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Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of gene expression
and physiological processes. LncRNAs are a class of ncRNAs of 200 nucleotides in
length. HOX transcript antisense RNA (HOTAIR), a trans-acting lncRNA with regulatory
function on transcription, can repress gene expression by recruiting chromatin modifiers.
HOTAIR is an oncogenic lncRNA, and numerous studies have determined that HOTAIR is
highly upregulated in a wide variety of human cancers. In this review, we briefly summarize
the impact of lncRNA HOTAIR expression and functions on different human solid tumors,
and emphasize the potential of HOTAIR on tumor prognosis and therapy. Here, we review
the recent studies that highlight the prognostic potential of HOTAIR in drug resistance and
survival, and the progress of therapies developed to target HOTAIR to date. Furthermore,
targeting HOTAIR results in the suppression of HOTAIR expression or function. Thus,
HOTAIR knockdown exhibits great therapeutic potential in various cancers, indicating that
targeting lncRNA HOTAIR may serve as a promising strategy for cancer therapy. We also
propose that preclinical studies involving HOTAIR are required to provide a better
understanding of the exact molecular mechanisms underlying the dysregulation of its
expression and function in different human cancers and to explore effective methods of
targeting HOTAIR and engineering efficient and targeted drug delivery methods in vivo.
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INTRODUCTION

The ENCODE project revealed that the majority of the human genome is actively transcribed, but
only a small minority of the genome encode proteins (1). Transcribed RNAs that do not encode
proteins are known as non-coding RNAs (ncRNAs), which include a subgroup of ncRNAs classified
as long ncRNAs (lncRNAs) based on their length of >200 nucleotides (2, 3). Many identified
lncRNAs are transcribed by RNA polymerase II (RNA pol II) from different regions in the genome
Abbreviations: LncRNA, Long non-coding RNA; HOTAIR, HOX transcript antisense RNA; RNA pol II, RNA polymerase II;
miRNA, microRNA; PRC2, Polycomb repressive complex 2; LSD1, Lysine-specific demethylase 1; BC, Breast cancer; NSCLC,
Non-small-cell lung cancer; SCLC, Small-cell lung cancer; EMT, Epithelial-mesenchymal transition; HCC, Hepatocellular
carcinoma; GC, Gastric cancer; PCa, Pancreatic cancer; RCC, Renal cell carcinoma; IGFBP2, Insulin growth factor-binding
protein 2; NED, Neuroendocrine differentiation; DDP, Cisplatin; 5-FU, Fluorouracil; ASOs, Antisense oligonucleotides; RNAi,
RNA interference; DFS, Disease-free survival; OS, Overall survival.
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(4–6). Based on the genomic location, lncRNAs are mainly
classified into four groups: intergenic lncRNAs, intronic
lncRNAs, overlapping lncRNAs, and antisense lncRNAs. A
comprehensive classification of lncRNAs can be obtained from
the review by Jarroux et al. (7). Most lncRNAs can regulate gene
expression regardless of the subtype of lncRNAs.

Accumulating evidence has shown that lncRNAs play a
critical role both in physiological processes and in human
disease development including cancer. LncRNAs are known as
key epigenetic regulators for gene expression (8) and are involved
in various processes of cellular homeostasis, including chromatin
modification, chromatin silencing, transcriptional regulation for
gene, and transcription/functional regulation of microRNAs
(miRNAs). Several regulatory capacities of lncRNAs are
achieved given the relatively complex structure of lncRNAs,
which endow the lncRNAs with the ability to bind to DNA
partners, protein, and RNA (9). Thereby, the aberrant expression
of lncRNAs, especially lncRNA-mediated dysregulation of
normal physiological process, may lead to human diseases
including cancer (10). In reality, abnormal expression and
function of lncRNAs in human cancers has been widely
reported, highlighting their capacity to influence oncogenesis,
metastatic progression, recurrence, prognosis, and therapeutic
responses (11).

