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Abstract: During the COVID-19 pandemic, several SARS-CoV-2 variants of concern (VOC) emerged,
bringing with them varying degrees of health and socioeconomic burdens. In particular, the Omicron
VOC displayed distinct features of increased transmissibility accompanied by antigenic drift in the
spike protein that partially circumvented the ability of pre-existing antibody responses in the global
population to neutralize the virus. However, T cell immunity has remained robust throughout
all the different VOC transmission waves and has emerged as a critically important correlate of
protection against SARS-CoV-2 and its VOCs, in both vaccinated and infected individuals. Therefore,
as SARS-CoV-2 VOCs continue to evolve, it is crucial that we characterize the correlates of protection
and the potential for immune escape for both B cell and T cell human immunity in the population.
Generating the insights necessary to understand T cell immunity, experimentally, for the global
human population is at present a critical but a time consuming, expensive, and laborious process.
Further, it is not feasible to generate global or universal insights into T cell immunity in an actionable
time frame for potential future emerging VOCs. However, using computational means we can
expedite and provide early insights into the correlates of T cell protection. In this study, we generated
and revealed insights on the T cell epitope landscape for the five main SARS-CoV-2 VOCs observed
to date. We demonstrated using a unique AI prediction platform, a significant conservation of
presentable T cell epitopes across all mutated peptides for each VOC. This was modeled using the
most frequent HLA alleles in the human population and covers the most common HLA haplotypes in
the human population. The AI resource generated through this computational study and associated
insights may guide the development of T cell vaccines and diagnostics that are even more robust
against current and future VOCs, and their emerging subvariants.

Keywords: SARS-CoV-2; COVID-19; immunogenicity; variants of concern; Alpha; Beta; Gamma;
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1. Introduction

During the COVID-19 pandemic [1], the international community experienced several
SARS-CoV-2 variants that caused various degrees of altered infectivity, potential immune
escape, or both, compared to the original wildtype Wuhan strain. Some of these variants
had characteristic mutations that changed the epidemiology of the pandemic, and indeed
some of these variants altered the clinical impact of COVID-19. There were five main
lineages that were designated as SARS-CoV-2, so called, “variants of concern” (VOC).
These lineages systematically ushered in new waves of infection, changing the nature of the
pandemic, and were accompanied by different health and socioeconomic challenges. These
five VOCs (Alpha, Beta, Gamma, Delta, and Omicron) shared several mutations, as well as
harboring several VOC-specific variants. The most recent VOC that emerged, the hyper-
transmissible Omicron, was a presage to us all that VOCs will continue to emerge and pose
a continuous health and socioeconomic threat, particularly now, as the SARS-CoV-2 virus
now becomes endemic in the human population [2].
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The VOCs were primarily characterized based on their increased infectivity through
specific mutations within the receptor binding domain (RBD) of the spike protein with
key properties that often rendered the mutated RBDs with either (1) increased potential to
enter host cells through an increased binding affinity for its cognate receptor, or (2) evasion
of neutralizing antibody protection through a diminished capacity of host antibodies to
bind to the mutated RBD and inhibit its ability to bind to the host receptor [3]. A more
deadly variant that confers both an increased infectivity and an evasion of vaccine- or
infection-induced immune protection will create very difficult challenges [2,4]. Therefore,
developing broadly protective vaccines with a focus on emerging virulent VOCs will be
important to ensure the human population maintains protective immunity against future
emerging SARS-CoV-2 VOCs [5].

In the quest to develop broadly protective vaccines against emerging VOCs, re-
searchers have increasingly looked beyond the traditional antibody-centric approaches and
begun to focus on characterizing the requisite T cell responses that correlate with robust
and lasting protection against COVID-19 [6]. Although neutralizing antibody protection
from infection or vaccination is the current gold standard, there was widespread escape
from pre-existing vaccine-induced, or naturally acquired, neutralizing antibody responses
during the Omicron wave [7]. Interestingly, many infected SARS-CoV-2 individuals during
the COVID-19 pandemic demonstrated virus-specific T cell responses in the absence of
measurable virus-specific antibodies [8,9]. Numerous studies during the pandemic demon-
strated that T cell immunity played a critical role in protection against the virus [10,11].
For example, a systems immunology approach that analyzed high dimensional molecular
data from 139 COVID-19 patients representing various degrees of disease severity, revealed
that CD8+ T cells were associated with an improved clinical outcome [12]. Additionally,
common T cell epitopes were identified between SARS-CoV-2 and human seasonal coron-
aviruses (HCoV) and T cell responses against these cross-reactive epitopes were important
for the observed clinical protection against COVID-19 [13–16]. Although individual viral
mutations do have the potential to diminish or destroy effector T cell responses at the level
of the individual by destroying important HLA-restricted epitopes, it is highly unlikely
that these same mutations will confer a selective advantage (via immune escape) in other
individuals with different HLA haplotypes, or at the level of a population, which has a
highly diverse HLA haplotype landscape. This rational is further strengthened when we
consider the size of the SARS-CoV-2 RNA genome, which is approximately 30 kb encoding
14 open reading frames (some of which are overlapping) and offers ample protein “real
estate” for HLA-restricted T cell immunity. Consequently, T-cells can exploit the whole viral
proteome, and are not limited to the real estate offered by the spike protein, particularly
the RBD domain, unlike the humoral response. Furthermore, additional T cell protection
can be acquired from cross-reactive T-cells stimulated in populations previously exposed
to other members of the betacoronavirus family. For example, T cell immunity reported
during the Middle Eastern respiratory virus (MERS) outbreak was demonstrated to be
more robust compared to the B cell antibody response [17].

