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Abstract: Chronic hepatitis B virus (HBV) infection is the major etiology of hepatocellular carcinoma
(HCC), frequently with HBV integrating into the host genome. HBV integration, found in 85% of
HBV-associated HCC (HBV–HCC) tissue samples, has been suggested to be oncogenic. Here, we
investigated the potential of HBV–HCC driver identification via the characterization of recurrently
targeted genes (RTGs). A total of 18,596 HBV integration sites from our in-house study and others
were analyzed. RTGs were identified by applying three criteria: at least two HCC subjects, reported
by at least two studies, and the number of reporting studies. A total of 396 RTGs were identified.
Among the 28 most frequent RTGs, defined as affected in at least 10 HCC patients, 23 (82%) were
associated with carcinogenesis and 5 (18%) had no known function. Available breakpoint positions
from the three most frequent RTGs, TERT, MLL4/KMT2B, and PLEKHG4B, were analyzed. Mutual
exclusivity of TERT promoter mutation and HBV integration into TERT was observed. We present an
RTG consensus through comprehensive analysis to enable the potential identification and discovery
of HCC drivers for drug development and disease management.

Keywords: hepatitis B virus; hepatocellular carcinoma; HBV integration; HCC driver identification

1. Introduction

Hepatocellular carcinoma (HCC) is the second leading cause of cancer deaths world-
wide [1–3], and its poor prognosis is, in part, due to the lack of effective treatment options.
A major etiology of this multifactorial disease is chronic hepatitis B virus (HBV) infec-
tion, which is associated with approximately 50% of HCC cases worldwide [4]. Current
HBV–HCC screening guidelines vary regionally: the American Association for the Study of
Liver Disease (AASLD), Canadian Association for the Study of the Liver (CASL), European
Association for the Study of the Liver (EASL), Asian-Pacific Association for the Study of the
Liver (APASL), and Latin-American Association for the Study of the Liver (ALEH) all have
distinctive recommendations. Irrespective of the region, ultrasound with or without serum
AFP screening is recommended every 6 months in HBV populations with risk factors that
may include being of Asian descent, >40 years of age, cirrhosis, and PAGE-B score [5].

During infection, HBV can integrate into the host genome. It has been proposed that
integration events mostly occur through non-homologous end joining (NHEJ) and micro-
homologous recombination [6–9]. Although HBV DNA integration into the host genome
is considered rare—with an estimate of one integration event per 10,000 HBV-infected
hepatocytes [10]—integrated viral DNA has been reported in more than 85% of HBV-related
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HCC (HBV–HCC) cases, suggesting a significant association between HBV integration and
hepatocarcinogenesis. Additionally, mechanisms of HBV integration in HCC carcinogenesis
potentially vary from patient to patient, including the insertional mutagenesis of HCC-
associated genes, induction of chromosomal instability, and continuous expression of
viral proteins [11,12]. Therefore, understanding the impact of integrated HBV DNA on
carcinogenesis may identify potential HCC driver genes as personalized biomarkers could
paving the way for precision disease management in HBV–HCC patients.

With the advent of next-generation sequencing (NGS), thousands of HBV integration
sites have been identified across the human genome. Although no host sequence preference
or specificity [13–18] has been identified, integration can activate known HCC driver genes
and has been reported in TERT, CCNE1, and MLL4 [19]. These, and other frequently
affected genes, have become known as recurrently targeted genes (RTGs). Similar to the
approach of identifying BRAF V600E driver mutations as recurrent hotspot mutations, here,
we take advantage of the large number of reported integration sites from the literature and
our in-house study to test the hypothesis that characterization of frequent RTGs can be a
tool for the identification of HBV–HCC drivers.

In this study, we collected integration sites identified in HCC tumor tissue and defined
RTGs. A total of 18,596 HBV integration sites, detected using PCR- and NGS-based
approaches [5,12–35], were analyzed. By characterizing the most frequent RTGs, we
demonstrate the potential of identifying HCC drivers for HCC precision medicine and
drug development.