HOX transcript antisense RNA (HOTAIR), a trans-acting
intergenic lncRNA, was first introduced by Rinn et al. as a
polyadenylated and spliced RNA of 2,158 nucleotides in length
(12, 13). In humans, HOTAIR is located on chromosome
Frontiers in Oncology | www.frontiersin.org 2
12q13.13, between the HOXC11 and HOXC12 gene, and is
transcribed in an antisense manner relative to the canonical
HOXC genes, and partly overlapping with HOXC11 (Figure 1).
Human HOTAIR is composed of seven exons, with the last two
exons being nearly adjacent to each other; therefore, they are
defined as two domains of exon 6 (14). HOTAIR can form a
complex secondary structure, comprising several stem and loop
structures (15). Evolutionarily, HOTAIR is highly conserved and
has evolved faster than its neighboring HOXC gene (16).

HOTAIR is a crucial regulator of chromatin status and gene
transcriptional silencing (17). Previous studies have largely
determined that the mechanisms of HOTAIR, serving as an
important epigenetic regulator, depends on interactions with
protein or RNA partners. To date, four main molecules
indispensable for HOTAIR’s function have been studied (18)
(Figure 2). The most widely described partner is Polycomb
repressive complex 2 (PRC2). PRC2 is a protein complex,
which can mark a gene for transcriptional repression through
tri-methylation of histone H3 Lys 27 (H3K27me3) (19, 20). The
PRC2 complex contains four major subunits, namely, EZH2,
EED, SUZ12, and RbAp46/48 (21). Although EZH2 is the critical
subunit for the methyltransferase process, three other subunits
are also essential for the EZH2 catalytic activity (22). Early
studies have shown that HOTAIR is capable of binding to the
PRC2 with an 89 bp fragment on the 5’ end (Figure 2) (12, 23,
24), and HOTAIR is necessary for PRC2 occupancy and
H3K27me3 formation in different chromosomes (17).
HOTAIR can bind a DNA polypurine motif to regulate gene
FIGURE 1 | Schematic location of lncRNA HOTAIR. The HOTAIR gene is located in the center of the HOXC gene cluster on chromosome 12, specifically between
HOXC11 and HOXC12, on the antisense strand. It consists of six exons, and exon 6 contains two domains.
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transcription (25). Other researchers have proposed a different
mechanism for the interaction between PRC2 and HOTAIR, in
which the PRC2 complex interacts with HOTAIR through the
short repeats of the consecutive guanines in the HOTAIR
sequence, rather than with a specific structural domain (26–
28). In addition to PRC2, the LSD1 complex is another vital
partner of HOTAIR, in which lysine-specific demethylase 1
(LSD1) is the key subunit (29, 30). The LSD1 complex consists
of LSD1, CoREST, and REST, and it can lead to repression of
gene expression by reducing the tri-methylation of histone H3
Lys 4(H3K4me3). H3K4me3 is a marker that can target a gene
for transcriptional activation, so that H3K4 demethylation is
associated with transcriptional inactivation. HOTAIR is capable
of binding to the LSD1 complex through a 646 bp fragment in
the last exon (Figure 2) (29). Intriguingly, HOTAIR binds to the
PRC2 complex and the LSD1 complex through disparate
domains: the 5′ end of HOTAIR (1–300 nt) binds to the RPC2
complex, and the 3′ end of HOTAIR (1,500–2,146 nt) binds to
the LSD1 complex. In conclusion, HOTAIR provides a molecular
scaffold for the assembly of a gene repressor complex consisting
of PRC2 and LSD1, thereby silencing its target gene via H3K27
tri-methylation (PRC2 activity) and H3K4 demethylation (LSD1
activity) (17, 29, 31). Apart from functioning as a scaffold for
chromatin modifications, HOTAIR also serves as a platform to
Frontiers in Oncology | www.frontiersin.org 3
control protein levels via the ubiquitin-proteasome pathway.
Specifically, HOTAIR interacts with E3 ubiquitin ligases
(Dzip3 and Mex3b) (Figure 2) and faci l i tates the
ubiquitination of Ataxin-1 and Snurportin by Dzip3 and
Mex3b, respectively, thereby contributing to their degradation
(32, 33). Lastly, HOTAIR acts as a competitive endogenous RNA
sponge for a wide variety of miRNAs (Figure 2) and thereby
increases the expression of miRNA-targeted genes (34).
HOTAIR FUNCTIONS AND EXPRESSION
IN TUMORS

