattern recognition in order
to teach a computer to correctly classify objects, or instances,
into classes. Given a dataset, data is split into a training set,
from which a model is built, and into a validation set, or
test set, which is used to validate the model. This model is
the rule used by the computer to classify objects into classes.
The training set contains instances whose class membership
is known. Each instance is described by its feature vector. The
training set is used by the classifier to learn which features are
useful to correctly assign each instance to its class.

Once trained, the performance of the classifier can be
tested by evaluating its ability to correctly classify the instan-
ces of the validation set.

In the literature, dozens of different classifiers have
been proposed (support vector machines, classification trees,
linear discriminant analysis, quadratic discriminant analy-
sis, neural networks, generalized linear models, the nearest
neighbor, etc.). They are all based on different algorithms,
whose aim is to decide how new instances should be classified
[7]. Their performance, that is, the ability of each classifier to
assign new instances to their class, depends on the algorithm
they analyze the data with. During the past few years, support
vector machine (SVM), a supervised machine learning clas-
sifier [6, 8], has emerged as one of the most powerful pattern
classification methods [5, 9], and it has become a state of the
art in many classification tasks, such as object and face recog-
nition [10], genome sequencing [11, 12], and handwritten
recognition [13]. The idea at the basis of SVM is to project
the feature data points to a high dimensional space where
the groups can be separated using a hyperplane. Boser and
colleagues [14] suggested a way to create nonlinear classifiers
by an algorithm that operates with a large class of decision
functions that are linear in their parameters but not restricted
to linear dependences in the input components. These func-
tions are known as nonlinear kernel functions.

In the 3-dimensional space, a plane is a 2-dimensional flat
surface. Similarly, in an n-dimensional space, a hyperplane
can be described as an (n — 1)-dimensional surface.

A projection is the transformation of points and lines of
one plane into another plane. Corresponding points on the
two planes are connected by parallel lines. An object can be
projected from a space to another one of different dimen-
sions. For instance, a sphere in a 3-dimensional space can be
projected into an ellipse in a 2-dimensional space.

Any element can be projected from a space to another one
of different dimensions.

In SVM, objects are projected into a high dimensional
space, where they can be separated using a hyperplane which
is called decision surface or decision function.
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SVM has been increasingly employed in neuroimaging
studies, for instance, as a multivariate method in functional
MRI (fMRI) [15,16]. In the study by Cox and Savoy [15], given
a defined time point, the pattern of brain activation across
space measured by fMRI was considered. The aim of the study
was to learn a classifier to identify, starting from the pattern
of activation, which kind of stimuli the subject was viewing
(common versus uncommon objects, living creatures versus
inanimate objects, etc.).

A similarity measure is a function to compute the degree
of similarity between a pair of objects.

A kernel function f is used as a similarity measure; that
is, two elements x; and x, drawn from a set X are considered
equivalent if f(x;) = f(x,). In the field of pattern recog-
nition, kernel methods are used to project data into higher
dimensional space. In the new space, in fact, data could
become more easily separated and classified. Different types
of kernel functions are commonly used, that is, linear, poly-
nomials, Gaussian, radial basis function (RBF), and so on.

In more detail, in a recent critical review, Orru et al. [17]
stated that using structural and/or functional neuroimaging
data as input to SVM represents a valid diagnostic aid for clas-
sifying major neurological and psychiatric illnesses, allowing
inferences at individual level, rather than at group level. This
may ultimately have a major impact on clinical practice: as
emphasized by the authors, neuroimaging can be considered
useful in a clinical setting if it is not limited at reporting differ-
ences between the group of patients and the group of controls.
On the contrary, it should be able to help doctors to make
clinical decisions about each patient. However, the applica-
tion of state-of-the-art classification methods, such as SVM,
to neuroimaging field is not straightforward: clinical data
has specific characteristics that pose new issues to be solved,
among which are the high dimensionality of acquired brain
data, the definition of features, their interpretation from the
physiological point of view, the inner complexity of brain
structures, and the presence of multiple covariates which
contribute to the heterogeneity of a population.

In analyzing brain images, the most commonly used
methods comprise the region of interest (ROI) analysis,
the voxel-based morphometry (VBM) [18], and the surface-
based morphometry (SBM) [19, 20]. The ROI analysis defines
some regions of interest according to known a priori hypoth-
esis and statistically analyzes some related physiological
measures (e.g., their volumes). ROIs can be either manually
traced by expert operators or automatically extracted by seg-
mentation algorithms. VBM considers the whole brain after a
normalization procedure which maps each subject brain onto
a standard reference, namely, the stereotaxic space, allowing
a voxel-by-voxel comparison with no a priori hypothesis.
Finally, SBM does not analyze the image properties at voxels
level, but it rather constructs and analyzes surfaces that repre-
sent structural boundaries within the brain (i.e., boundaries
between white and grey matter or between grey matter and
cerebrospinal fluid).

