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Purpose of Review: The standard treatment options for systemic lupus erythematosus

(SLE) are focused on non-specific immunosuppression. Over the past few years,

scientific studies and ongoing clinical trials have shifted the paradigmwith rapid advances

in developing biologics and small molecules. A number of monoclonal antibodies and

small molecule inhibitors have been developed to target specific pathways involved in

SLE. Many of these novel therapeutic agents are already being tested in clinical trials

and they may 1 day reshape the landscape of SLE treatment. Herein we review potential

future therapeutic options for SLE.
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INTRODUCTION

In the past few years, greater understanding of the pathogenesis of SLE has translated into
the development of more targeted therapeutic agents in various stages of clinical trials.
Current treatment regiments for SLE typically comprise some combination of glucocorticoids,
antimalarials, immune suppressive drugs, and cytotoxic agents in severe cases. The first biologic
agent approved for SLE, Belimumab, has been in clinical practice for more than 5 years with overall
positive albeit modest results (1). Therefore, developing more effective treatment for lupus remains
a priority in the field.

Recent studies have identified numerous immunological checkpoints that are dysregulated in
SLE and contribute to the loss of self-tolerance. A pipeline of novel agents are being developed
to specifically target intracellular signaling pathways, inflammatory cytokines, chemokines, cell
surface costimulation molecules, and the proteasome (Figure 1). Herein we will review the
potential novel treatment options that are currently being tested in clinical trials for SLE.

B Cell Inhibition
Systemic lupus erythematosus is a multisystem autoimmune disease characterized by the
production of autoantibodies that primarily target a variety of nuclear antigens, deposit in tissues
and activate complement. Plasma cells and their precursors, B cells, are fundamental to the
development of these antibodies, and therefore are a prime therapeutic target for intervention in
the disease.

B Lymphocyte Stimulator (BLyS)/A Proliferation-Inducing Ligand (APRIL) Belimumab was the
first FDA approved fully humanized monoclonal anti-BLyS antibody for use in SLE more than
5 years ago. Administration of Belimumab was found to benefit SLE patients who had positive
anti-double-stranded (ds) DNA and low complement (C3 or C4) levels. Moreover, the pivotal trials
that lead to the approval of belimumab used a novel at the time composite outcome measure, the
SLEDAI response index (SRI). Patients would be regarded SRI responders if they have (1) at least
4 points decrease in their SLEDAI scores over the period of the study, (2) No worsening of the
physician global assessment (PGA), and (3). No new BILAG A or more than one BILAG B scores.
The original SRI can be modified to require higher decrease in SLEDAI score e.g., by 5 or 6 points
(SRI-5, SRI-6, respectively).

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2018.02658
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.02658&domain=pdf&date_stamp=2018-11-16
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:vkyttari@bidmc.harvard.edu
https://doi.org/10.3389/fimmu.2018.02658
https://www.frontiersin.org/articles/10.3389/fimmu.2018.02658/full
http://loop.frontiersin.org/people/605808/overview
http://loop.frontiersin.org/people/537314/overview


Vukelic et al. Novel Treatments in Lupus

Compared to the placebo group’s 44% SLEDAI response index
(SRI)-4, the belimumab group had SRI-4 of 58%, indicating
a statistically significant but yet modest effect. This modest
effectiveness was later confirmed by an extensive post- marketing
surveillance, as well as, its overall safety profile. Subcutaneously
administered belimumab had similar efficacy at week 52 with
SRI-4 response of 61.4% vs. placebo 48.4% (p = 0.0006) (2). It
is worth mentioning that the effectiveness of belimumab remains
unclear in severe renal and CNS disease as patients with these
manifestations were excluded from the initial studies (1, 3). A
study investigating the usefulness of belimumab in patients with
lupus nephritis is currently ongoing (NCT01639339).

Tabalumab, a monoclonal antibody against BLyS that
neutralizes membrane-bound and soluble BLyS, was assessed for
its effectiveness in moderately active lupus in two large phase
III clinical trials (ILLUMINATE-1 & 2). Although tabalumab
treatment resulted in favorable changes in disease biomarkers
(anti-dsDNA abs and complement levels), efficacy was marginal
with SRI-5 of 38.4% in the tabalumab-treated vs. 27.7% in the
placebo group (p = 0.002) in one trial. There was no statistical
difference between the two groups in the second trial. Again, the
treatment with tabalumab was found to be relatively safe as was
the case with belimumab (4–6).

Blisibimod is a BLyS -neutralizing agent composed of a
tetrameric BLyS binding domain fused to a human IgG1 Fc
region. It binds both soluble and membrane-bound BLyS. In the
recently completed phase III trial (CHABLISSC1) in patients with
severe disease (SELENA-SLEDAI score ≥10), blisibimod showed
a statistically significant steroid-sparing effect, reduction in SLE
autoantibodies, B cell count, and proteinuria while increasing
complement levels (7). SRI-6 as a primary end point was not
met since response rate in the control subjects in this study was
very high compared to prior SLE trials; 46.9% in the Blisibimod
vs. 42.3% jn the control group. Higher steroid dosing in the
placebo armmay have contributed to the relatively high response
rates, confounding the primary efficacy outcome. Blisibimod was
well-tolerated and the most common adverse events were upper
respiratory or urinary tract infection and diarrhea (7).