Considering HOTAIR can regulate gene expression and protein
proteolysis, it has been reported that the lncRNA HOTAIR is
dysregulated in the majority of human cancers (Figure 3). It has
become increasingly obvious that HOTAIR dysregulation in
several types of cancer is closely associated with the
proliferation, metastasis, and invasion of tumor cells (35, 36).
In this review, we describe 14 widely reported human solid
tumors associated with HOTAIR dysregulation, and we briefly
review the recent data focusing on breast, lung, liver, gastric, and
pancreatic cancer and renal cell carcinoma.
FIGURE 2 | Functions and molecular mechanisms of HOTAIR. The interactions between HOTAIR and its several important partners are summarized. (1) The 5′-end
of HOTAIR binds to the PRC2 complex. The 3′-end of HOTAIR binds to the LSD1 complex. H3K27 tri-methylation and H3K4me3 demethylation result from PRC2
complex and LSD1 complex activity, respectively, and cause gene silencing. (2) HOTAIR interacts with E3 ubiquitin ligases, Dzip3 and Mex3b, and facilitates the
ubiquitination of Ataxin-1 and Snurportin-1, thereby contributing to their degradation. (3) HOTAIR interacts with miRNAs as a competitive endogenous RNA to
promote the expression of miRNA-targeted genes.
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Breast Cancer
Breast cancer (BC) is the most prevalent cancer type in women
(37, 38). There were more than two million new cases and over
626,000 deaths worldwide in 2018 (39, 40). HOTAIR expression
is overexpressed in various types of breast cancer tissues and cells
(41). Arshi (42) reported a significant increase in the level of
HOTAIR in BC tissues compared to normal tissues using
quantitative reverse transcription polymerase chain reaction
(qRT-PCR). Xue et al. (43) reported that HOTAIR was
elevated in tamoxifen-resistant BC tissues compared to control
tissues. In addition, HOTAIR was also upregulated in serum
exosomes of BC patients (44). A recent study revealed that higher
HOTAIR was positively associated with BC malignancy but was
negatively associated with the radiosensitivity of BC cells (45).
These studies implicate the involvement of HOTAIR in the
tumorigenesis and progression of BC.