However, even though in schizophrenia structural and
functional brain abnormalities in patients have been demon-
strated [21, 22], neither ROI analysis, nor VMB, nor
SBM techniques enable patients with schizophrenia to be

automatically classified, based on the brain’s features. None-
theless, as summarized in Orru et al. [17], during the past
few years an increasing number of studies have used SVM in
order to investigate the presence of potential neuroanatomi-
cal biomarkers of neurological and psychiatric disorders [23-
27]. However, with the exception of the studies by Gerig and
colleagues [24] and by our group [28], all the other studies
applied multivariate whole brain analysis, thus being limited
by the use of an immense dimensional space in a relatively
small sample size. Multivariate analysis allows examining
relationships among multiple variables at the same time,
and it might be useful if a given outcome is hypothesized to
be influenced by more than one variable. Nonetheless, results
obtained using multivariate analysis can be considered mean-
ingful only in the presence of a large dataset; otherwise, they
are meaningless due to high standard errors. As for whole
brain analysis, it is not always the best way to analyze changes
in brain regions, since misleading significant correlations
may exist in some brain regions that are not involved in the
analyzed brain disease.

In addition, only the studies by Gerig and colleagues [24]
and by our group [28] were driven by a priori hypothesis and
consistently detected specific structural markers.

In our studies we aimed at automatically classifying schiz-
ophrenia by applying a ROI-based machine learning
approach within different brain regions [36].

The main focus of this review would be, firstly, to briefly
describe the principles of SVM techniques, in order to let
readers unfamiliar with classification methods get acquainted
with them. Successively, we will focus on our machine learn-
ing studies, comparing them in terms of accuracy results with
other recently published studies. Finally, we will debate the
results based on the current literature in a clinical translation
perspective.

2. SVM Operating Principles

The working pipeline of the SVM can be divided into three
separated steps: features extraction, features selection, and
classification. In the following sections we will briefly sum-
marize the main aspects of each of them.

2.1. Features Extraction. In this phase, the original data are
processed in order to compute a set of representative features
which can be used as input for the SVM. This is a crucial
step in the SVM analysis since every measure obtained from
the raw data can be ideally used as a feature for the SVM
analysis; redundant or not significant features may affect the
performance of the final classifier.

Feature extraction includes all procedures performed to
compute some measures that characterize the object which
is being investigated, for example, probability of gray matter
(pGM) if we are studying the cortex using morphological
images or the diffusion measures if we are studying the white
matter using diffusion tensor MR images.

Features may have an intuitive physiological interpreta-
tion, such as the pGM obtained using the VBM approach [37]
or not, as in the work by Selvaraj et al., [38] who used various
features, among which are the energy and the entropy of



the image. After features have been extracted from the data,
they may undergo a normalization process to account for
physiological changes which are not related to the disease,
similar to what is usually done in the VBM analysis. In VBM,
pGM is usually normalized to the total intracranial volume
in order to account for pGM differences due to physiological
differences of the brain volume among subjects. The normal-
ization step is performed when the extracted features depend
not only on the disease, but also on other physiological
differences among subjects. After normalization, differences
are no longer related to the total intracranial volume, and the
group analysis is more robust and easy to be interpreted. If
the normalization is not performed, the physiological differ-
ences may mislead the classifier, worsening its performance.
Therefore, confounding factors should be eliminated. pGM
can be normalized using the total intracranial volume or the
total GM volume, whereas, for instance, intensity histograms
can be normalized to their maximum value or to the sum of
their bins.

Finally, features from each subject must be stored in a
vector, that is, the feature vector, in order to be processed
by the SVM algorithms: each two-dimensional image (or
each three-dimensional volume) has to be transformed into
a column vector in which each element corresponds to the
gray level intensity of one pixel (or voxel, resp.). SVM analysis
requires feature vectors to be of the same length. This might
represent a limitation, since different subjects could be rep-
resented by a different number of features. To overcome this
problem, dissimilarity vectors can be used instead of feature
vectors. In this case, similarities measure is computed bet-
ween each couple of subjects in the dataset and directly used
as a feature in the SVM analysis; such a method is referred to
as pairwise dissimilarity approach [30].

2.2. Features Selection. This step is optional, since the SVM
algorithms do not have requirements about feature lengths.
When it is performed, it reduces the variable-length sequence
of observations associated with a set of extracted features.
As clarified by Kloppel et al. [39], neuroimaging data can
be characterized by more than one million dimensions, so a
reduction of the input measures can be useful. This selection
is aimed at improving the performance of classification step,
since minimally important, redundant, or noisy features
might worsen the discrimination between classes. Besides, a
reduced number of features imply a smaller computational
load, thus accelerating the overall process. Last but not least,
aselection can either help or eliminate the physiological inter-
pretability of the features provided to the classifier. In the
context of neuroimaging, features selection can be performed
in three ways.

(1) Filtering. On the basis of medical knowledge, that is,
exploiting a priori information, some features can be
considered either noninfluential for the diagnosis of
specific disease and thus can be discarded or useful
for the considered disease and thus can be exploited
[28, 29, 31].

(2) Before Classification. Prior studies in the areas of fea-
ture selection and dimensionality reduction include
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principal component analysis (PCA) [40] or math-
ematical approaches such as the minimization of a
concave function on a polyhedral set [41]. It should
be remarked that the feature selection, performed
independently of learning the classifier parameters,
might result in a loss of information relevant for clas-
sification tasks. Moreover, this feature selection pro-
cedure might cause a loss of medical interpretability
of the selected features.