2. Materials and Methods
2.1. Data Mining/Search Strategy

We searched the PubMed (1 January 2000–1 December 2020) database using Medical
Subject Heading (MeSH) terms “hepatitis B virus”, “HBV integration”, and “hepatitis B
integration sites” to identify studies that have reported HBV integration sites by either NGS-
or PCR-based approaches. Additional studies were obtained by cross-referencing from the
literature. We included only English-language studies with HCC subjects. We included all
such studies that identified HBV integration sites using NGS-based approaches. Among
studies using PCR-based methods, we only included those with sample sizes of 10 or more
HCC patients. HBV integration sites identified by RNA-seq [7,8,20] were not included,
because the expression of integrated sequences can be regulated by many host cellular
factors and is not within the scope of this study. We filtered out repeated integration sites
to ensure that each integration site was included only once, except for two studies that
utilized different methods on overlapping samples [21,22]. A total of 33 reported studies in
addition to our study are included, as summarized in Table S1.

2.2. In-House HCC Specimens and HBV Integration Analysis

Archived FFPE tumor tissue DNA (Table S2) [23,24] from stage I–IIIB patients
(n = 32) was obtained from the National Cheng-Kung University Medical Center, Tai-
wan, and collected following the guidelines of the Institutional Review Board. An HBV
enrichment NGS assay (JBS Science, Doylestown, PA, USA) was used to capture integration
sites. Briefly, NGS libraries were generated and enriched for HBV sequences, and the
enriched libraries were sequenced on the Illumina MiSeq platform (Penn State Hershey
Genomics Sciences Facility at Penn State College of Medicine, Hershey, PA, USA). The
NGS data were analyzed using ChimericSeq [25] to identify HBV–host junction sequences.
Reference genomes NC_003977.1 (HBV) and GRCh38.p2 (human) were used. The closest
genes within 150 kb of the HBV integration breakpoint were identified with ChimericSeq
software. Genes were defined as in NCBI’s RefSeq database. Tailored junction-specific
PCR-Sanger sequencing assays were designed to validate each HBV integration site of
interest, identified by the HBV enrichment NGS assay.
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2.3. TERT Promoter Mutation Analysis by PCR-Sanger Sequencing

HCC tissue DNA was used to amplify a 163 bp region (Chr5:1,295,151–1,295,313) of the
TERT promoter by HotStart Plus Taq Polymerase (Qiagen, Valencia, CA, USA) with forward
primer 5′-CAGCGCTGCCTGAAACTC-3′ and reverse primer 5′-GTCCTGCCCCTTCACCTT-
3′. The PCR products were sequenced at the NAPCore Facility at the Children’s Hospital of
Philadelphia (Philadelphia, PA, USA) and analyzed using the ClustalW software [26].

2.4. Identification of RTGs

To identify host genes that may have been affected by HBV DNA integration across
all studies, we identified the closest gene within 150 kb of the integration event, the
reported distance within which host genes can be impacted by integration [27,28]. For
a gene to be classified as an RTG, it must have been identified as an HBV integration
locus in two or more independent studies from at least two independent laboratories, each
of which included at least two HCC patients with the gene affected in the tumor tissue.
The requirement that a gene must have been identified in multiple laboratories served to
minimize the issue of potential cross-contamination. The full list of identified RTGs can be
provided upon request.

2.5. Gene Functional Enrichment Pathway Analysis

A total of 396 RTGs were subjected to enrichment pathway analysis using Enrichr (http:
//amp.pharm.mssm.edu/Enrichr (accessed on 30 January 2021)), to identify significantly
(p < 0.05) enriched pathways as determined by gene ontology.

3. Results
3.1. Overview of the Studies for RTG Identification

The studies included in RTG identification are summarized in Table 1. Twenty-three
studies utilized NGS, including our in-house study (Table S1), and 10 studies utilized
PCR-based approaches for HBV integration identification. For each study, the sample
size and the number and percentage of HCC tumors that had detectable integration sites
are listed. We compiled a total of 18,596 HBV integration sites from tumor tissues of
a combined 1310 HCC patients. In all, we found that 76% of tumor tissues (n = 1733)
contained detectable integration sites. In the 12 studies that enriched for the whole HBV
genome, on average, 72% (range 54–100%) of the tumors examined were found to have
integrated HBV DNA (n = 880). In two studies using an HBV DR1-2 enrichment NGS assay,
65% [29] and 91% (our study) of tumors examined were positive for integrated HBV DNA.

http://amp.pharm.mssm.edu/Enrichr
http://amp.pharm.mssm.edu/Enrichr
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Table 1. Summary of HBV integration studies included in this analysis.