These findings and observations strongly suggest that T cell immunity is a key correlate
of protection against beta-coronavirus infections including SARS-CoV-2 and its VOCs, and
that adopting vaccine strategies that can drive broader and more potent T-cell responses
will be the key to developing more efficacious and broadly protective vaccines in the future.
Whilst neutralizing antibody responses are essential to prevent transmission and provide
sterile immunity, they are short-lived, as has been observed for SARS-CoV-1, SARS-CoV-2,
and the seasonal coronaviruses [18]. For example, while antibody responses were shown
to be short-lived in patients infected with SARS-CoV-1 [19,20], the corresponding T cell
responses in the same patients were detected 17 years after infection [19]. Interestingly,
the current mRNA-based spike-centric vaccines against SARS-CoV-2 have been shown
to induce broad T cell responses that recognize several SARS-CoV-2 variants and human
seasonal coronaviruses [21] in addition to driving neutralizing antibody responses. T cell
responses were measured and detected in most vaccine studies during the COVID-19
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pandemic [22]. In fact, protective clinical benefits of vaccination were seen as early as
11 days after the first vaccination, coinciding with a robust T cell response [23]. Even before
the emergence of the most recent VOC, Omicron, T cell responses induced by vaccines
demonstrated strong cross-protection against different VOC [24].

In terms of the most recent hyper-transmissible Omicron VOC, its increased infectivity
cannot be explained by a higher viral load alone [25,26], pointing to immune evasion as an
explanation [27]. Further, it was demonstrated very early in Omicron’s rapid spread that it
evades antibody neutralization from both vaccinated and convalescent individuals [28–32].
In addition, the large number of new mutations in the Omicron VOC (32 mutations in
the spike protein alone) also raised fears that these changes might enable the virus to
circumvent pre-existing T-cell immunity induced by the vaccine or by natural infection
with earlier VOCs. However, despite Omicron’s extensive number of mutations and its
ability to escape from neutralizing antibodies in vaccinated and convalescent individuals,
T cell responses induced by both vaccination and infection remained robust and were
able to eliminate Omicron-infected cells [33,34]. This observation led to the speculation
that well-preserved T cell immunity to Omicron contributes to protection from severe
COVID-19 disease [34,35]. Interestingly, T cell immunity induced by SARS-CoV-2 vaccines
was demonstrated to be highly cross-reactive against the Omicron and Delta variant [36],
which suggests that the current vaccines may actually be providing some protection against
severe disease via the cellular arm of the immune system, by stimulating T-cell responses
against the HLA restricted T cell epitopes on the spike protein.

However, if the current vaccines do indeed mediate some of their protection by
stimulating the cellular arm of the immune system, such protection is clearly limited to the
HLA-restricted epitopes that exist in the spike protein and it would be clearly beneficial to
consider additional epitope-rich regions that exist across the entire proteome of the virus.
This would be critically important if we envisage designing future T-cell-centric vaccines
that can provide universal protection across the global spectrum of HLA haplotypes in
the human population. Consequently, a better mapping of the T-cell epitope landscape
across multiple different HLA’s will empower the vaccine community with the necessary
knowledge and cellular immunity toolkit to guide future vaccine design and development
and facilitate the development of vaccines that are better equipped to combat future VOCs.