(3) During the SVM Training. In this case, the feature
selection is embedded in the classification step. An
example is represented by the sequential forward and
backward selection (SFBS). In the forward selection
[42] the process begins analyzing each feature singu-
larly and selecting the best one. The overall process
is iterative: for each step the best feature from the
remaining set is selected, and the feature list and the
classification performances are saved. In this case,
the best feature is the feature that, combined with
the already selected ones, gives the best classification
results. The process is iterated until all features have
been included. Finally, the feature set providing the
best performance is chosen as result of the whole
selection procedure. On the other way around, in
the backward selection [43], features are progressively
removed from the feature set, on the basis of some
weights that the classifier assigns to each feature at
each iteration. The advantage of this approach is that
there is no loss in medical interpretability of the
selected features; the drawback is the computational
complexity since the analysis must be performed
several times.

In a more general case, during the classification step, a
combination of different kernel functions can be learnt, one
for each feature extracted from the data. This is the case of the
recently introduced multiple kernel learning (MKL) methods
(33, 34].

2.3. Classification. Classification is performed using the so-
called kernel functions, which map a nonlinearly separable
set of data defined in an n-dimensional space, into a higher
dimensional space (possibly of infinite dimension) where
data become linearly separable; that is, they can be divided by
a hyperplane (Figure 1). This linearly separable problem can
be solved using SVM.

Many different types of kernel functions have been pro-
posed in the literature (i.e., polynomial, Gaussian radial basis
functions, sigmoid functions, etc.). Since the use of a specific
kernel function influences the performance of the classifi-
cation process, it is important to consider several solutions
and select the best one. Methods such as boot-strapping [44]
and cross-validation are commonly used for kernel selection.

As a rule of thumb, a linear kernel is less prone to over-
fitting and it is useful for features selection, since it is easy
to retrieve a weight associated to each feature. Otherwise, a
Gaussian kernel provides generally better performance, but
it does not provide a direct estimate of the weights to be
assigned to each feature.
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(a) (b)

FIGURE I: The kernel function maps the data from a certain
space into a higher dimensional space where data become linearly
separable. In this graphic example, in the bidimensional space,
data were not linearly separable into two classes (a). In the three-
dimensional space instead (b), they can be separated by a plane.

The overall classification step can be divided into two
phases: training and validation. In particular, when training
an SVM, the user has to decide which kernel to use and
a series of parameters describing the SVM and the kernel.
Then, given a set of training examples, that is, objects pre-
viously marked as belonging to one of the two possible cate-
gories, an SVM training algorithm builds a model that will be
subsequently used to assign new instances into either one cat-
egory or the other. Different approaches have been proposed
in order to achieve fast training times [45-47]. The classifier
is trained by maximizing the margin of separation between
the two groups provided with the training set. During the
validation, instead, employing the model built during the
training phase, the SVM predicts the group to which a new
set of previously unseen objects (the testing set or validation
set) belongs.

Obviously, training and testing set have to be nonover-
lapping. This requires a great amount of data do be acquired.
To overcome this problem, a cross-validation technique can
be used: the set of all data is split into two subsets, that
is, the training and the testing sets. The split is performed
several times adopting different partitions, and each time the
accuracy value of the obtained classification is recorded. At
the end, all the accuracy values are averaged to provide the
final accuracy of the classification algorithm.

In the case of a small dataset, a leave-one-out cross-valida-
tion is commonly adopted [48]: in this case, at each iteration,
a single pair of objects (one from each class) is excluded from
the overall group, and the classifier is trained using all the
other objects. Then the initially excluded pair is used for the
validation phase. The overall procedure is iterated for each
object pair.

3. Methods Developed in Our Laboratory

Given the uprising role SVM is gaining in neuroimaging field,
we have been investigating different approaches in order to
extract different features from MRI brain data in the last few
years [28-34]. In each approach, we started from the evidence
that there are brain structural and functional differences
between subjects with schizophrenia and healthy controls
(HOC).

For simplicity, according to the way in which the SVM
input is extracted, our studies can be divided into two main
groups: one in which each object (i.e., brain) is described by
features derived from the object itself and one in which each
object is described by distance/dissimilarity measures evalu-
ated by the comparison between pairs of objects. A complete
dissimilarity representation provides a square matrix with the
dissimilarities between all pairs of objects.

3.1. Methods Based on Feature Vectors. This is the classical
approach used in pattern recognition and machine learning,
and it consists in representing each object to be classified
as an n-dimensional vector of numerical feature. When
representing MRI data, the feature values might correspond
to the gray level of each voxel of the acquired volume. In such
a way the feature vector encodes either the pattern of brain
activation [49], in the case of functional neuroimaging data,
or the pattern of gray and white matter volume, in the case of
structural data [50].

In our works, several different features have been chosen
to represent objects to be classified. One of the advantages
of the implemented methods is that registration between
subjects is never required, since, as it will be described in the
next sections, the features that we chose and that have been
extracted are always position and scale invariant.