Study HCC Patients (n) # of Subjects with Integrated DNA *
(% of total)

# of Junctions * Identified
in Subjects Junction Sequence Clinical Variables Geographic Region

N
G

S-
ba

se
d

W
G

S

[21] 3 3 (100%) 15 Yes Yes NA 7

[30,31] 91 1 64 (45%) 223 Yes Yes Japan
[32,33] 81 76 (94%) 344 Yes Yes Hong Kong

[34] 2 2 (100%) 5 Yes Yes China
[22] 5 1,2 5 (100%) 92 Yes - NA 7

[35] 5 5 (100%) 21 Yes Yes NA
[36] 3 2 (67%) 11 Yes Yes China

W
ho

le
H

BV
G

en
om

e

[37] 20 16 (80%) 424 Yes Yes China
[38] 48 26 (54%) 57 - - Singapore
[39] 60 51 (85%) 156 Yes Yes China
[6] 426 344 (81%) 3486 Yes3 - China
[40] 49 28 (57%) 121 Yes Yes Japan
[41] 40 35 (90%) 257 Yes Yes NA
[42] 101 94 (93%) 510 Yes Yes Taiwan
[43] 54 54 (100%) 2870 Yes Yes China
[44] 1 5 1 (100%) 2 Yes Yes NA
[45] 95 85 (89%) 1563 Yes Yes Hong Kong
[46] 243 72 (30%) 4347 Yes Yes Japan
[47] 50 44 (88%) 289 Yes Yes Taiwan

D
R

1-
2 [29] 40 26 (65%) 42 Yes Yes China

Our study 22 20 (91%) 27 Yes Yes Taiwan

PC
R

-b
as

ed

[48] 13 2 (15%) 2 Yes - USA
[49] 14 14 (100%) 14 Yes Yes China
[50] 15 15 (100%) 15 - Yes NA
[51] 60 55 (92%) 60 - Yes NA
[52] 10 7 (70%) 8 Yes Yes Japan
[53] 60 41 (68%) 101 Yes Yes China
[54] 59 4 45 (76%) 45 - - Italy
[55] 15 9 (60%) 9 - - China
[56] 18 18 (100%) 2083 - Yes China
[57] 30 21 (70%) 1397 6 - - China

Total 1733 1310 (76%) 18,596
1 HBV (+) HCC cohorts only. 2 Three patients previously reported in Jiang 2012 [21] were removed. 3 Only human chromosome sequence position provided. 4 Cohorts of HBsAg (−)/occult (+) and HBsAg (+)
HCC patients. 5 HBV capture sequencing of a single occult HBV infection (OBI) patient. 6 Five of the thirty HCC tissues were analyzed by HBV-targeted NGS. 7 Specimens were purchased commercially from
vendors such as Seracare LifeSciences, ProteoGenex, or Indivumed. * HBV DNA integration sites. WGS, whole-genome next-generation sequencing; Whole HBV genome, whole HBV genome enrichment
performed prior to NGS; DR1-2, HBV DR1-2 integration hotspot region enriched prior to NGS; -, not available.
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3.2. Characteristics of HBV–HCC Patients with Integrated HBV DNA

To compare the general sociodemographic and clinical characteristics of the HBV–
HCC population compiled in this study (age, gender, HBV genotype, and cirrhotic etiology
(designated as “cirrhotic HCC”)) to those previously reported in the literature [4,58,59], we
divided our study population into two groups based on the detectability of integrated HBV
DNA (Table 2). Analysis of each parameter was performed where available. Overall, there
were no significant differences between the two groups (with integrated DNA detectable vs.
not detectable), including in the sex ratio. Of the three reported HBV genotypes, genotype
C was the most frequently reported in the integration-positive patient cohort (75%), while
the cohort with no detectable integration had only two patients with a genotype reported
(both C). Interestingly, only 47% (7/15) of the integration-negative patients had cirrhosis,
which is much lower than the 70–90% range previously reported in the general HBV–HCC
population [4]. In the integration-positive cohort, 62% of HCC tumors were derived from a
cirrhotic liver, which is also below the previously reported range.

Table 2. Major sociodemographic and clinical features of the study subjects with and without
detectable integrated HBV DNA in tumor tissue.