Atacicept is a fully human recombinant fusion protein made
of the extracellular portion of the TACI receptor and the Fc
portion of human IgG. As atacicept blocks both BLyS and APRIL
(8), it was predicted that atacicept may have a more potent effect
on immunoglobulin production. Indeed, a significant high risk of
severe infection and a decreased in immunoglobulin levels lead to
a terminated phase II/III APRIL-SLE trial in nephritis (9). Similar
effect on immunoglobulin levels was seen in the ADDRESS II trial
(10) where effectiveness of atacicept to improve serologicmarkers
and prevent lupus flares was superior to placebo only with 150mg
twice weekly dosing. The safety profile was acceptable with no
reportedly increase in the overall frequency of serious adverse
effects as compared to placebo. However, further assessment
of the long-term safety of atacicept is warranted as this study
only evaluated the safety and efficacy at 24-weeks (10). Given
these results, the initial enthusiasm with this molecule has largely
dissipated.

Overall, anti-BLyS but probably not anti-APRIL therapies,
represent a moderately effective and safe approach in the

management of patients with moderately active SLE with
musculoskeletal and skin manifestations, especially if they
remain corticosteroid dependent.

Anti-CD 20
Unlike BLyS inhibition with the capacity of altering B cell
maturation, CD20 targeting therapy depletes mature B cells
without affecting plasma cells. Rituximab (RTX) is the most
widely used anti-CD20 antibody; due to its chimeric nature,
it was found to cause allergic reactions in approximately
10% of patients. Therefore, in the past few years several
fully humanized anti-CD20 antibodies have been developed,
such as ocrelizumab, ofatumumab, and obinutuzumab. Small
uncontrolled trials showed that rituximab, already known to
be effective in rheumatoid arthritis (11), can also ameliorate
lupus (12). The non-randomized “Rituxilup” trial (n = 50) used
rituximab and methyl prednisolone followed by mycophenolate
mofetil in newly diagnosed lupus nephritis. Ninety percent of
patients achieving a partial or complete remission by 37 weeks
of treatement. A randomized multicenter clinical trial conducted
by Rovin et al., was recently terminated prematurely due to slow
recruitment (CTN84054592). But other pivotal trials in lupus
nephritis (LUNAR) (13) and non-renal SLE (EXPLORER) were
largely negative (14). Currently, the European League Against
Rheumatism (EULAR) recommends rituximab as a treatment of
last resort in severe lupus (15).

More recently, a few case reports (16, 17) and a phase 2A
open-label proof-of-concept suggested that the combination of
RTX and anti-BLyS (belimumab, BLM) could be effective. 11/16
patients with refractory SLE achieved renal responses (defined
as proteinuria decreased to ≤0.7 g/24 h, normal serum albumin,
stable creatinine and a normal urinary sediment). Importantly,
RTX + BLM reduced nuclear autoantibody titers, and prevented
the spike of circulating BLyS that is common after B-cell
depletion. Similar results were observed in another small case
series of patients with refractory SLE, who entered long term
remission and discontinued corticosteroids (18, 19).

Similarly, the humanized anti-CD20 ocrelizumab failed to
show significant efficacy in two early terminated phase III trials
(BELONG and BEGIN). Patients with class III and IV nephritis
were enrolled in BELONG (20) that compared ocrelizumab
to placebo. Patients also received mycophenolate mofetil or
cyclophosphamide (euro-lupus nephritis treatment protocol).
Non-renal SLE patients were enrolled in the BEGIN trial.
Both trials were terminated after significant increases of severe
infections were noted in the ocrelizumab group. It has to be noted
that efficacy analysis showed a trend favoring ocrelizumab over
placebo.

Ofatumumab was administered to 16 SLE patients who could
not tolerate rituximab; 87% (14/16) of these patients tolerated
the infusion. About 85% patient achieved B cell-depletion
with associated improvements in serological markers of disease
activity (ANA, anti-dsDNA and complement levels). Half of
the patients with lupus nephritis achieved renal remission by
6 months. Overall safety profile seems acceptable with 5/16
patients developing grade III infections; no malignancies or
deaths were reported during the 28 months follow up (21).
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FIGURE 1 | Therapeutic targets and novel treatments in SLE. Target molecules (black) and corresponding therapeutic agents (red) in clinical trials are illustrated. pDC,

plasmacytoid dendritic cell; MHC, major histocompatibility complex; CD, cluster of differentiation; APRIL, a proliferating-induced ligand; BLys, B-lymphocyte

stimulator; IL, interleukin; TCR, T cell receptor; IFNAR1, Interferon alpha receptor 1; BTK, Bruton’s tyrosine kinase; mTOR, mammalian target of rapamycin; Jak, Janus

kinases; STAT, signal transducer and activator of transcription proteins; Ub, ubiquitin; E3, Ubiquitin protein ligases.

One SLE patient with autoimmune hemolytic anemia who failed
rituximab, achieved clinical remission after ofatumumab (22).
Four patients with nephritis achieved reduction of proteinuria
and anti-dsDNA levels (23). There are no active formal clinical
trials in SLE. A 52-week, phase II trial studying safety and
efficacy of obinutuzumab, a different anti-CD20 antibody, in
lupus neprhritis is currently active with estimated completion
date in December 2019 (NCT02550652).