The study by Castellani et al. [29] focused on one region
of interest (ROI) (left amygdala) manually traced on a cohort
of 124 subjects (64 diagnosed with schizophrenia plus 60 HC)
and characterized by using a local geometric feature, that is,
the shape index, which encodes the curvatures of a generic
surface point, by capturing the intuitive notion of local shape
[51]. The 3D surface was computed from the set of 2D ROIs
as a triangle mesh using marching cubes. Given the definition
provided in Koenderink and van Doorn [51], the shape index
can take any value in the interval [-1, 1], where the values
-1 and 1 are high local curvature, and 0 stands for no local
curvature (i.e., flat surface). All values extracted for a subject
were quantized in a fixed number of bins, and a histogram
of occurrences, which represents the descriptor of a given
subject, was computed. The subsequent step of the algorithm
was based on the research on natural language processing: in
particular, the computed quantized shape descriptors were
considered as a set of visual words from which a gener-
ative model was learned. Generative models are built to
understand how samples were generated, and they are learned
to find local patterns of cooccurrences, by leading to the
definition of the visual topics. The generative model chosen in
Castellani et al. was the probabilistic latent semantic analysis
(pLSA) [52]. Two models have been learned, one for each
group (controls and patients), to provide a score for each
subject. The set of scores was finally used as input for the
SVM classifier. In this study, two kinds of kernels have been
considered (the histogram intersection kernel and the y’
kernel), and the cross-validation strategy was used to evaluate
the classification performances. 75% of the samples were
randomly extracted as training set, using the rest for testing,
and the overall process was repeated 20 times. The best
result in terms of accuracy was 86.13% + 2.17, obtained with



45 topics and the histogram intersection kernel. It is worth
noting that the SVM classification performed directly on the
feature histograms (i.e., without the pLSA) by using the same
validation strategy and kernel led to an average accuracy of
58.70% + 9.78. This means that, thanks to the pLSA analysis, a
drastic improvement can be obtained in classifying morpho-
logical features in schizophrenia.

As further test, in the same study, PCA was used to
reduce the dimensionality of the quantized shape index
histograms, for different values of the saved components.
The classification test was performed using the previously
employed kernels. Results for PCA, in terms of accuracy,
were always between 50% and 60%, thus demonstrating the
superiority of pLSA-based dimensionality reduction.

In Castellani et al. [31], instead of using the shape index, a
new shape descriptor based on advanced diffusion geometry
techniques was introduced. The work focused on one ROI
(left thalamus), manually traced on a cohort of 60 subjects
(30 diagnosed with schizophrenia plus 30 HC), from which
structural T1-weighted MRI images were acquired. Again, the
characteristics of the introduced descriptor allowed avoiding
the registration between subjects. In fact, local geometric
properties were encoded by the heat kernel [53]. This is an
isometric invariant which allows describing the geometry of
an object by a vector obtained convolving the heat kernel with
the object descriptor (in our case the ROI mask volume). The
heat kernel was obtained as the solution of the heat equation,
which models how heat diffuses as function on time on a
shape. Intuitively, local shape characteristics are highlighted
through the behavior of heat diffusion over short time
periods, and, conversely, global shape properties are observed
while considering longer periods. So, the variation of one
parameter, time, allows characterizing the properties of a
shape at different scales. By fixing the number of scales, we
built a histogram of local heat kernel values observed at each
point of a surface mesh or at each point of a volumetric repre-
sentation of the ROI. The resulting histogram represented the
global heat kernel signature (GHKS), which was then used as
input for the SVM classifier. In this study, both surface meshes
and volumetric representation were considered.

The bag-of-words (BoW) approach is inspired by well-
established methods of indexing and retrieval of text doc-
uments. Text documents can be summarized by their word
counts, or bag-of-words, and by the frequency of occurrence
of words drawn from a defined word vocabulary.

In the field of pattern recognition, after having performed
feature detection, each object is associated to its signature,
that is, its vector of features. In BoW approach, a large sample
of features is collected from the set of objects. This large sam-
ple is then quantized with some clustering techniques, usually
with k-means clustering, obtaining a number k of clusters.
The center of each cluster is called visual word or feature
prototype. The set of all the obtained visual words provides
the so-called feature vocabulary.

The chosen kernels functions were linear, polynomial
(degree = 3), and radial basis function, and the learning by
example approach was introduced by adopting leave-one-
out cross-validation procedure. Finally, the descriptor was
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compared with the ShapeDNA descriptor [54], which, how-
ever, does not deal with multiple scales and takes into account
only global information. Both the GHKS and the ShapeDNA
descriptor produced the best results when the volumetric
approach was employed, in combination with the radial basis
function kernel, even if the GHKS descriptor was more
stable by varying the type of kernel employed. Furthermore,
the best result obtained with the ShapeDNA descriptor
was 73.33%, while adopting the proposed GHKS descriptor,
accuracy was 83.33%.

A different feature extraction method, as well as a new
kernel function were proposed in Castellani et al. [28] to
study the dorsolateral prefrontal cortex (DLPFC). The ROIs
were manually traced on a cohort of 108 subjects (54 diag-
nosed with schizophrenia plus 54 HC), from which structural
T1-w MRI images were acquired. The local description of the
ROI was obtained using the scale-invariant feature transform
(SIFT) [55]. This is an algorithm that, given its ability in find-
ing distinctive key points that are invariant to location, scale,
and rotation, is commonly used in computer vision problems
to detect and describe local features in images. Starting from
a set of landmarks, which in our case have been extracted
employing the difference-of-gaussian (DoG) point detector,
the pixels of the landmark’s neighbourhood were encoded
using SIFT into a multidimensional feature vector which
described the local area. In this way, each brain was repre-
sented by a set of feature vectors (one for each landmark),
but all sets could have different cardinalities, according to the
number of extracted landmarks. Then, a second processing
procedure was performed in order to allow comparisons
among subjects. Primarily, the set of all feature vectors from
all brains was clusterized using the k-means clustering tech-
nique [36]. Subsequently, the centroids of the clusters were
considered as visual words or features prototypes providing a
quantization of the feature space, which is called the feature
vocabulary. This procedure is performed to apply the bag-
of-words (BoW) approach [56]. Finally, a weighting function
was introduced to define the relevance of the detected visual
words, in discriminating between patients and controls.
However, although SVM requires as input a set of fixed length
vectors, here a subject was represented by a set of local fea-
tures with variable cardinality. In order to tackle this problem,
a suitable kernel function has been employed. Since features
are local, such kernel functions are known in the literature as
local kernel or matching kernels [57]. The validation procedure
was performed adopting the leave-one-out cross-validation
procedure.