Lung Cancer
Lung cancer (LC), a malignant tumor, is a serious public health
concern worldwide, responsible for more than one million
deaths every year (46). Non-small-cell LC (NSCLC) accounts
for 80% of LC and is the main type of LC (47), while small-cell
LC (SCLC) accounts for ~15% of the remaining cases.
Accumulating evidence has suggested that HOTAIR plays a
vital role in tumorigenesis, invasion, and metastasis of LC.
Zheng et al. (48) reported that HOTAIR was markedly
upregulated in NSCLC cells, and elevated HOTAIR promoted
migration and invasion of NSCLC cells by increasing epithelial-
mesenchymal transition (EMT). Similarly, Ono et al. (49) found
that HOTAIR could mediate the invasive phenotype of SCLC
cells by promoting EMT, through which HOTAIR could repress
the expression of cell adhesion–related genes. These observations
showed that higher HOTAIR expression could promote
tumorigenesis, metastasis, and invasion of LCs by increasing EMT.
Frontiers in Oncology | www.frontiersin.org 4
Liver Cancer
Hepatocellular carcinoma (HCC) is thefifthmost prevalent human
malignant cancer (50, 51), and the survival rate of HCC patients is
still low, with only 30–40% achieving a 1-year survival after surgery
(52).Gao et al. (53) reported thatHOTAIRwasupregulated inHCC
tissues compared with adjacent non-cancerous tissues and that
elevated HOTAIR contributed to poor tumor differentiation,
metastasis, and early recurrence of HCC. Yang et al. (54) also
found that the level ofHOTAIRwas significantly increased inHCC
tissues and cell lines, including Hep3B, Huh7, HepG2, and
MHCC97H, and elevated HOTAIR promoted migration and
invasion of liver cancer cells by enhancing EMT. More
importantly, Yang et al. (55) demonstrated that HOTAIR
promoted exosome secretion from HCC cells, which
subsequently influenced the microenvironment and resulted in
tumor progression. Taken together, these observations suggested
that HOTAIR could exert oncogenic activity to accelerate the
progression of HCC through EMT and the microenvironment.
Gastric Cancer
Gastric cancer (GC), the second leading cause of cancer-related
mortality, is one of the most prevalent cancers worldwide (56).
Xiao et al. (57) showed that high levels of HOTAIR could
promote proliferation and migration of GC cells through the
miR-126/CXCR4 axis and downstream signaling pathways.
Furthermore, high HOTAIR expression was closely associated
with larger tumor size, extensive metastasis, and advanced
pathological stages, and also correlated with shorter overall
survival of GC patients. In addition, evidence showed that the
suppression of HOTAIR decreased the invasion ability of GC
cells by reversing EMT (58). Thus, apart from EMT, HOTAIR
could also regulate the proliferation and migration of GC cells
through miRNA-mediated signaling pathways.
FIGURE 3 | The expression of HOTAIR in human cancers. Shown are examples of the organ-specific expression of HOTAIR. The up red arrow indicates an increase in expression.
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Pancreatic Cancer
Pancreatic cancer (PCa) is one of the deadliest cancers. Given the
concealed location, it is difficult to detect in its early stages, and
the majority of PCa patients are diagnosed at advanced stages,
which leads to poor prognosis and high mortality rates. HOTAIR
was upregulated in PCa cells and promoted tumorigenesis
through epigenetic regulation (29, 59, 60). HOTAIR is
overexpressed in both PCa tissues and in cell lines (61). Kim
et al. (62) found that HOTAIR was significantly increased in PCa
tissues compared with non-tumor tissue, and higher levels of
HOTAIR were associated with more aggressive tumors,
supporting a pro-oncogenic function of HOTAIR in Pca.
Further, elevated HOTAIR increased lactate production,
glucose uptake, and ATP production and led to the promotion
of PCa cell proliferation (63). Kim et al. (62) demonstrated that
high HOTAIR expression could increase PCa cell invasion and
proliferation. These observations provide us with new insight
indicating HOTAIR increases glucose metabolism and promotes
PCa cell proliferation.

Renal Cell Carcinoma
Renal cell carcinoma (RCC) is a common cancer type, which
causes ~90,000 deaths worldwide annually (64). HOTAIR is
significantly overexpressed in RCC cell lines and clinical tissues
compared with normal cell lines and tissues, and HOTAIR has
been associated with tumor progression and clinicopathological
characteristics of patients (65). Higher HOTAIR expression
promoted proliferation, migration, and invasion of RCC cell
lines (66). Moreover, HOTAIR plays an essential role in RCC
metastasis. Katayama et al. (67) found that HOTAIR could
enhance RCC cell migration by regulating insulin growth
factor-binding protein 2 (IGFBP2) expression, and HOTAIR
was strongly associated with nuclear grade, lymph-node
metastasis, and lung metastasis in RCC. Numerous studies
have indicated that HOTAIR could promote RCC malignancy
via different mechanisms (66, 68–70). More recently, a study (71)
indicated that HOTAIR and androgen receptor synergistically
promoted tumor angiogenesis and cancer stemness in RCC cells
both in vitro and in vivo.