Reported HBV–HCC
Population 1

Integrated HBV DNA

Not Detectable
(n = 423)

Detectable
(n = 1310)

Age (years)
Range

Avg. ± SD

NA
55–65 ± NA

33–83
59.4 ± 13.0 (n = 40)

11–85
54.9 ± 11.6 (n = 359)

Gender (Total) (n = 66) (n = 635)
Male

NA
40 466

Female 15 169
Genotype (Total) (n = 2) (n = 84)

B
NA

0 24 2

C 2 76
D 0 1

Cirrhosis % 70–90%
(n = NA)

46.7%
(n = 7/15)

62.3%
(n = 105/279)

1 Characteristics of the HBV–HCC subjects obtained from previous reports [4,58,59]. 2 One patient contained
a mix of HBV B and C genotypes. NA, not available; n, number of patients available for analysis; Avg. ± SD,
average ± standard deviation.

Lastly, because it is known that HBV behavior differs in Asian and Western cohorts [60],
the geographic region where patient specimens were collected is indicated for each study.
The majority of studies (72.7%) collected patient specimens in Asian populations, while
only 6.0% examined Western cohorts.

3.3. Recurrent Sites of HBV Integration

Next, we identified RTGs in the compiled HCC cohort using the criteria described
in the Materials and Methods and then examined their associations with carcinogenesis
from the published literature. Of the 18,596 integration sites examined, 2892 sites were
found within 150 kb of gene-coding sequences, and 396 were RTGs. The 396 RTGs were
found in 673 HCC patients, which was 51% of the integration-positive patients (n = 1310)
or 39% of all HCC patients (n = 1733). To investigate the association of frequent RTGs
with carcinogenesis, we analyzed the most frequently recurrent genes (n = 28), defined as
found to contain HBV integrants in at least 10 HCC patients (Table 3). As expected, TERT
and MLL4 were the two most recurrent genes. Interestingly, these 28 genes either have
previously been associated with carcinogenesis (23/28, 82%), or have no known function
(5/28, 18%). A full list of biological pathways associated with the 28 RTGs is detailed in
Supplementary Table S3.
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Next, the 396 RTGs were queried for significantly enriched gene ontology (GO) path-
ways using Enrichr [61]. The top enriched biological pathways were axon guidance
(p = 0.00007) and positive regulation of Ras protein signal transduction (p = 0.0001),
suggesting possible links with oncogenesis (Figure 1A). Heparin sulfate-glucosamine
3-sulfotransferase I (HS3ST1) activity was among the top enriched pathways from GO
molecular functions (Figure 1B). Sulfotransferases have reported associations with carcino-
genic activity, and HS3ST1 in particular has been implicated in inflammation [62]. Finally, a
search of the Drug Signatures Database (DSigbDB) identified trichostatin, which selectively
inhibits class I and II histone deacetylases (HDACs), as the drug/compound related to
most RTGs (115/396; Figure 1C).
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software. (A) Biological processes, (B) molecular functions, and (C) Drug Signatures Database (DSigDB). Pathways are
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3.4. Integration Breakpoints in the HBV Genome

To investigate the distribution pattern of the integration breakpoints in the HBV
genome, we analyzed HBV breakpoints in tumors (n = 4008) where available. We omitted
studies that enriched for HBV DR1-2 sequences to assess the HBV breakpoint distribution
in an unbiased manner. Consistent with previous reports [6,39,43], we observed that 39.2%
of all breakpoints were within the HBV nt. 1300–1900 region in tumors. This region is at
the 3′ end of the HBx gene and contains the initiation site of viral replication/transcription.
Additionally, we observed a breakpoint hotspot in the HBV DR1-2 region, representing
29.6% of all HBV breakpoints (Figure 2).
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Table 3. Most frequently reported genes with HBV integrants in HCC tumors.