The obtained results showed an accuracy improvement
when introducing the weighting function. Performances fur-
ther increased, regarding the whole dataset (left hemisphere
75%, right hemisphere 66.38%), when only females (left side
84.09%, right side 77.27%) or only seniors (left side 81.25%,
right side 70.83%) were taken into consideration. This is very
interesting since gender and age have significant impact on
brain maturation in both healthy subjects and patients with
schizophrenia. Therefore, such variables should always be
considered in machine learning techniques when analyzing
MRI dataset from individuals with schizophrenia to increase
the accuracy.
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Finally, in Ulas et al. [33, 34], two variations of the recently
proposed multiple kernel learning (MKL) methods [58, 59]
were implemented. As we have already remarked, selecting
the kernel function and its parameters is an important issue in
training. MKL methods, instead of learning a specific kernel
for all features, use a combination of different kernel func-
tions, one for each feature extracted from the data. With this
approach, each kernel function contributes proportionally
to an assigned weight parameter to the final space transfor-
mation, and it becomes possible to integrate and select the
contribution from different parts and different features of the
brain. The difference among most MKL algorithms is the
optimization method which is applied to estimate the weights
or the combination rule used [58, 60].

The simplest way is to combine the kernels as a weighted
sum which corresponds to the linear MKL. In the literature,
different methods have been proposed. For instance, the
rule-based MKL (RBMKL) algorithm, that trains an SVM
by means of the combined kernels [61], the group Lasso
based MKL (GLMKL) algorithms [62], or the iterative simple
MKL (SMKL) algorithm [63], which uses projected gradient
updates and trains single-kernel SVMs at each iteration. In
particular, in Ulas et al. [33] the weights computed by MKL
method were used in order to highlight the importance of
each brain part and feature in the detection of the disease. In
Ulas et al. [34], instead, the MKL approach was exploited to
introduce a priori information linked to patients’ covariates
in order to improve the classification accuracy.

In the former study [33], four pairs of ROIs (left and right
amygdala, left and right entorhinal cortex, left and right supe-
rior temporal gyrus, and left and right thalamus) were man-
ually outlined from a T1-weighted MRI scan acquired from a
dataset of 100 subjects (50 diagnosed with schizophrenia plus
50 HC). In this work, three different descriptors have been
computed. The first descriptor was represented by gray level
tissue distribution (i.e., histograms) evaluated in each ROI
after MRI scale standardization based on landmark matching
[64]. The remaining descriptors represented two geometric
features, that is, the shape index and the curvedness, eval-
uated at each vertex of a triangle mesh computed from the
set of 2D ROIs using marching cubes. Values were then
quantized in order to build a histogram of occurrences for
both kinds of geometric properties. The three obtained
descriptors were used as input for the SVM. To assess the
performance of the proposed methodology, we used a leave-
one-out cross-validation strategy.

The accuracies of combining ROIs for each descriptor
have been evaluated for a group of classifiers. Among these,
a new brain classification method, the clustered localized
multiple kernel learning (CLMKL), has been introduced. In
localized MKL (LMKL) [65], a decision function is defined;
its parameters depend on the input data, that is, localized
information. The CLMKL approach, instead of letting the
algorithm choose the partitioning, exploited a priori parti-
tioning based on expert knowledge; for instance, subjects can
be clusterized into males and females. CLMKL thus learns
a separate combination of input kernels for each cluster.
Such combination of individual base classifiers is driven by

the gating function method [66], which has to be properly
formulated in order to incorporate the desired a priori infor-
mation, that is, the proposed GLMKL, the single kernel SVM,
the SVM on the concatenation of ROIs, the rule-based MKL,
and the simple MKL. In general, our study revealed that MKL
methods were better than single kernel SVMs, and the best
result in terms of accuracy (81%) was obtained using either
GLMKL or simple MKL. Finally, combining all the feature
sets and all the ROIs, there was a further improvement in the
accuracy (84%), thus suggesting the importance of combin-
ing different ROIs and multiple descriptors.

In Ulas et al. [34], three pairs of ROIs (left and right
DLPEC, left and right entorhinal cortex, and left and right
thalamus) were manually outlined from a T1-weighted MRI
scan acquired from a dataset of 82 subjects (42 diagnosed
with schizophrenia plus 40 HC). The rationale of the work
originated from the evidence that in brain classification there
is a general diversity of the brain properties in accordance
with gender and age, as previously shown by our group [28].
The CLMKL was used in order to explicitly encode the known
intraclass variability into the classification model. Since in
CLMKL approach a priori partitioning based on expert
knowledge is exploited, subjects were clusterized into males
and females. In our study [33] the gating function had to
behave differently regarding gender. The gating model para-
meters were computed using alternating optimization. First,
the kernel weights were fixed and the SVM parameters were
estimated by standard solvers. Second, the SVM parameters
were fixed and kernel weights were estimated by a gradient
descent procedure.