In this study, we have mapped the predicted T cell epitope landscape for the five
main SARS-CoV-2 VOCs. Through the exploitation of state-of-the-art in silico methods
that incorporate advanced artificial intelligence predictors of T cell immunogenicity, we
profiled the Class I HLA-restricted epitope landscape for the five VOCs against 156 of
the most frequent HLA alleles in the human population. We demonstrate conclusively in
this extensive analysis that immunogenic T cell epitopes are conserved across all VOCs,
for almost all HLA alleles in the human population. The experimental accumulation
of this evidence using in vitro or in vivo approaches would require extensive, laborious,
expensive, and time-consuming efforts. The far more comprehensive in silico analysis
described in this study and the subsequent community resource it generated corroborates
the existing recent experimental evidence of robust T cell protection against VOCs (whereby
the experimental evidence is supported by only a very limited number of HLA alleles).
Taken together, the resource generated through this computational study may guide the
development of future T cell vaccines and diagnostics that are more robust against current
and future VOCs and their subvariants. In addition, the statistical and AI predictive metrics
applied here may be deployed to quickly gauge the potential alteration of cellular immunity
against future SARS-CoV-2 lineages that may characterize emerging VOCs, as we show for
the Omicron-BA2 strain.
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2. Results
2.1. A Resource of Mutated Epitopes in VOCs from the Perspective of Their Antigen
Presentation Potential

We performed a pairwise comparative analysis of the predicted antigen presentation
(AP) scores between each of the VOCs and the original SARS-CoV-2 strain identified in
Wuhan. The AP scores were computed using a state-of-the-art AI engine that predicts
the potential of HLA-epitope complexes to be presented on the surface of host infected
cells by Class I HLA alleles, and therefore recognizable by cognate T cells (see Methods).
The peptides originating from the Wuhan strain are referred to here as the “wildtype”,
while the mutated peptides emerging from any of the VOC are referred to as “mutant”.
In this study, we limited the scope of our analysis to an examination of the differences
in AP potential among either the mutated or wildtype peptides that were predicted to
have a high likelihood of being bound to HLA and presented to the cell surface. Therefore,
in the following analyses, the AP scores were filtered such that only peptides with an
AP score >0.5 (in a scoring system that ranges from 0 to 1) in either the mutant or the
corresponding wildtype peptide were considered. Consequently, the analyses presented
here only considers potential T cell epitopes that either have a high AP score in both the
wildtype and the associated mutant peptide or were presented with a gain or loss of AP
potential as an outcome of the mutation. The selection of 0.5 as an AP score threshold
was motivated by (i) the need for a sufficiently high AP potential, such that we ignore
peptides with a negligible or low chance of being presented on the cell surface, and
(ii) the need to have enough viable epitopes for the comparison of AP score distributions
between the mutant and the wildtype (i.e., to ensure statistical power). However, the exact
choice of threshold is not critical since we only compare differences between variants. The
threshold can be fine-tuned in future analyses, and we provide the entire landscape of AP
predictions for the mutated peptides and their corresponding wildtypes across all VOCs
(i.e., irrespective of their AP score) across 156 of the most frequent Class I HLA alleles in
the human population in Supplementary File S1, as a resource to the community to further
explore the data.

2.2. The AP Profile (A Proxy of T-Cell Immunity) Is Robust across All SARS-CoV-2 VOCs

Non-synonymous mutations in the proteins of SARS-CoV-2 had almost no effect on
their potential to be presented by the most frequent HLA alleles in the human popula-
tion and are thereby recognized by cognate HLA-restricted CD8+ T cells from a global
perspective (the 156 most frequent Class I HLA alleles across all mutated peptides in
all VOCs). We observed highly similar AP score distributions between the mutant and
corresponding wildtype peptides. It should be noted that we were not, in this analysis,
interested in the difference in AP scores between the mutant and wildtype at the individual
peptide level, as the loss in AP score in one peptide might be offset by a gain in AP score in
another peptide. Instead, we focus on the distribution of the AP scores that are illustrated
in Figure 1A for each VOC. The variation in peptide counts we observed was due to a
different number of mutated peptides for each VOC that passed the 0.5 AP threshold. The
number of mutated peptides was simply a function of the number of mutations for a given
strain (i.e., more mutations translated to more mutated peptides). When investigating these
distributions pooled across all VOCs, we observed that the shapes of these distributions
were very similar, as depicted in Figure 1A, subfigure titled “Comparison”. Here, the AP
score distributions were layered on top of each other, using percentages for each bin instead
of the raw count. The reason why no sharp cutoff can be observed around an AP of 0.5
is because a peptide was considered for analysis if it has an AP score >0.5 in either the
mutant or wildtype. Figure 1B shows the same AP score distributions with a violin plot
representation to further facilitate the interpretation of these pairwise comparisons. Again,
we observed that the difference in AP score distributions between the mutant and wildtype
was negligible.
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Delta −0.0008 0.0305 4.7707 × 10−6 0.0089 

Omicron 0.0069 0.0292 4.0882 × 10−16 0.0071 

Figure 1. Comparisons of the distribution of antigen presentation (AP) scores for each SARS-COV-2
variant of concern (VOC) for the mutated and corresponding wildtype peptides. The AP scores
have been filtered such that only peptides with AP scores >0.5 in either the mutant or corresponding
wildtype are shown. (A) Histogram with a kernel density estimate of the distribution of AP scores for
the mutant and wildtype peptides for each VOC. The subfigure “Comparison” shows the percentage
of AP scores in each bin for all VOCs. (B) Violin plots of the AP score distribution between mutant
and wildtype peptides for each VOC. The dashed lines within each violin plot represent quartiles.
(C) The pairwise Wasserstein distance between the distribution of AP scores for the mutated peptides
in the VOCs.