As per EULAR recommendations, anti-CD20 treatment can
be tried in refractory SLE patients. Severe infections remain a
concern as many of these patients are already receiving other
immunosuppressive medications.

Anti-CD22
CD22 is a surface molecule that modulates B cell activation and
migration. Epratuzumab is a humanized anti-CD22 antibody,
initially showed positive results reaching its primary endpoint
(BICLA response) in the EMBLEM phase II trials (24). However,
the beneficial effect was not replicated in the larger and more
stringently performed phase III EMBODY trial (25). The reason
of failure was thought due to sub-optimal dosing, high placebo

response rates, and inadequate optimization of standard of
care. Interestingly, some promising response was observed
in subgroups of patient with features of Sjogren’s syndrome
and positive anti-SSA antibodies. Further research is needed
to explore this and other potential sub-groups that might
respond (26).

Anti-CD19
CD19 is a surface receptor found exclusively on B cells.
XmAb5871 is an antibody that co-engages CD19 and the
inhibitory FcγRIIb receptor, resulting in B cell inhibition but
not ablation (27). There is an ongoing randomized, double-
blinded, placebo-controlled study of XmAb5871 to determine
its ability to maintain SLE remission achieved by a brief course
of steroid therapy (NCT02725515). This clinical trial has an
interesting design: Moderately active SLE patients are taken
off traditional therapies and are given high dose parenteral
steroids. In theory most patients will become clinically inactive.
Then the patients of both XmAb5871 and placebo group are
observed for development of flare. The outcome measure would
be time to relapse after the initial induction of remission. This
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unconventional study design is likely to reduce the placebo
response by eliminating the effect of background therapy.

Proteasome Inhibitors
The lack of expression of CD20 on plasma cells, especially long-
lived plasma cells may be one of the reasons for the poor
performance of anti-CD20 therapies in SLE (28). This can be
addressed by targeting specifically the plasma cell ability to
produce immune globulins by inhibiting the proteasome. This
organelle handles misfolded proteins, produced at high levels
during immune-globulin assembly, and has proven critical for
plasma cell function.

Bortezomib is a proteasome inhibitor, that is efficacious in
plasma cell cancers. In lupus proneMPL/lprmice, administration
of bortezomib was found effective in preventing and more
importantly treating established disease (29). Similar effects were
observed with two other proteasome inhibitors, carfilzomib
(30), and delanzomib (31) when used in preclinical models
of lupus nephritis (NZBW F1 and MRL/lpr mice). Following
these successful studies, bortezomib was infused in 12 patients
with refractory SLE. The patients had significant improvement
in several clinical parameters such as dermatitis, proteinuria,
arthritis, and serositis. Neuropathy developed in 2/12 patients as
a major side effect. Currently, bortezomib is assessed in a phase
II clinical trial in SLE patients (NCT02102594) with estimated
completion date in December 2018.

Although proteasome inhibition is attractive, the main
concern for adding these seemingly potent medications in the
SLE therapeutic armamentarium remains the severe toxicity
associated with their chronic use.

INTRACELLULAR SIGNALING

Bruton’s Tyrosine Kinase (Btk)
Btk is a B-cell receptor (BCR) associated kinase that activates
the NFkB pathway (32). Importantly though it also associates
with the Fc receptor in monocytes (33) and can bridge BCR
and TLR9 signaling (34). Mutations in the Btk gene result in
agammaglobulinemia (35). Ibrutinib is already in use for B cell
malignancies and has good safety profile (36). Inmousemodels of
lupus nephritis treatment with Btk inhibitors PF-06250112 (37)
and ibrutinib (38) resulted in less severe nephritis. This served
as the base for the Btk inhibitor MSC2364447C (M2951) to be
evaluated in a phase Ib trial in SLE patients withmild tomoderate
disease (NCT02537028). Fenebrutinib (GDC-0853), an orally
available inhibitor of Btk, is evaluated in a phase II clinical study
in patients with moderate to severe active SLE (NCT03407482).
Participants will receive GDC-0853 twice daily for 48 weeks and
will be followed for additional 8 weeks to evaluate the long-term
safety and efficacy.

Cereblon Modulator (CC-220)
CC-220 binds to cereblon (CRBN), a substrate receptor
of CUL4CRBN E3 ubiquitin ligase complex. As an
immunomodulatory compound, CC-220 can lead a substrate
specific ubiquitination of transcription factors Ikaros (IKZF1)
and Aiolos (IKZF3) both essential for antibody production

(38–40). A Pilot phase II randomized, placebo-controlled,
double-blind study is underway to evaluate efficacy, safety,
tolerability, pharmacokinetics of CC-220 in patients with SLE
(NCT02185040). CC-220 showed some efficacy but there were
important safety issues in a 12-week, phase II, dose-escalation
study of 42 patients and 14% of patients stopped treatment
because of adverse effects. Higher doses of CC-220 were
associated with neutropenia, pneumonia, and dermatitis (41).

Calcineurin Inhibitors
Activated lupus T cells show an exaggerated calcium response,
which leads to early and sustained activation of the phosphatase
calcineurin and its substrate, the transcription factor nuclear
factor of activated T cells (NFAT). NFAT upregulates a
number of genes, including CD154 (also called CD40L)
(42), a critical molecule for T:B cell interaction. Calcineurin
inhibitors cyclosporine and tacrolimus, have been successfully
used in preventing transplant rejection through blocking this
important pathway. Moreover, calcineurin inhibitors may have
an antiproteinuric effect, rendering them an important treatment
alternative or adjuvant therapy for lupus nephritis. Compared to
mycophenolate mofetil, tacrolimus was found to be non-inferior
in induction of remission (62 vs. 59%). However, there was a
trend for more flares in the tacrolimus group (43).