Classification was performed both at a single-ROI value
and combining all considered ROIs.

In the former case, different classifiers have been com-
pared, that is, the proposed CLMKL, the standard SVM
applied on the feature set, the concatenation of the feature
and the gender information, and the localized MKL. Linear
kernels have been used in all experiments, together with a
leave-one-out validation scheme [33]. CLMKL resulted to be
the most accurate method every time, with a maximum accu-
racy of 81.71% when considering the left entorhinal cortex.
In the latter case, that is, when combining all the traced ROls,
CLMKL was compared to the already cited methods, plus the
rule-based MKL and the simple MKL. Once again, CLMKL
proved to be the most accurate method, with an accuracy
of 90.24%. Other methods increased their accuracy if data
were divided into male/female subsets (e.g., SVM increased
from 71.95% to 75.00% and 76.19% when classifying male and
female, resp.), but the improvements did not reach CLMKLs
results.

3.2. Methods Based on Pairwise Dissimilarities. In methods
based on vector of features, each instance to be classified
is described in an absolute way, that is, disregarding any
comparison with other objects. In the dissimilarity approach,
instead, instances are described using pairwise dissimilarities
to a representation set of objects [67]. Such a method might
appear closer to what is commonly done by human beings
in everyday life. Intuitively, when we are required to classify
objects into groups, we typically proceed by comparison; that



is, we describe each object in relation to all the others, rather
than in an absolute way. It can be easily derived that the choice
of the dissimilarity measure is crucial in this approach and
must properly characterize the data analyzed in the study. For
example, when histograms are used to describe the data, a
proper dissimilarity measure can be the histogram intersec-
tion or the earth mover’s distance.

In the context of automatic classification, the dissimilarity
representation is transformed into a vector space in which
traditional statistical classifiers can be used. Unlike the related
kernel approach, whose application is often restrained by
technicalities like fulfilling Mercer’s condition, basically any
dissimilarity measure can be used [68]. For instance, in
the field of biomedical imaging, a common feature used to
describe images is the registration error, that is, the transfor-
mation that best aligns an image to another one. Though this
measure can have an intuitive meaning (the registration error
will be small when two images are similar and vice versa), it
does not fulfill Mercer’s condition [9], so it could not be used
within a classic approach.

We applied the dissimilarity approach in two different
studies [30, 32], where 7 pairs of ROIs (for right and left hemi-
spheres resp.) were considered, that is, amygdala, DLPFC,
entorhinal cortex, Heschl’s gyrus, hippocampus, superior
temporal gyrus, and thalamus.

In Ulas et al. [30], gray value histograms and their proba-
bility density functions (pdfs) were obtained for each ROI in
124 subjects (64 with diagnosed schizophrenia plus 60 HC),
from which a T1-weighted MRI sequence had been acquired,
while in Ulag et al. [32] two different MRI modalities were
used, that is, T1-weighted and DWI sequences, both acquired
from a cohort of 114 subjects (59 with diagnosed schizophre-
nia plus 55 HC). Since ROIs were traced on Tl-weighted
scans, in the latter study a coregistration step was needed
in order to properly realign each ROI from the TI-weighted
space into the DWI space. Besides, for each of the 14 ROIs,
together with T1-weighted gray value histograms and their
pdfs, three additional parameters were extracted, that is, two
geometric shape descriptors from the Tl-weighted volume,
that is, the shape index and the average curvature, both
evaluated at each vertex of a 3D surface computed from the set
of 2D ROIs as triangle mesh using marching cubes (his-
tograms and pdfs were obtained) and the histogram and pdf
of water apparent diffusion constant (ADC) from the DWI
volume.

In both studies, 13 dissimilarity measures were used, for
example, for pairs of histograms: Euclidean distance, L1 dis-
tance, intersection, diffusion distance, Xz distance, and Earth
mover’s distance; for pairs of pdfs: Euclidean distance, L1 dis-
tance, Earth mover’s distance, Bhattacharyya distance, sym-
metrized Kullback-Leibler divergence, original asymmetric
Kullback-Leibler divergence, and Jensen-Shannon diver-
gence. The choice of the dissimilarity measures strongly
depends on the considered data, and it is not in the aim of our
paper to provide guidelines to decide the most proper choice.
However, we suggested some examples in the paper to help
the reader to understand the basic concepts of the dissimilar-
ity measure approach.
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Involved dissimilarity measures were not necessarily
Euclidean measures. When comparing a pair of histograms,
a distance between them could be computed using the norm
function. Anyway, since the norm was not the most proper
way to characterize histogram differences, we defined a
distance between histograms based on the histogram inter-
section.

In the dissimilarity space basically any traditional classi-
fier could be used. The number of dimensions equaled the
number of objects, that is, the number of subjects of the
dataset. If such dataset was large, many classifiers would need
dimension reduction techniques or regularization to work
properly. SVM allowed avoiding the dimension reduction.