Other Solid Cancers
In addition to the six tumors described above, HOTAIR is
consistently overexpressed in several other types of cancer,
including colorectal cancer (72–75), ovarian cancer (76, 77),
cervical cancer (78), prostate cancer (79, 80), brain glioma (81,
82), esophageal cancer (83–85), bladder cancer (86), and
osteosarcoma (87–89). Elevated HOTAIR expression can be
detected in both cancer cells and tumor tissues through qRT-
PCR, in situ hybridization, and RNA-sequencing. For example,
Tatangelo et al. (90) found that HOTAIR was upregulated in
proximal colon cancers by in situ hybridization. Chang et al. (79)
showed that HOTAIR was overexpressed in the neuroendocrine
differentiation (NED) prostate cancer cells and in castration-
resistant prostate cancer through RNA-sequencing. Moreover,
numerous independent studies have unanimously reported
HOTAIR was closely associated with tumorigenesis, tumor
staging, metastasis, invasion, proliferation, and apoptosis in
Frontiers in Oncology | www.frontiersin.org 5
human solid cancers. In osteosarcoma, Wang et al. (89) found
that HOTAIR was significantly associated with worse histological
grade and advanced tumor stage. In the brain glioma, Yang et al.
(81) verified that the knockdown of HOTAIR inhibited cell
proliferation, promoted cell apoptosis, and suppressed cell
invasion and migration during the development of brain glioma.
Similarly, in bladder cancer, Yu et al. (86) found that the
suppression of HOTAIR inhibited bladder cancer cell
proliferation, invasion, and migration, but increased cell
apoptosis. Mechanically, HOTAIR played an oncogene function
to accelerate tumor progression mainly through epigenetic
regulation, EMT, miRNA-mediated downstream signaling
pathways, and regulation of other signaling pathways such as the
Wnt/b-catenin signaling pathway (83). In addition, HOTAIR may
be a reasonable biomarker for predicting tumor risk, diagnosis, and
metastasis. Zhang et al. (80) clarified that the level of HOTAIR was
significantly higher in bone metastasis tissues than that in the
primary prostate cancer tissues, suggesting that HOTAIR could
represent a reasonable biomarker for prostate cancer bone
metastasis. Further, studies have identified tag single nucleotide
polymorphisms (tagSNPs) in HOTAIR and demonstrated that the
tagSNPs in HOTAIR were associated with bladder cancer risk in a
Chinese population (91). In addition, HOTAIR could serve as a
urinary liquid biopsy biomarkers to distinguish bladder cancer from
chronic urocystitis (92).

HOTAIR PROGNOSTIC POTENTIAL

The correlation between HOTAIR expression and human cancers
has been widely reported; however, there is lack of systematic
reviews of the prognostic potential of HOTAIR in cancer. Thus,
below we summarized recent data relative to the prognostic
potential of HOTAIR in terms of drug resistance and survival.

Drug Resistance
Drug resistance is a major limiting factor in achieving a cure for
cancer patients (93), and it also can serve as an indicator to
evaluate prognosis. Drug resistance can be roughly divided into
treatment drug resistance and chemoradiotherapy resistance.
HOTAIR is closely related to the occurrence of drug resistance
in several tumors. Fang et al. (94) reported that HOTAIR was
overexpressed in SCLC multidrug resistance cells, and HOTAIR
knockdown could increase cell sensitivity to anticancer drugs
and inhibit tumor growth. HOTAIR was also involved in drug
resistance of RCC. Li et al. (95) found that HOTAIR was highly
upregulated in sunitinib-resistant cells compared with that in
corresponding control cells, and HOTAIR could enhance
sunitinib resistance in RCC cells by activating Beclin1-
mediated cell autophagy. Moreover, the level of HOTAIR
continually increased in prostate cancer cell lines upon
treatment with enzalutamide (96), suggesting HOTAIR might
serve as a biomarker indicating resistance against enzalutamide.