Voclosporin, a novel calcineurin inhibitor, was investigated
in a phase II trial for lupus nephritis as a combination
therapy with mycophenolate mofetil (AURA trial). Patients
received mycophenolate alone or Voclosporin at 39.5 or 27.5mg
combined with mycophenolate. Remission rates at 6 months
favored the combination therapy over mycophenolate alone
(OR = 2.03). Unfortunately, the voclosporin-mycophenolate
combination resulted in severe side effects including 12 deaths
vs. 1 death in the mycophenolate group alone (44) despite the
use of rather low corticosteroid doses. Double-blind, placebo-
controlled AURORA (NCT03021499) phase 3 clinical trial has
started with a plan to include 320 patients with nephritis. It will
determine if a combination of voclosporin and a standard of care
therapy with mycophenolate mofetil increases kidney function,
compared with to standard of therapy alone.

Overall, calcineurin inhibitors alone or combined with
mycophenolate represent acceptable alternatives for lupus
nephritis treatment; the combination though may carry a
significant risk for serious infections.

Mammalian Target of Rapamycin (mTOR)
Signaling Inhibitor
mTOR is a highly conserved serine/threonine kinase and is well
known to be essential for the regulation of cell metabolism,
growth, and proliferation (45, 46). Activated mTOR in lupus T
cells is associated with several abnormalities including expansion
of both TH17 and CD3+CD4−CD8− double negative T, as well
as, contraction of Tregs (47, 48).

Administration of the mTOR inhibitor rapamycin, results
in immediate inhibition of mTORC1 signaling and delayed
inhibition of mTORC2 signaling. It has a marked effect on
the immune system, partly by interrupting metabolic demands
associated with lymphocyte proliferation and effector function.
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In the context of SLE, rapamycin ameliorated nephritis and
improved IL-2 production in MRL/lpr mice (49). In an
open-label clinical trial, rapamycin improved the clinical and
laboratory parameters in patients with recalcitrant SLE (50). A
larger clinical trial in SLE (NCT00779194) is under way.

The N-acetylcysteine (NAC), a potent anti-oxidant and
glutathione precursor, also inhibits mTOR. NAC administration
in SLE patients resulted in improvement of disease activity (51).
NAC also led to the expansion of CD4+CD25+FoxP3+ Tregs
and depletion of phospho-S6RPhi DN T cells (52). NAC is well
tolerated with its major side-effect being nausea at high doses
(over 4.8 g per day).

JAK/STAT Inhibitors
The Janus kinase (JAK)/signal transducer and activator of
transcription (STAT) system fine-tunes immune cell activation
(53), defining their differentiation. In SLE, there is mounting
evidence of the critical involvement of this system in disease
pathogenesis. In a recent study, it was shown that increased
STAT5 signaling in lupus T cells is related to changes
in circulating CD4T cell subsets and correlated with more
aggressive disease (54).

Following the success in treating RA with tofacitinib, the first
oral JAK inhibitor (55), several JAK inhibitors are currently under
investigation. As type I interferons, known to be upregulated
in SLE, transduce their signal through JAK, the JAK1 inhibitor
GSK2586184 was used in a small trial to block the expression
of interferon-related genes in SLE. The trial failed to show a
difference (56) without being powered to address the broader
effect JAK inhibition may have on disease activity.

Tofacitinib was studied in phase Ib trial in patients with mild
to moderate lupus, stratified based on the presence or absence
of STAT4 risk alleles. Although data are not available to date,
this study is one of the first to address the link between genetic
susceptibility and response to treatment in SLE. Baricitinib, a
more selective JAK 1/2 inhibitor was evaluated in a phase II
trial in SLE patients that was completed with positive yet modest
results (57). A third JAK1 inhibitor, Filgotinib, is currently being
evaluated in patients with moderate to severe active cutaneous
lupus (NCT03134222) and with membranous lupus nephropathy
(NCT03285711).

BMS-986165 is broad inhibitor against a panel of 265 kinases
and pseudokinases. BMS-986165 protected NZB/W lupus-prone
mice from nephritis possibly through its effect on interferon
signaling (58). BMS-986165 also suppresses IL-23/IL-17 and IL-
12. An ongoing phase 2 randomized, double-blind, placebo-
controlled trial is exploring the efficacy and safety in patients
with SLE (59). Finally, our group identified STAT3 that associates
with JAK and mediates IL-6 and IL-23 signaling, as a potential
therapeutic target in SLE (60, 61). STAT3 influences SLE T cell
cytokine production, cell migration and B cell activity in lupus
prone mice (62). In a preclinical study, Stattic, a small molecular
STAT3 blocker, alleviated nephritis in lupus prone MRL/lpr mice
(58, 63).

The Jak-STAT pathway therefore represents a very promising
therapeutic target in both non-renal and renal lupus. Moreover,
the use of small molecular oral agents to inhibit this pathway as

opposed to biologic inhibitors of cytokines, makes this approach
even more appealing.

