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ABSTRACT 

Neuronal porosomes are 15 nm cup-shaped 

lipoprotein secretory machines composed of nearly 

30 proteins present at the presynaptic membrane, 

that have been investigated using multiple imaging 

modalities, such as electron microscopy, atomic 

force microscopy, and solution X-ray. Synaptic 

vesicles transiently dock and fuse at the base of the 

porosome cup facing the cytosol, by establishing a 

fusion pore for neurotransmitter release. Studies on 

the morphology, dynamics, isolation, composition, 

and reconstitution of the neuronal porosome 

complex provide a molecular understanding of its 

structure and function. In the past twenty years, a 

large body of evidence has accumulated on the 

involvement of the neuronal porosome proteins in 

neurotransmission and various neurological 

disorders. In light of these findings, this review 

briefly summarizes our current understanding of the 

neuronal porosome complex, the secretory 

nanomachine at the nerve terminal. 
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1. Introduction 
 

Porosomes are cup-shaped secretory nanomachines 

at the plasma membrane of all cells, including 

neurons (Figure 1), observed using electron 

microscopy, atomic force microscopy, and solution 

X-ray, that allow for the precise docking, transient 

fusion, and fractional release of intravesicular 

contents from cells1-12 during secretion. The presence 

of porosome-like structures hypothesized over 

twenty-five years ago13-15, was first demonstrated to 

be present nearly two decades ago1. One needs to be 

critically aware regarding the difference between the 

‘porosome’ and the ‘fusion pore’. A fusion pore is 

formed when continuity between two opposing 

membranes is established. The initial reference of 

the ‘porosome complex’ as the “fusion pore” 2,3-6 

was a misnomer, since the “fusion pore” is 

established at the cytosolic face of the cup-shaped 

porosome complex when membrane-bound secretory 

vesicles dock and fuse (Figure 1). Target SNAREs 

or t-SNAREs present at the porosome base2 and 

secretory vesicle SNARE or v-SNARE present at the 

secretory vesicle membrane interact in a rosette 

pattern16-21 to establish the fusion pore in the 

presence of calcium22-24. Viewed from a purely 

historical perspective, it is of further interest to note, 

that similar to the hypothesized presence of the 
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porosome13-15, following discovery of the SNARE 

proteins25-27 and the establishment of their role in 

membrane fusion in cells28, it was hypothesized that 

t-SNAREs in the target membrane would interact 

with v-SNAREs at the secretory vesicle membrane 

in a rosette or ring configuration28, which was 

physically demonstrated for the first time in a 2002 

study16 using membrane associated recombinant t- 

and v-SNAREs16. Finally, the observed volume 

increase in secretory vesicles29-44, the molecular 

mechanism and dynamics of such volume increase 

in secretory vesicle45-49 and its role in cell 

secretion50, have all been determined in the past 30 

years, and provide a molecular mechanism of cell 

secretion. 

  

2. Demonstrated role of various neuronal 

porosome proteins in neurotransmission and 

neurological disorders 

 

Neuronal porosomes are 15 nm cup-shaped 

lipoprotein structures composed of nearly 30 

proteins6-8, compared to a 120-125 nm nuclear pore 

complex in mammalian cells containing nearly 1000 

protein molecules51. Neuronal porosomes are 

secretory nanomachines where synaptic vesicles 

transiently dock and fuse by establishing a fusion 

pore for the release of neurotransmitters at the nerve 

terminal. In the past twenty years, a large body of 

evidence has accumulated on the involvement of 

porosome-associated proteins in various 

neurosecretory diseases52-76. For example, the 

plasma membrane calcium ATPases (PMCA) class 

of porosome proteins, are known to be involved in 

maintaining neuronal calcium homeostasis. The 

PMCA2 class has been shown to co-localize with 

another porosome protein, synaptohysin52. At the 

presynaptic membrane, Syntaxin-1, also a porosome 

protein, has been demonstrated to co-localize with 

PMCA2 and the glycine transporter 2 (GlyT2), that 

is found coupled to the Na+/ K+ pump, suggesting 

the presence of a protein complex involved in 

neurotransmission53-55. Studies report that the 

deletion of PMCA2 generates a phenotype in mice, 

where the neurons exhibit prolonged hyperpolarized 

states resulting from an increase in the basal calcium 

levels56. Additionally, mutation in the PMCA2 gene 

results in homozygous deaf waddler mice (dfw/dfw) 

with high calcium levels within their synaptic 

terminals57. Similarly, cytoskeletal porosome 

proteins, such as actin and the alpha chain of tubulin, 

have been established to be involved in 

neurotransmission58 and various neurological 

disorders59. Latrinculin A, an actin-depolymerizing 

agent, partially blocks neurotransmitter release from 

motor neurons60. Additionally, actin which is a post-

translational product of actin mRNA is important in 

formation of excitatory synapses, which is promoted 

by interaction of actin mRNA with the Src-

associated in mitosis Sam68 protein. Loss in Sam68 

is found to diminish its interaction with actin mRNA 

leading to lower levels of synaptic actin, leading to 

neurological disorders involved with abnormal 

synaptic transmissions59. Similarly, although 

tubulin’s involvement in neurotransmission has not 

been fully understood, its association with a large 

group of proteins at the pre-synaptic membrane61,62 

suggests its critical role in neurotransmission. NAP-

 