In addition, overexpressed HOTAIR reduced the sensitivity of
tumor cells to chemoradiotherapy. HOTAIR was overexpressed
in cisplatin (DDP)-resistant osteosarcoma cells and tissues and
enhanced DDP resistance of osteosarcoma cells through the
miR-106a-5p/STAT3 axis (97). HOTAIR was also upregulated
July 2021 | Volume 11 | Article 679244
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in the serum exosomes of BC patients and was associated with
poor prognosis and poor response to chemotherapy (44). Li et al.
(98) demonstrated that high HOTAIR expression could contribute
to fluorouracil (5-FU) resistance and was associated with poor
response to 5FU treatment in colorectal cancer cells. Özeş et al. (99)
revealed that high levels ofHOTAIR inducedplatinumresistance in
ovarian cancer. Moreover, the depletion of HOTAIR in HCC cell
lines reduced cell susceptibility to TNF-a-induced apoptosis, while
it increased the chemotherapeutic sensitivity of liver cancer cells to
cisplatin and doxorubicin (100). Additionally, HOTAIR played a
critical role in regulating the radiotherapy resistance of tumors.
HOTAIR knockdown could increase radiosensitivity of PCa (101)
and cervical cancer (102) by regulating autophagy and EMT.
Similarly, Liu et al. (103) reported that HOTAIR knockdown
potentiated radiosensitivity by regulating the miR-93/ATG12 axis
in colorectal cancer.

Taken together, the level of HOTAIR is higher in drug-
resistant cancer cells and tissues. Overexpressed HOTAIR
could promote the occurrence of drug resistance in cancers
and reduce the sensitivity of cancer cells to chemoradiotherapy,
indicating HOTAIR may be a vital prognostic factor for
predicting drug resistance of tumors.

Survival
Recently, the level ofHOTAIRhas been found to be associatedwith
survival in several types of cancer. HOTAIR is closely associated
with overall survival, disease-free survival, and survival rates of
cancer patients. Martıńez-Fernández et al. (104) reported that
HOTAIR had prognostic value for bladder cancer progression,
recurrence, and survival. Further, the aberrant expression of
HOTAIR was associated with poor disease-free survival of
bladder cancer (105). Lu et al. (106) measured circulating
HOTAIR levels in the serum of 112 BC patients using RT-qRCR
and found that BC patients with high circulating HOTAIR showed
less clinical response andworsedisease-free survival than thosewith
low circulatingHOTAIR. In addition, Kim et al. (107) first reported
the association between HOTAIR gene polymorphisms and
colorectal cancer mortality. They chose four HOTAIR
polymorphisms (rs7958904G>C, rs920778T>C, rs4759314A>G,
and rs1899663G>T), conducting genotype frequencies and Cox-
regression analysis, and demonstrated that HOTAIR
rs7958904G>C could be a potent prognostic biomarker for CRC,
whichwaspositively associatedwithCRCprevalence andmortality.
These studies suggested overexpressed HOTAIR could decrease
disease-free survival and survival rate in some tumors. However,
HOTAIR might have the opposite effect. Wang et al. (108) found
that HOTAIR was significantly downregulated in patients with
primary and acquired resistance to EGFR-TKIs, and in clinical
phenotype, they found that high HOTAIR expression was
significantly associated with longer progression-free survival
compared to low HOTAIR expression subgroup. Nevertheless,
the opposite role whereby low HOTAIR expression is associated
with unfavorable prognosis in EGFR-TKIs-resistance NSCLCs
remains unclear and requires further study.

These studies have indicated that HOTAIR may be used to
predict tumor survival, but HOTAIR has diverse effects in
different cancers, which needs to be further clarified. The
Frontiers in Oncology | www.frontiersin.org 6
mechanisms underlying HOTAIR tumor survival still need to
be further studied.
THERAPEUTIC POTENTIAL OF HOTAIR