In both papers the number of dissimilarities matrices was
given by the product of the number of ROIs (14), the number
of dissimilarity measures (13), and the number of modalities
considered (1in [30] and 4 in [32]).

Classification was performed both at a single-ROI level
(i.e., considering only one ROI) and at a multi-ROI level (i.e.,
combining all considered ROIs).

For each test we evaluated the leave-one-out error. Two
classifiers were considered, the 1-nearest neighbour (NN)
rule on the original dissimilarities and the linear SVM in
dissimilarity space. The last one avoided complications that
could arise from the measures being non-Euclidean. At a
single-ROI level, the leave-one-out error estimated for the
linear SVM in dissimilarity space proved to be lower than
the error estimates for NN using the original dissimilarities
(standard approach).

Once again, when combining all ROIs at the same time,
the classification on the dissimilarity space outperformed
the standard approach. Moreover, the multi-ROI approach
brought a drastic improvement by confirming the comple-
mentary information enclosed onto the different brain sub-
parts. Finally, the error estimates were computed on the over-
all dissimilarity matrix (for all the measures and ROIs) for
both standard approach and dissimilarity-based approach,
respectively, yielding the best results (79%).

In Ulas et al. [32], in addition to the 1-nearest neighbour
(NN) rule on the original dissimilarities and the linear SVM
in dissimilarity space, linear SVM classifier on the original
feature space was employed. Besides, in addition to classi-
fication performed at a single-ROI level and combining all
considered ROIs, a further classification was obtained com-
bining different MRI modalities.

In the single-ROI classification, regardless of the consid-
ered feature, SVM classifier in the dissimilarity space was
always better than classifiers in the standard space. The best
accuracy (78.07%) was obtained on the left amygdala, using
the histogram of intensities and the dissimilarity measure of
Bhattacharyya distance.

In the multi-ROI classification, obtained combining all
ROIs but fixing both the modality and the dissimilarity
measure, the proposed classification in the dissimilarity space
provided better results than the standard approach. The
maximum of accuracy was obtained using the L1 distance
between pdfs as dissimilarity measure, and it reached 76.32%.
Moreover, on average, the multi-ROI approach provided
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an improvement regarding single-ROI approach, thus con-
firming the complementary information enclosed onto the
different brain subparts. Finally, in the multimodal classifi-
cation, the information gathered from the two different MRI
sequences (i.e., Tl-weighted and DWI) was combined. In
particular, to get the best result, the most accurate four ROI-
dissimilarity pairs from each modality were chosen; then an
exhaustive search on the combination of these matrices was
performed. The best accuracy (86.84%) was obtained with
the combination of two dissimilarity matrices from intensi-
ties (both from left DLPFC, one using original asymmetric KL
divergence and one using Bhattacharyya distance between
pdfs) and one dissimilarity matrix from shape index (from
right DLEPC, using y” distance between histograms). Apply-
ing the same methodology, the best results reached with 1-NN
and with SVM on the original feature space were limited to,
respectively, 76.32% and 83.33%.

Opverall, these two studies highlighted the complementary
information enclosed in the combination of several ROIs:
the fusion of information from various regions of the brain
allows improving the results obtained with the single-ROI
approach. However, this is not the case for multimodal MRI
information. Indeed, adding DWI data to structural TI-
weighted sequences did not reveal to be useful in our research
for obtaining more accurate results.

4. Other Recently Proposed Methods

During the last few years, the number of studies which
applied SVM in order to investigate psychiatric disorders
has been increasing. To get a glimpse of different proposed
techniques, we cite some original recent studies [23, 25, 35]
which have been applied to schizophrenia, and we compare
their results in terms of accuracy.

The study by Fan et al. [23] used a pattern classification
method for the identification of structural brain abnormali-
ties based on regional tissue volumetric information. In order
to perform a quantitative comparison of different individual
brain images, warping each image into a template space was
necessary. The study was performed on two groups, a female
dataset (dataset A, 23 subjects diagnosed with schizophrenia
and 38 healthy controls) and a male dataset (dataset B,
46 subjects diagnosed with schizophrenia and 41 healthy
controls). The diagnostic accuracy reached in distinguishing
individuals with schizophrenia from healthy controls was
90.2% for the female dataset and 90.8% for the male dataset.

The study by Koutsouleris et al. [25] represented a first
attempt in identifying individuals in different at-risk mental
states (ARMS) of psychosis. The aim of the study was to verify
whether it was possible to detect early a psychosis during
its prodromal phase. The study was performed on a cohort
of 45 individuals with ARMS, plus a corresponding group
of healthy controls. The novelty of this study was related to
the use of multivariate neuroanatomical pattern classification
in order to evaluate the feasibility of early recognition and
disease prediction in individuals with ARMS. The diagnostic
accuracy reached in distinguishing individuals with ARMS
from healthy controls was between 78% and 94%.

A hybrid machine learning method has been proposed in
the study by Yang et al. [35], in order to classify schizophrenia
patients and healthy controls. In this study, two SVMs were
applied, one on MRI data and one on single nucleotide poly-
morphism data, and then they were combined together. The
method was applied on 20 patients and 20 healthy controls,
and it provided a classification accuracy of 87%.