Figure 1. Schematic presentation of strategies for drug repositioning. (a) New indication; an association between a 

target and a new disease. (b) An association between a drug and a new target. This image was adapted from 11 with 

permission. P: porosome; SV: synaptic vesicles; PSM: presynaptic membrane; 
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22, also known as BASP-1, is a neuronal porosome 

protein whose involvement in synaptic transmission 

has been suggested63-65. NAP-22 binds to the inner 

leaflet of lipid rafts suggesting interaction with 

cholesterol, and it is demonstrated that cholesterol is 

required to retain the integrity of the neuronal 

porosome complex65. Similarly, the adenylyl 

cyclase-associated protein-1 or CAP-1 regulates 

actin polymerization67 and both actin and CAP-1 are 

present in the neuronal porosomal complex12. CAP-1 

depletion in cells results in lamellopodia growth and 

F-actin accumulation along with other cytoskeletal 

abnormalities68, reflecting its critical role. 

Additionally, the porosome protein Na+/ K+ 

ATPase, plays a critical role in neuronal secretion. 

Transient blocking of Na+/ K+ ATPase activity by 

dihydrooubain69 results in an increase in both the 

amplitude and number of action potentials at the 

nerve terminal70. Similarly, changes in SNARE 

proteins present at the porosome base2, are 

associated with various neurological disorders. 

SNAP-25 and synaptophysin for example are greatly 

reduced in neurons of patients with Alzheimer’s 

disease71-73. Furthermore, it is demonstrated that 

mice that are SNAP-25 (+/-) exhibit disabled 

learning and memory phenotype, in addition to 

epileptic like seizures74. In contrast, overexpression 

of SNAP-25 results in cognitive function defects75. 

Studies show that mutations in certain regions of 

syntaxin 1A, such as the Ca+2 channel-binding 

region, increases neurotransmitter release, which 

suggests that syntaxin 1A is involved in regulating 

Ca+2 channel function76. Similarly, porosome 

proteins reticulons contribute to lipid membrane 

curvature and diseases associated with their 

deregulation adversely affect neurotransmitter 

release. These are just a few examples of neuronal 

porosome proteins that have been implicated both in 

neurotransmission and in their altered states in 

neurological disorders.  

 

3. Assembly of the membrane-associated 

neuronal SNARE complex in a rosette or ring 

conformation to establish the fusion pore at the 

porosome base 

 

Following discovery of the v-SNARE and t-SNARE 

proteins25-27 and the establishment of their role in 

membrane fusion in cells28, it was hypothesized that 

both SNAREs in opposing lipid membrane interact 

in a rosette or ring configuration28. This hypothesis 

was confirmed for the first time in an elegant 2002 

study16, using membrane associated full length 

recombinant t- and v-SNAREs and nanometer scale 

imaging using atomic force microscopy16. In a 1998 

study77, the crystal structure of non-membrane 

associated truncated t-/v-SNARE complex was 

solved at 2.4Å resolution. In that research77 

truncated t- and v-SNAREs, where the hydrophobic 

membrane-anchoring domain of SNAREs were 

deleted to overcome solubility problems to generate 

crystals for X-ray, were used. The atomic force 

microscopy study16 however, soon demonstrated that 

in absence of membrane association, v-SNARE and 

t-SNAREs fail to interact and form a rosette or ring, 

demonstrating the critical role of membrane 

association on the structure of SNAREs and their 

interactions. Subsequent studies demonstrate that the 

size of the SNARE rosette is reflective of the 

membrane curvature of associated SNAREs17. 

Greater the secretory vesicle size, larger is the size 

of the SNARE rosette complex17,20,21. 

 

4. Synaptic vesicle volume regulation in 

neurotransmission 

 

The requirement of secretory vesicle volume 

increase in cell secretion50 and the molecular 

mechanism of the process45-49, provides for the first 

time the regulated fractional release of intra-

vesicular contents during cell secretion in all cells. 

The reason and mechanism for the observed volume 

increase in secretory vesicles in earlier studies29-44, 

has become clear. The presence of adrenergic 

receptors49, heterotrimeric GTP-binding 

proteins47,50,78, ion channels and the water channel 

aquaporins 1 and 678, confer the capability of 

synaptic vesicles to finely regulate their volume, 

hence establish the required intra-vesicular pressure 

for the release of a precise amount of vesicular 

content during neurotransmission. Since the 

importance of lipids both in signaling and membrane 

protein function has become increasingly clear in the 

past two decades, not surprisingly, the critical role of 

cholesterol in synaptic vesicle volume regulation is 

demonstrated48. 

 

5. Conclusion 
 

In conclusion, with the discovery of the neuronal 

porosome complex, and an elucidation of the t-/v-

SNARE complex formation and synaptic vesicle 
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volume regulation, a new understanding of 

neurotransmitter release has come to light, providing 

a new paradigm in our knowledge of 

neurotransmitter release. The great body of evidence 

that has and continues to accumulate since the 

1970’s79,80 on the fractional or kiss-and-run or kiss-

and-release mechanism of neurotransmitter release is 

clearly explainable with the porosome discovery81,82. 

With elegant secretory nanomachines present in 

bacteria83,84, porosome-mediated secretion in 

mammalian cells was just waiting to be discovered. 
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