Rho Kinase (ROCK) Inhibitors
ROCKs are a family of serine-threonine kinases (59) that
function as downstream effectors for the GTPase Rho. The
main isoforms ROCK1 and ROCK2 regulate multiple biological
functions, including proliferation, differentiation, and migration
by cytoskeletal reorganization. The potential of this pathway as a
treatment target in SLE, was first shown by the ROCK inhibitor
Y27632 that blocked the ability of SLE T cells to migrate in vitro
(64, 65). Subsequently, ROCK2 was found to be selectively
activated in murine lupus T cells. In these lupus models, ROCK2
regulates IRF4 and increases IL-17 and IL-21 production (66).

A wide array of available ROCK inhibitors has been
investigated in SLE including Fasudil and Y27632. Fasudil is
non-isoform selective ROCK inhibitor that attenuates disease
activity in MRL/lpr mice and NZBWF1 mice (64). Fasudil can
also cause vasodilation and hence was evaluated for the treatment
of systemic sclerosis patients with Raynaud’s phenomenon. A
single oral dose of 40 or 80mg fasudil though, did not improve
skin temperature recovery or increase digital blood flow (67).

Although, there are no current clinical trials investigating
ROCK inhibitors in patient with SLE, they are evaluated in
patients with angina pectoris, pulmonary hypertension (68),
idiopathic pulmonary fibrosis (NCT02688647) and psoriasis
vulgaris (NCT02317627).

CO-STIMULATION

T cell activation is a tightly controlled process that consists of
several steps to allow proper T cell differentiation. Each step in
this process has the potential to serve as therapeutic target for
autoimmune diseases. Following antigenic binding to the T-cell
receptor, the strength of the immune response depends on the
expression and interaction of costimulatory surface molecules
on antigen presenting cells with those on T cells (68, 69). Here
we review the role of disrupting the two most important co-
stimulatory pairs, CD28/B7 and CD40/CD154 as a therapeutic
strategy in SLE.

CD28/B7
Inhibition of co-stimulatory pathway has already been utilized
in in the treatment of rheumatoid arthritis with abatacept. This
is a fusion protein made of CTLA4 (cytotoxic T-lymphocyte-
associated protein 4) and an immunoglobulin chain (CTLA4-
Ig). It binds CD80/86 with a higher affinity than CD28. This
interaction leads to both inhibition of T cell proliferation and
B cell antibody production (70, 71). Efficacy and safety of
abatacept added to standard of care with mycophenolate mofetil
and steroids was evaluated in a phase III double-blind placebo-
controlled trial that randomized over 400 lupus patients with
class III or IV nephritis. The study end point was complete
renal remission and corticosteroid dose assessed at 52 weeks.
The trial did not reach its primary endpoint with 35% of
patients treated with abatacept achieving remission vs. 33%
in the placebo group (p = 0.73). Abatacept treatment was
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associated with improvement of immunologic markers (anti-ds
DNA, C3, and C4 levels) as compared to placebo. In patients
with nephrotic-range proteinuria, treatment with abatacept led
to more rapid and greater reduction of proteinuria compared
with placebo. Infection rates were similar as previously reported
for RA patients. Thus, far, there have been several other trials of
abatacept in active lupus nephritis but none achieved its primary
endpoint (72, 73).

Targeting the CD28 instead of B7 has been challenging by
the lack of inhibitory antibodies that would not crosslink CD28
and trigger a cytokine storm (74). One solution was to develop
pegylated monovalent anti-CD28 antibodies such as lulizumab
(75). Lulizumab was evaluated in phase II trial in non-renal
lupus following acceptable safety profile in phase I trial. The
trial was terminated early as it failed to meet protocol objectives
(NCT02265744).

CD154/CD40
Another pair of co-stimulatory receptor-ligand system whose
engagement has profound effects on B, dendritic and endothelial
cells is the CD40-CD40 ligand (CD154). Following T cell
activation, CD154 is expressed on the surface of the cell, allowing
binding to B cells through CD40; that in turn leads to IgG class
switching (76). Two drugs are currently explored as therapeutic
agents in phase II trials for patients with moderately to severely
active SLE. The first one, Dapirolizumab, a polyethylene glycol
conjugated anti-CD40L Fab’ fragment, was well tolerated in phase
I study (77). At 12 weeks of treatment 46% of high disease activity
patients showed reduction in disease activity measured by BILAG
and 41% had improved SRI-4. The second one, BI 655064 is
a humanized monoclonal anti-CD40 antibody. Its efficacy will
be assessed in a double-blind, randomized, placebo-controlled
trial for patients with active class III and IV lupus nephritis
(NCT03385564). The study is actively enrolling and the primary
endpoint is defined as complete renal response at 1 year.

CYTOKINES

SLE is characterized by skewed cytokine production that can
directly cause local tissue damage and contribute to systemic
symptomatology. Besides the interferons, other inflammatory
and immunomodulatory cytokines have been investigated as
therapeutic targets for SLE.