Numerous studies have emphasized the impact of HOTAIR on
tumorigenesis, progression, metastasis, and prognosis of various
tumors. Therefore,many therapeutic strategies have been proposed
for targeting HOTAIR including silencing HOTAIR expression or
function. In terms of HOTAIR silencing, Kim et al. (109) showed
that both antisense oligonucleotides (ASOs) and RNA interference
(RNAi) could effectively suppress HOTAIR. Gupta et al. (59) used
RNAi technology to target HOTAIR, which led to HOTAIR
knockout. The loss of HOTAIR could inhibit cancer invasiveness.
Besides, Bhan et al. (110) designed a synthetic oligonucleotideDNA
as small interfering sense (aiSENSE) that is complementary to the
HOTAIR transcript to reduceHOTAIR expression in breast cancer
cells. Their results showed that siSENSE could knock down
specifically and effectively HOTAIR transcript in breast cancer
cells. Apart from directly targeting HOTAIR to reduce its
expression, there are some inhibitors that inhibit HOTAIR
function without changing HOTAIR level. For example, Li et al.
(111) identified a small-molecule compound AC1Q3QWB (AQB)
that could disrupt the interaction of HOTAIR-EZH2, and they
verified that AQB could selectively and efficiently block PRC2
recruitment. Moreover, Jin et al. (112) studied a novel combination
of AQB and CDK4/6 inhibitor palbociclib to evaluate its antitumor
effects in glioblastoma. They found that the combination ofAQBand
Palbociclib had a stronger inhibitory effect on glioma cell growth and
metastasis than that in the singledrug. Similarly, peptidenucleic acid-
PNA3 could disrupt the interaction between HOTAIR and EZH2.
Wang et al. (113) disrupted HOTAIR-EZH2 with PNA3 in
combination with DNMTi and found that the tumor initiation and
stem cell frequency of ovarian cancer stem cells were inhibited,
suggesting that dual inhibition of HOTAIR-EZH2 interaction and
DNA methylation may be a potent strategy to eradicate ovarian
cancer stem cells.

Taken together, the strategies for targeting HOTAIR are
mainly through antisense oligonucleotides, RNAi, and small
molecule inhibitor, in which antisense oligonucleotides and
RNAi directly inhibit HOTAIR expression, while small-
molecule inhibitor could block the HOTAIR function. Due to
the important role of HOTAIR in tumors, several studies have
reported that HOTAIR knockdown may be a potent approach
for cancer treatment. HOTAIR knockdown could inhibit DDP
resistance of GC cells through blocking the Wnt/b-catenin and
PI3K/AKT signaling pathways by upregulating miR-34a (114).
Guo et al. (102) reported that HOTAIR knockdown enhanced
cervical cancer cell sensitivity to radiotherapy by autophagy
reduction and reversal of EMT through inhibiting the Wnt
signaling pathway. Similarly, Liu et al. (103) found that
HOTAIR knockdown potentiated radiosensitivity of colorectal
cancer through regulating the mi-93/ATG12 axis. Moreover, Jia
et al. (115) revealed that the HOTAIR/miR-17-5p/PTEN axis
might serve as the potential therapeutic strategy for GC. Thus,
targeting lncRNA HOTAIR that lead to the suppression of
July 2021 | Volume 11 | Article 679244
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HOTAIR expression or function could serve as a promising
therapeutic strategy for several tumors.

DISCUSSION AND FUTURE PERSPECTIVES

In recent years, there has been significant progress in clarifying the
role of HOTAIR in various physiological and pathological
processes. Increasing evidence has suggested that the HOTAIR is
overexpressed in a variety of cancers and serves as a potent
prognostic factor and therapeutic target in various cancers
(Table 1). The level of HOTAIR is closely associated with tumor
stage, proliferation, migration, and invasion in several human
cancers. Moreover, HOTAIR has been demonstrated to affect the
drug treatment response and correlates with drug resistance,
including chemoradiotherapy resistance. Besides, overexpressed
HOTAIR significantly decreased survival of patients in several
tumors. These observations suggest that HOTAIR may serve as a
potent prognostic factor to predict treatment response and
survival rate.