Unlike the methods developed in our laboratory, all of
them performed a warping of the data, that is, each brain
volume was registered to a brain template (e.g., the Montreal
Neurological Institute (MNI) template), in order to compen-
sate for the interindividual anatomical variation. Moreover, a
limitation of these studies was the relatively limited sample
size: all the authors asserted that results should be replicated
on larger populations. The results, in terms of accuracy, of
these three studies are summarized in Table 2.

5. Conclusions

In recent years the interest of the scientific community in
computational neuroscience is constantly growing [69]. In
particular, computational methods have been increasingly
applied to the field of magnetic resonance imaging (MRI)
after processing [70]. The aim is to analyze MRI data by the
means of innovative bioinformatic methods in order to detect
and describe human brain features.

Neuroimaging studies exploiting MRI have revealed
structural and functional alteration in schizophrenia. Never-
theless, these findings have not been extensively applied to
clinical practice, so far, to help in the diagnosis and treatment
of this psychiatric disorder.

In this study, we have described recent support vector
machine-based methods developed and applied in psychi-
atric neuroimaging by our research group (results are sum-
marized in Table 1). Each of the developed methods focused
on specific regions of interest in the brain, in order to study
whether it was possible to define a set of features that could
be discriminative in the diagnosis of schizophrenia.

The results obtained by studies using machine learning
are encouraging. They have shown that exploiting comple-
mentary information, coming either from various regions
of the brain or from the use of different features, allows
reaching extremely promising levels of accuracy in classifying
healthy controls and patients affected by schizophrenia. These
results suggest that the application of machine learning
techniques to neuroimaging studies will potentially be of help
in automatically classifying patients with schizophrenia on
the basis of MRI, with a potential tremendous translational
impact.

As shown in our works, classification in medical envi-
ronment is extremely variable: different data may be avail-
able, different brain districts may be considered, and some
measures may be useful to describe some medical conditions
but they may be useless in different others. This makes it
extremely difficult to suggest the best analysis pipeline and
classifier to be used. The planning step plays an important
role in studies based on classification methods, and different
approaches should always be considered and tested.
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TABLE 1: Performance evaluation.
Author Sample size MRI technique SVM input Number of ROIs Best accuracy (%)
[29] SCZ =64 Structural T1-w Features vector 1 (left Amy) 86.13
HC =60
[30] SI_CIZ(Z:: gg Structural Tl-w Pairwise dissimilarities Z_llgﬁh(slflgjrgfiicj[ﬁg’ 79
[31] SCZ =30 Structural T1-w Features vector 1 (left Tha) 83.33
HC =30
SCZ =59 Structural T1-w T T 71+ 7r (Amy, DLPEC, EC,
32 P d larit 86.84
[32] HC < 55 DWI airwise dissimilarities HG, Hipp, STG, and Tha)
[33] SF(I:CZ - :3 Structural T1-w Features vector 31 + 3r (DLPFC, EC, and Tha) 90.24
(28] SI—(I: (% - 55;1 Structural T1-w Features vector 1 (DLPFC) 84.09
[34] SI-(I:g : 558 Structural T1-w Features vector Al +4r (Am%f,hli)C »STG, and 84

Each method compared subjects affected by schizophrenia (SCZ) with healthy controls (HC). All methods focused on specific regions of interest (amygdala
(Amy), dorsolateral prefrontal cortex (DLPFC), entorhinal cortex (EC), Heschl’s gyrus (HG), hippocampus (Hipp), superior temporal gyrus (STG), and
thalamus (Tha)). The last column shows the performance of each algorithm in terms of accuracy, which is the overall proportion of correct classification (i.e.,

the number of correctly classified subjects divided by the number of all subjects).

TaBLE 2: Comparison between three state-of-the-art studies. Perfor-
mance evaluation.

Author Sample size MRI technique Best accuracy (%)

SCZ =23 (A) 46 (B)
HC =38 (A) 41 (B)

[23] Structural TI-w  90.2 (A) 90.8 (B)

[25] ARMS =45 Structural T1-w 78 + 94
HC=75
SCZ =20
35 fMRI 87
(35] HC =20

In the studies in the first and last rows, SVM was used to compare subjects
affected by schizophrenia (SCZ) with healthy controls (HC). The study in the
second row applied SVM to identify individuals in different at-risk mental
states (ARMS) of psychosis. The last column shows the performance of each
algorithm in terms of accuracy.

However, although nowadays we are far away from using
automatic image-based classification techniques to make a
diagnosis, in the long run, they might help clinicians in
reliable and early detection of affected patients, potentially
becoming a crucial tool for the real world of psychiatric
practice. Indeed, these methods could be added to the con-
ventional diagnostic process as a complementary assessment
for the evaluation of brain anatomy and morphometry in
patients suffering from schizophrenia. This would represent
a major clinical advantage, together with a translational
scientific approach, to the diagnosis of schizophrenia. Further
studies are now necessary to improve the potential contribu-
tion of computational methods applied to MRI in the early
stages of schizophrenia, for instance, by including subjects at
risk to develop the disease or examining in depth the effects
of specific covariates, such as age, gender, and ethnicity.

Finally, in addition to providing a potential help in diag-
nosis, machine learning may offer some information for the
treatment and prognosis of the illness. For instance, applying
these techniques by considering MR data with other variables
such as pharmacological treatment will allow classifying
subjects responding to specific drugs.
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