Interleukin-2 (IL-2)
There has been resurgent interest in interleukin-2 since the
discovery of its homeostatic potential on CD4T cells and its
ability to redirect immune responses toward tolerance. IL-2
promotes the expansion and survival of regulatory T cells, and
can be used in low doses to promote tolerance averting graft
vs. host disease in bone marrow recipients (78–80). In SLE,
low-dose IL-2 therapy is of particular interest, as these patients
have low levels of IL-2, defective regulatory T cell function, and
overactive T effector cells (81, 82). This imbalance can potentially
be reversed with the addition of IL-2 (83). In preclinical studies,
low dose IL-2 abrogated the development of nephritis in lupus-
prone mice and mediated selective expansion of regulatory T

cells in SLE patients (84, 85). This approach was tested in
an open label phase I/II trial of subcutaneous low-dose IL-
2 injection on alternate days for 3 cycles in 38 SLE patients.
More than 80% of patients showed significant SRI-4 response
by week 12, in addition to increased numbers of regulatory T
cells, decreased Th17, follicular helper and double negative T
cells (86, 87). This paved the way for larger placebo-controlled
trials of low dose IL-2, using different IL-2 preparations and
dosing schedules: AMG 592 (NCT03451422); LUPIL-2 trial with
ILT-101 (NCT02955615); and Charact-IL-2 with Aldesleukin
(NCT03312335).

Interleukin (IL)-12/23
Elevated IL-23 levels have been found in patients with
lupus nephritis (83, 88, 89). Activation of IL-23/IL-17A axis
induces expansion of highly pathogenic TH17 cells, ultimately
contributing to pathogenesis of lupus nephritis by enhancing
immunoglobulin and complement deposition (90, 91). Sole
targeting of IL-17 in murine lupus nephritis models either
with genetic deletion or utilizing a blocking antibody against
IL-17A had no impact on the disease (92, 93). However,
upstream targeting of this axis with ustekinumab, a monoclonal
anti-IL-12/23 antibody that is already approved and well
tolerated in patients with a variety of autoimmune diseases,
showed promising data. Ustekinumab was evaluated in placebo-
controlled phase II trial that recruited 102 SLE patients with
active disease despite ongoing standard of care therapy (steroid,
antimalarial and/or immunosuppressive therapies) (94). The
protocol allowed intravenous loading, followed by subcutaneous
administration every 8 weeks. At week 24, ustekinumab arm
showed a significant improvement of the SLEDAI-2K score
compared to placebo (SRI-4: 60 vs. 31%, respectively, p= 0.0046),
which was the predetermined primary endpoint. A number of
other metrics also improved, including anti-dsDNA, C3 levels,
musculoskeletal and mucocutaneous manifestations. Moreover,
a significant lower risk of a new BILAG flare was found in the
ustekinumab group (p = 0.0078) but there was no difference in
BILAG or BICLA scores at week 24 among the groups. Safety
and adverse events of ustekinumab were similar to safety profile
reported for other indications. Overall, this is very promising
therapeutic option with an ongoing phase III trial that will
address ultimately its usefulness in SLE.

IL-10
IL-10 has been shown to be increased in the serum of SLE patients
and levels do correlate with disease activity (95). Its exact role in
the propagation of the disease is unclear as IL-10 has both pro
and anti-inflammatory effects. The anti-IL-10 antibody, BT063,
is currently undergoing a phase II trial (NCT02554019); the trial
aims at recruiting 36 patients with SLE who are to receive 50mg
of BT063. Safety and efficacy will be compared to standard of
care. The drug will be administered over 8 cycles of intravenous
infusion in 12 weeks period. Although no data are available, the
clinical development program for this molecule is active.

Frontiers in Immunology | www.frontiersin.org 6 November 2018 | Volume 9 | Article 2658

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Vukelic et al. Novel Treatments in Lupus

IL-6
IL-6 is a proinflammatory cytokine found to be elevated in
patients with active SLE (96). Rationale for its therapeutic
blockade comes from data that showed diverse biologic function,
spanning from promoting terminal differentiation of B and
TH17 cells to locally driving tissue damage (97–99). Additionally,
in animal models of SLE, disrupting IL-6 signaling either by
utilizing an anti-IL-6 monoclonal antibody or anti-IL-6 receptor
antibody led to improved survival, decreased levels of ds-
DNA and proteinuria (100, 101). The opposite was found
when mice were injected with recombinant human IL-6 (101,
102). Unfortunately, the clinical trials though have not been as
encouraging.

PF-04236921, a monoclonal IL-6 antibody failed to meet
its primary efficacy endpoint (SRI-4) a phase II trial that
enrolled 183 patients assigned to receive subcutaneous 10mg,
50mg or 200mg drug or placebo (103). In the 200mg dose
group, there were four deaths secondary to infections and
thrombosis. A subgroup analysis showed that benefit can be
seen in patients with high disease activity at baseline who
received the 10mg dose. They had significantly improved SRI-
4 and BICLA response rates compared to placebo (49 vs. 25.1%,
p < 0.05) and decreased incidence of severe lupus flares. Two
other monoclonal antibodies failed to demonstrate efficacy in
phase II trials, sirukumab (104), and vobarilizumab. Finally, the
monoclonal antibody MRA003US is currently in a phase I trial
(NCT00046774) and no results have been released to date.

The Interferons (IFN)
The hypothesis that IFNs have an important role in SLE
pathogenesis is supported by plethora of findings both in
humans and animals. Patients with active lupus have elevated
levels of type I IFN. Moreover, patients with active and
quiescent disease have evidence of continuous exposure to type
I interferons based on multiple gene expression studies that show
upregulated interferon responsive genes, collectively known as
“IFN signature” (105–108). Given modulatory potential of IFNs
to initiate or amplify immune responses leading to organ damage
in lupus, this cytokine system became an excellent therapeutic
target.