Based on the close association between HOTAIR and
tumorigenesis, progression, and prognosis, targeting HOTAIR
may serve as a novel strategy for cancer treatment. Until now,
there have been three methods to target HOTAIR—synthetic
antisense oligonucleotides, RNAi, and molecule inhibitors that
block the interaction between HOTAIR and its partner. In
particular, HOTAIR inhibitors mainly focus on blocking the
interaction between HOTAIR-EZH2 at present. Thus, more
HOTAIR inhibitors still need to be further studied. It has been
reported that the HOTAIR knockdown can significantly slow the
progression of several tumors and increase their sensitivity to
Frontiers in Oncology | www.frontiersin.org 7
drugs, while additional studies, especially preclinical studies, are
needed to prove the therapeutic potential of HOTAIR.

In conclusion, HOTAIR plays a vital role in tumor crucial
process such as occurrence, growth, invasion, metastasis, and
drug resistance. For this reason, HOTAIR has been regarded as a
potential new target for cancer prognosis and therapy. However,
the understanding of HOTAIR’s clinical application still needs to
be further evaluated to clarify the exact molecular mechanisms
underlying dysregulation of its expression and function in
different human cancers to provide novel molecules to repress
HOTAIR activity in cancer cells. In addition, some studies have
shown that HOTAIR can be used in conjunction with currently
available drugs to sensitize tumors to the existing therapies, so
finding an effective method to target HOTAIR and an efficient
drug delivery method in vivo would be another critical point.
Finally, with more and more studies emerging, lncRNAs such as
HOTAIR will act as viable prognostic factors and therapeutic
targets for treating human cancers shortly.
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TABLE 1 | HOTAIR expression, functions, and prognostic and therapeutic potential in different human cancers.

Cancer type Expression Functions Prognostic and therapeutic potential Ref.

Breast cancer Up Promotes cell growth, invasion, and metastasis. Poor prognosis, decreases cell radiosensitivity. (41–45, 106, 116)
Bladder
cancer

Up Promotes proliferation, correlates with invasion. Poor prognosis, poor DFS. (86, 91, 92, 104, 105)

Brain glioma Up Increases proliferation, invasion, migration, and TNM stage;
inhibits apoptosis.

Poor prognosis (81, 82, 117, 118)

Cervical
cancer

Up Increases proliferation, invasion, metastasis. Poor prognosis, increases radioresistance. (78, 102, 119)

Colorectal
cancer

Up Promotes proliferation, metastasis, TNM stage. Poor prognosis, increases chemo-
radioresistance.

(72–75, 90, 98, 103,
107, 120, 121)

Esophageal
cancer

Up Correlates with cell proliferation, advanced stage, invasion. Poor prognosis, poor OS. (83, 85, 122–126)

Gastric cancer Up Promotes proliferation, invasion, metastasis, TNM stage. Poor prognosis, increases chemoresistance. (57, 58, 114, 115, 127,
128)

Liver cancer Up Increases proliferation, invasion, migration, EMT, poor
differentiation, and exosome secretion.

Poor prognosis, increase chemoresistance. (53–55, 100)

Lung cancer Up Increases proliferation, invasion, and migration and inhibits
apoptosis.

Poor prognosis, increases multidrug resistance. (48, 49, 94, 108, 129–
131)

Osteosarcoma Up Increases cell growth, invasion, migration; inhibits apoptosis;
correlates with advanced stage.

Poor prognosis, increases DDP resistance. (87–89, 97)

Ovarian
cancer

Up Promotes proliferation, cell cycle, migration, invasion. Poor prognosis, increases DDP resistance,
decreases chemosensitivity.

(76, 77, 99, 132)

Pancreatic
cancer

Up Increases proliferation, invasion, drug resistance; inhibits
apoptosis.

Poor prognosis, increases drug resistance,
decreases radiosensitivity.

(59, 60, 62, 63, 101,
133, 134)

Prostate
cancer

Up Increases proliferation, invasion, metastasis, and anti-
apoptosis.

Poor prognosis, increases drug resistance. (79, 80, 96, 135)

Renal
carcinoma

Up Increases proliferation, invasion, metastasis, tumor
angiogenesis; correlates with TNM stage.

Poor prognosis, increases drug resistance. (65–67, 69–71, 95,
136)
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