RTG Full Gene Name Subjects (n) Junctions (n) Cancer Associated [Ref]

TERT 1 Telomerase reverse transcriptase 357 561 Multiple cancers [63]
MLL4 (KMT2B) Lysine methyltransferase 2B 130 220 HCC [52,64], Spindle cell sarcoma [65], Gastric cancer [66]

PLEKHG4B Pleckstrin Homology and RhoGEF Domain Containing G4B 38 115 Neuroblastoma [67]
LOC100288778 WAS protein family homolog 8 pseudogene 34 79 SCLC [68]

DDX11L1 DEAD/H-Box Helicase 11 Like 1 33 57 Function unknown
CCNE1 Cyclin E1 31 54 Multiple cancers [69]
CCNA2 Cyclin A2 26 45 Multiple cancers [70]
SNTG1 Syntrophin Gamma 1 25 27 Lung adenocarcinoma [71]
PGBD2 PiggyBac Transposable Element Derived 2 22 51 Function unknown

DUX4L4 Double homeobox 4 like 4 pseudogene 20 35 DUX4 Ewing’s sarcoma [72], ALL [73]

ROCK1P1 Rho Associated Coiled-Coil Containing Protein Kinase 1
Pseudogene 1 20 35 Prostate cancer [74]

ANKRD26P1 ankyrin repeat domain 26 pseudogene 1 19 72 Breast cancer [75]
PARD6G Par-6 Family Cell Polarity Regulator Gamma 19 42 Breast, kidney, liver, lung, ovary, and pancreatic cancers [76]

FN1 Fibronectin 1 17 18 Multiple cancers [77]
CWH43 Cell Wall Biogenesis 43 C-Terminal Homolog 14 73 CRC and TSHomas [78]
TPTE Transmembrane Phosphatase with Tensin Homology 13 30 HCC [79], prostate cancer [80]

FAM157A Family with Sequence Similarity 157 Member A 14 22 Function unknown
LOC728323/LINC01881 Long Intergenic Non-Protein Coding RNA 1881 13 22 Oral cancer [81]

EMBP1 Embigin pseudogene 1 12 27 Oropharyngeal carcinoma [82], multiple primary cancers [83]
OR4C6 Olfactory Receptor Family 4 Subfamily C Member 6 12 22 Pancreatic cancer [84]
PRMT2 Protein Arginine Methyltransferase 2 12 15 Glioblastoma [85]
ROCK1 Rho Associated Coiled-Coil Containing Protein Kinase 1 12 23 HCC [86–89], CRC [90]
ANHX Anomalous Homeobox 11 16 Function unknown

CTNND2 Catenin Delta 2 11 14 HCC [91,92], prostate cancer [93], lung cancer [94]
DDX11L9 DEAD/H-Box Helicase 11 Like 9 (Pseudogene) 11 16 Function unknown

SENP5 SUMO Specific Peptidase 5 11 11 HCC [95], breast cancer [96]
ZNF595 Zinc Finger Protein 595 11 14 Lung cancer [97], Gastric cancer [98]
CDRT7 CMT1A Duplicated Region Transcript 7 10 10 Glioma [99]

1 The number of reported TERT junctions is slightly skewed, because one of the references [45] only reported the number of TERT promoter integrations. RTG, recurrently targeted gene; HCC, hepatocellular
carcinoma; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; ALL, acute lymphocytic leukemia; CRC, colorectal cancer; TSHoma, thyrotropin-secreting pituitary adenoma; CLL, chronic
lymphocytic leukemia; RCC, renal cell carcinoma.
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Figure 2. Distribution of integration breakpoints in the HBV genome in HCC tumor samples. A
total of 3052 HBV breakpoints were plotted. The histogram represents the frequency of integration
breakpoints at different loci in the HBV genome (nt. 1–3215; bin size 25) as numbered in the outer ring.

3.5. Genomic Breakpoints of TERT, MLL4 and PLEKHG4B RTGs

HBV integration is believed to be non-sequence-specific; therefore, it was of interest to
examine all RTG breakpoint coordinates for similarity to each other. To do so, we plotted
the available human and HBV breakpoint coordinates of the three most frequent RTGs
identified, TERT, MLL4, and PLEKHG4B (Figure 3).

For TERT, the most frequent RTG, 291 of 561 junctions from 205 HCC patients, had both
human and HBV breakpoint coordinates available. As expected, most of these breakpoints
were centered between DR2 and DR1 of the viral genome and were highly concentrated at
the promoter region of the TERT gene (Figure 3A). Of note, 142 (48.7%) TERT integration
junction sequences were unique, i.e., reported from 142 different subjects, whereas the
rest (57 sequences) were each found in two or more HCC patients. Of the 477 available
breakpoint coordinates in the TERT gene, 361 (75.6%) junctions were located upstream
of exon 1 and, of these upstream breakpoints, 242 (50.7%) were located within the TERT
promoter region (Chr5:1,295,162–1,296,162).