Sifalimumab, an anti-IFNα monoclonal antibody was
evaluated in a phase II clinical trial in patients with moderate
to severe SLE (109). Compared to placebo, patients receiving
monthly IV infusions of sifalimumab (1,200, 600, and 200mg
groups) had statistically superior SRI-4 response index compared
to placebo that received standard of care treatment at 52
weeks (sifalimumab: 59.8, 56.5, and 58.3 vs. 45.4% placebo,
respectfully). At baseline, approximately 80% of patients had the
IFN signature of gene expression at baseline, and tended to have
better responses. The most common infectious complication
was herpes zoster in patients receiving high dose (9.3 vs. 0.9%
in the placebo group) that responded to treatment. There
was one recurrence among patients who continued receiving
sifalimumab. Overall, this was a positive study but given the
modest effect size, there was no further development of this drug.

Rontalizumab is another humanized IgG1 anti-IFNα antibody
that can neutralize all 12 subtypes of interferon-alpha. It was

evaluated in the placebo control phase II trial, ROSE (110). At
baseline, 76% of patients had high IFN regulated gene expression.
At 24 weeks of treatment, the drug failed to meet the primary
endpoint. Unexpectedly, treatment with rontalizumab showed
consistent benefits with higher SRI-4 responses compared to
controls in the subgroup of patients who had low interferon
signature detected (72.7 vs. 41.7% placebo) and this group
achieved meaningful rates of prednisone dose reduction to
≤10mg daily. Rontalizumab was well tolerated and serious
adverse events were 14.6 vs. 8.3% in the placebo group, all
classified as unrelated to the study drug. Therefore, higher
doses of rontalizumab would be well tolerated and possibly
more effective but no additional trials are planned to answer
this question. There are currently two phase I trials with other
monoclonal antibodies against IFN-α: IAGS-009 completed
phase I (NCT00960362) and JNJ-55920839 is in recruiting phase
(NCT02609789).

Another strategy to inhibit the IFN-I pathway is to block
its receptor, the interferon alpha receptor 1 (IFNAR1) that
binds all type I IFNs including IFNα and IFNβ. Anifrolumab,
a monoclonal antibody against IFNAR1, was granted fast- track
status by the FDA and was successful in phase II open-label trial
(108, 109). In this study, 75% of patients had high IFN signature
at baseline. The primary endpoint consisting of composite SRI-
4 combined with a measure of steroid sparing to <10 mg/day
was achieved in both anifrolumab dose groups at higher rates
than placebo (28.8% in the 1,000mg IV monthly, 34.3% in
300mg IV monthly vs. 17.6% in the placebo group). At 1
year, 56.4% of the patients taking a 300mg dose met the
SRI end-point, as compared to 31.7% receiving 1000mg dose
(p = 0.595) and 26.6% on placebo. Regarding the infections
rate, patients receiving anifrolumab had dose-dependent increase
in herpes zoster cases (placebo: 2.0%; 300 mg: 5.1%; 1,000 mg:
9.5%) and a greater number of influenza infections (placebo:
2.0%; 300 mg: 6.1%; 1,000 mg: 7.6%). However, most cases of
influenza were unconfirmed. With this positive data, two phase
III studies are currently underway via the TULIP (NCT02547922)
program. TULIP-LN1 on the other hand is phase IIb study
designed to assess efficacy and safety of two intravenous doses of
anifrolumab vs. placebo while taking standard of care treatment
with mycophenolate mofetil and corticosteroids in adults with
active proliferative lupus nephritis. On August 31, 2018, it was
reported that in one of the phase III trials (TULIP I), anifrolumab
failed to meet its primary endpoint.

In conclusion, IFNAR blocking has been a promising
therapeutic approach for SLE patients who fail to respond to
available therapies. The recently released result though from the
phase III trial dampen the enthusiasm for the usefulness of this
approach.

Interferon-γ (IFNγ)
The pathogenic role of IFNγ has been better characterized in
mice, as opposed to humans (111), where elevated levels and
correlation with disease activity is found in both NZB/W and
MRL/lprmice. Administration of IFN-γ acceleratesmurine lupus
while early treatment with anti-IFNγ antibody rescues mice from
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TABLE 1 | New and emerging therapies in SLE.

Molecular

target

Treatment Status

B CELLS

BAFF/APRIL Belimumab Approved for non-renal SLE

Ongoing phase IV for efficacy, safety, and

tolerability

Ongoing phase III in combination with

Rituximab

Tabalumab Phase III without significant effect

(terminated)

Blisibimod Phase III did not meet SRI-6 primary end

point

Atacicept APRIL-SLE study terminated due to

increased infection rate

ADDRESS II study has acceptable safety

profile

CD20 Rituximab Phase III failed (nephritis and non-nephritis)

Ocrelizumab Phase III trial completed

CD22 Epratuzumab Phase III failed

CD19 XmAb5871 Phase II trial

Proteasome

inhibitors

Bortezomib Phase II trial

INTRACELLULAR SIGNALING

Btk M2951 Ongoing phase II

Fenebrutinib Ongoing phase II trial

mTOR N-acetylcysteine Small study showed decrease in SLEDAI,

no further development

Rapamycin Open-label study showed an effect on

BILAG. Larger study planned.