MLL4 was the second most frequently reported RTG, with 220 junctions identified
from 130 HCC patients. Among them, 150 breakpoints from 83 HCC patients had both
human and viral coordinates available and are plotted in Figure 3B. As with TERT, most of
the breakpoints were clustered between DR2 and DR1 of the viral genome and concentrated
within exon 3 of the MLL4 gene. Eleven different recurring breakpoints were found in two
or more HCC patients, accounting for 37 of the 150 junctions examined.
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Figure 3. Mapping of TERT, MLL4, and PLEKH4G4B HBV integration breakpoints along the human
and HBV genomes. (A) TERT breakpoints. A total of 219 TERT integration breakpoints derived from
161 patients are plotted. The y-axis coordinates decrease from 1320 kb to 1260 kb to represent the
direction of the transcriptional start site from a 5′–3′ orientation. The expanded view of the region
with the most integration sites is shown for the human genome position 1297 kb to 1294 kb and the
HBV nt. 1500–2000. (B) MLL4 breakpoints. A total of 115 MLL4 integration breakpoints, derived from
64 patients, are plotted. Blue squares denoting exon regions are shown. (C) PLEKH4G4B breakpoints.
A total of 47 of the 116 reported PLEKHG4B breakpoints plotted are derived from 8 unique HCC
patients. Colored dots correspond to each unique patient. Each dot represents the mapped locations
of the integration sites where the human gene breakpoints (GRCh37) are located on the y-axis, and
HBV breakpoints are located on the x-axis, in accordance with the reported locations.

The third most reported RTG was PLEKHG4B, with 116 integrations reported in this
study. Interestingly, all the 116 breakpoints were centered within a 3 kb region which was
131 kb upstream from the PLEKHG4B coding region. A total of 47 breakpoints from eight
HCC patients had both viral and human coordinates available, as shown in Figure 3C.
All the breakpoints were found upstream of the transcription start site (Chr5:140,373).
Unlike in TERT and MLL4, the viral breakpoints were centered in two HBV regions (nt.
1802–1814 and 2390; 15 and 14 breakpoints, respectively) but at various human coordinates.
Further analysis of the human sequences (Chr5:10,000–13,000) in the upstream integration
region revealed a 1877 bp segment containing simple repeat sequences and a 1057 bp
segment containing satellite sequences. This finding is interesting because HBV has been
suggested to have a higher propensity to integrate into repeat regions/retrotransposons,
as recently shown by Chauhan et al. [100]. In addition, a motif, TAAACCCTAAC, was
discovered, appearing four times in the Chr5:10,000–13,000 region and once in the HBV
genome, each with p < 0.0001 by the Student’s t-test. However, querying the GenomeNet
database for this motif produced no matches, and analysis of the region for known motifs
produced no results. No recurrent breakpoints were identified among the integration
sites in the PLEKHG4B gene. Notably, seven of the eight HCC patients with this unique
junction pattern, where the same HBV breakpoint was joined to different host chromosome
breakpoints, were reported from one study by Yang et al. [43].

TERT hotspot promoter mutations (−124, −146) are the most frequently reported
mutations in HCC, found in about 50% of cases [101–106]. In HBV–HCC, up-regulation of
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TERT expression could also be caused by HBV integration at or near the TERT promoter
region [28–30,32,38,48]. Therefore, we next compared the frequencies of TERT promoter
mutation and HBV integration. For our in-house cohort (n = 22), shown in Figure 4A,
promoter mutations were found in 6 of 22 samples, and integrations in the TERT gene were
found in 5 of 22 samples in a mutually exclusive fashion. Together, TERT alterations were
detected in 50% (11/22) of this cohort. To determine if this mutual exclusivity applied to a
larger sample size, we examined TERT alterations identified by us and others [40,42,45] to-
gether, as summarized in Figure 4B. Of the 347 HBV–HCC patients, 174 (50%) were found to
have detectable TERT alterations. Promoter mutations and HBV integrations were mutually
exclusive and comprised 40% (70/174) and 60% (104/174) of all alterations, respectively.
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4. Discussion

In this study, we compiled and studied a total of 18,596 HBV integration sites from
1733 HCC patients reported in 32 previous studies and our in-house study, to test our
hypothesis that frequent HBV RTGs are associated with HCC carcinogenesis and thus may
represent HCC driver genes that can reveal potential therapeutic targets and molecular
profiling for precision medicine. Using three criteria for RTG selection, we identified
396 RTGs. Encouragingly, the most frequent RTGs (n = 28), reported in at least 10 HCC
patients each, either have known involvement in carcinogenesis (23/28; 82%) or have no
known function (5/28; 18%). By gene ontology analysis, RTGs were mapped to functions
related to carcinogenesis. We describe a potential tool to identify or discover HCC drivers
by the characterization of frequent RTGs. More studies are needed to demonstrate the
association of carcinogenesis with the frequency of RTGs that have unknown functions.

Three criteria were applied to candidate genes to identify 396 HBV RTGs in this
study: (1) location within 150 kb of the breakpoint, the reported distance within which
host genes can be impacted by integration [27,28]; (2) the presence of HBV integrants
in ≥2 HCC patients; and (3) identification in ≥2 independent laboratories to avoid the
possibility of contamination within a laboratory. We are aware that the identification of
RTGs across multiple studies is complex due to multi-faceted underlying variables such as
integration detection methodologies and patient populations. For instance, some studies
do not contain any of the 396 RTGs that we identified [54,55], while others report a high
detection rate of a particular RTG, such as MLL4 [52] or cMYC [39]. We are also aware
that different methodologies for identifying integrations may have different sensitivities
that can result in different integration site profiles. Furthermore, how DNA samples
were prepared varied across the studies. Despite these limitations, the detection of highly
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frequent RTGs as potential HBV–HCC drivers could be clinically useful for HCC patients.
Notably, our approach can only identify driver genes involved in HBV–HCC (rather than
HCC in general) and is limited to insertional mutagenesis. In addition, HBV integration
could contribute to carcinogenesis by causing chromosomal instability, expression of the
oncogenic HBV protein X, and inflammation induced by other HBV proteins expressed from
the integrated DNA. Although the most frequent RTG, TERT, is also the most frequently
mutated gene in HCC in general, other frequently mutated HCC genes, such as TP53 and
CTNNB1, were not among the top 28 RTGs. These findings suggest that using RTG analysis
as a tool to identify driver genes is limited to HBV–HCC.

By detailed analysis of integrations in the three most frequent RTGs (TERT, MLL4, and
PLEKHG4B), we revealed three important features. First, as expected, most of the junction
coordinates are different, supporting a non-sequence-specific mechanism of integration
in the host genome. Among the junction sequences identified in multiple HCC patients,
such as the 57 junctions described in this study, frequent integration in the promoter
region of the TERT gene highlights the potential importance of the site in hepatocarcino-
genesis. Secondly, an interesting pattern of integration into repetitive sequences was
observed in the PLEKH4G4B junctions shown in Figure 3C. Furthermore, a highly repeti-
tive sequence, satellite sequences, and the TAAACCCTAAC motif were identified in these
regions, consistent with previous observations that integration occurred frequently in
repetitive sequences [100]. However, because these unique integration sequence patterns
were reported in only one study and validation in original tissue DNA was not reported,
the possibility of an artifact has not been excluded. Lastly, the mutually exclusive detection
of TERT promoter mutations and TERT integrations was shown in our small cohort of
22 HCC patients as well as in a larger compiled cohort of 347 HCC patients [40,42,45].
TERT promoter mutations account for 50% of all alterations in this gene, suggesting the
importance of identifying TERT integration. This observation also further emphasizes the
need for analysis of frequent RTGs to better characterize HCC.

In summary, we identified 396 RTGs from an analysis of 18,596 HBV integration sites.
Twenty-eight of the RTGs were identified in 10 or more HCC patients. The RTGs were
found to be significantly enriched in several GO pathways. The 28 most frequent RTGs
have previously been implicated in carcinogenesis (23/28) or have no known function
(5/28). Taken together, our findings demonstrate the potential of RTG identification as a
tool for HBV–HCC driver discovery and tumor characterization, to be used in precision
medicine and drug development. More studies are needed to further refine the criteria for
RTG identification for its applications.
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