JAK/STAT GSK2586184 Ineffective on interferon signature in phase

II, safety data do not support further study

JAK 2 Baricitinib Phase II positive data; Phase III trial

ongoing

JAK3 Tofacitinib Ongoing Phase I/II trial

ROCK Fasudil Effective in preclinical studies in patient

with Raynaud’s, phase III completed with

uninterpretable data.

CO-STIMULATION

CD40:CD154 Dapirolizumab Ongoing phase II trial

BI 655064 Ongoing phase II trial

CD28:B7 Abatacept Ineffective in phase III in nephritis and

general SLE

Lulizumab Phase II trial terminated—failed to meet

protocol objectives

CYTOKINES

Sifalimumab Limited effect in phase II and III. No further

development

Rontalizumab Phase II without significant results

Interferon-α Anifrolumab Phase II positive data; 2 Phase III trials

ongoing (one reported negative)

IAGS-009 Completed phase I, no data released

JNJ-55920839 In recruiting phase

IFNα-k Successful phase I; ongoing phase II trial

Interleukin-2 Aldesleukin Ongoing open-label phase II trial

AMG 592 Ongoing phase Ib and IIa trial

(Continued)

TABLE 1 | Continued

Molecular

target

Treatment Status

ILT-101 Ongoing phase II trial

Interleukin 12/23 Ustekinumab Met primary end-point in phase II trial;

ongoing phase III trial

Interleukin-6 PF-04236921 Failed phase II trial; safety compromised

Sirukumab Failed phase II trial

MRA003US Ongoing phase II trial

Vobarilizumab Ongoing phase I trial

Interleukin-10 BT063 Ongoing phase II trial

OTHER

Lupuzor Phase III trial failed to meet the primary

end point

disease (112). Unfortunately two phase I studies of the anti-
IFNγ antibody AMG811 in the treatment of mild to moderate
systemic and cutaneous lupus (113) showed safety with favorable
immunogenicity profile but did not show significant therapeutic
effect despite decreasing IFNγ-related gene expression (114). The
negative results from these small studies led to discontinuation of
the development program for AMG811.

IFNα Kinoid (IFNα-K)
This is another interesting approach for neutralizing I IFN that
received fast track status by the FDA. It is currently in phase IIb
trial aiming at recruiting 185 patients (NCT02665364). Patients
are assigned to receive IFNα-K immunotherapy or placebo
in addition to standard treatment with immunosuppressives,
antimalarials, and/or steroids. The drug is composed of
inactivated IFN-α coupled to the keyhole limpet haemocyanin
protein and when injected, leads to induction of polyclonal anti-
IFNα responses with transient immunity against all 13 subtypes
of interferon alpha. In preclinical stage, IFNα-K was able to slow
disease progression in NZB/W mice (115). From an infectious
standpoint, this would be an advantageous approach as cellular
tolerance and host defense against viral infections would remain
intact. The primary end point in the phase II is the BILAG-based
Composite Lupus Assessment (BICLA) response at week 36.

Other
Lupuzor/P140 peptide or regiremod, is a 21-mer linear peptide
derived from nuclear ribonucleoprotein U1-70K that needs to
be phosphorylated at the Ser140 position in order to exert
its immunomodulatory properties via binding to MHC class
II. This allows recognition in the context of T cell receptor,
both in lupus patients and mice and alters autoreactive T cell
phenotype. In a phase IIb data, patients receiving Lupuzor 200
µg subcutaneously every 4 weeks achieved the SRI response
at week 12 at higher rates than standard of care therapy that
included stroids, antimalarials, azathioprine or methotrexate
(53.1 vs. 36.2%). These positive results in IIb trial were more
pronounced among patients with SLEDAI-2K ≥6 at baseline,
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showing that 61.9% achieved SRI response at week 12 vs. 38.6%
in the placebo group. Nevertheless, in the phase III clinical
trial, Lupuzor failed to meet the primary endpoint (p = 0.2631
vs. placebo). The investigational treatment in this trial though
holds promise for patients with anti-dsDNA autoantibodies as
7.6% of these patients in the Lupuzor group went into full
remission, compared with none in the placebo treated group.
The company launched 6 months open label extension study
for all participants of phase III trial, allowing continuation of
Lupuzor treatment in combination with standard therapy for
additional 48 weeks. Finally, this study confirmed the already
known Lupuzor’s good safety profile with zero adverse effects
reported.

CONCLUSIONS

To date, belimumab (anti-BLyS) is the only FDA approved
biologic for treating SLE. Over the last decade and despite

the setbacks including the recent failure of the highly

promising anti-IFNαR therapy, our understanding of the
mechanisms of SLE contributed to expansion of the drug
pipeline for SLE (Table 1). Currently, drugs representing a
variety of therapeutic strategies are moving to phase III trials.
These include: cytokine infusions (low dose IL-2); antibodies
against cytokines (ustekinumab); and finally, small molecule
inhibitors against kinases (Jak inhibitors) and phosphatases
(calcineurin inhibitors). It is highly likely that these targeted
therapies in conjunction with biomarker development and
more rigorous outcome measures will finally result in a
fundamental change of the stagnant therapeutic paradigm in
SLE.
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