The same trend was observed when we analyzed the relatively minor shifts in AP
score distributions between VOCs. This is confirmed by Figure 1C where the Wasserstein
distance [37], also commonly called “the earth mover” distance, was calculated and plotted
for the pairwise distance between each VOC. The intuitive explanation for the Wasserstein
distance is how much “work” it takes to transform one distribution into another. In other
words, it reflects how much of one distribution we need to move, multiplied by the distance
it is moved. Note that the unit of the Wasserstein distance is the same as for the AP score.
An advantage of investigating the Wasserstein distance between these distributions is that
it takes the specific shape of each distribution into account. A small Wasserstein distance,
in our case close to zero, therefore corresponds to the two distributions being very similar,
while a large Wasserstein distance means the two distributions are very different. The
Wasserstein distance has no upper boundary as the distributions can be arbitrarily far
away from each other, but for this work a distance closer to one would be considered
large. As Figure 1C shows, only small Wasserstein distances were observed between the
different VOCs.

Table 1 summarizes the differences in AP score distributions between mutant and
wildtype peptides within each VOC. The average difference in AP scores, column one in
Table 1, is an intuitive metric to assess the impact of the collective set of mutations occurring
within a VOC. It can quickly show us in a global manner if there was a general gain or drop
in the AP scores in a VOC compared to the wildtype strain. However, a drawback of the
mean difference, is that it only considers the mean of the distributions and does not capture
the shape of the AP score distributions.

The two-sided Kolmogorov–Smirnov (KS) test statistic, the second column in Table 1,
shows the largest absolute difference between the two cumulative empirical distribution
functions and lies in the interval (0, 1). Like the Wasserstein distance, the two-sided KS
test statistic takes the location and shape of the two distributions into account and gives a
measure of the distance between the two. However, the maximum distance is reached as
soon as the two distributions no longer overlap. This is a crucial difference with respect
to the Wasserstein distance, which continues to increase the further the two distributions
diverge from each other. It should be noted that while the p-value for the KS test is
significant (<0.05) (i.e., the AP scores come from statistically different distributions) for all
but the Beta variant, the p-value does not inform us on how different the distributions are
from each other.
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Table 1. Different metrics summarizing the difference in AP scores between mutant and wildtype
peptides within a VOC. Three different methods were used to compare the distributions: (i) the
average difference in AP scores, (ii) the two-sample Kolmogorov–Smirnov (KS) test, (iii) and the
Wasserstein distance.

VOC Avg. AP Score Diff. (Mutant–Wildtype)
Two-Sample Kolmogorov–Smirnov Test

Wasserstein Distance
Statistic p-Value

Alpha 0.0092 0.0381 1.4631 × 10−9 0.0092
Beta 0.0034 0.0147 0.0798 0.0037

Gamma 0.0134 0.06 3.3352 × 10−27 0.0134
Delta −0.0008 0.0305 4.7707 × 10−6 0.0089

Omicron 0.0069 0.0292 4.0882 × 10−16 0.0071

Overall, Table 1 shows us that the different metrics are in good agreement when
considering the difference in AP score distributions between the mutant and wildtype, for
each VOC. All three metrics are very low, considering that the range of AP scores and KS
statistic is (0, 1). Moreover, ranking the VOC from the largest to the smallest difference
between the mutant and wildtype based on the KS statistic or Wasserstein distance results
in the same order.

However, this analysis compared only the subset of peptides containing mutations
to their corresponding wildtype counterpart. As Table 2 shows, this subset of mutated
peptides represents only a small fraction out of the total number of peptides in the original
SARS-CoV-2 Wuhan strain. In this table, Wildtype refers to the number of peptides with
an AP score >0.5 in the complete, original Wuhan strain. As column three shows, the
number of peptides with an AP score >0.5 in either the mutant or its corresponding
wildtype counterpart, for each of the VOCs, is relatively small when compared to the
number of wildtype peptides. Even for Omicron, the VOC with the highest number
of mutations (59), we observe that only ~5% of the peptides with a high AP score are
mutated when compared to the Wuhan wildtype. In other words, Table 2 helps to put the
results presented here in perspective, as they only reflect the small fraction of peptides that
underwent nonsynonymous mutation events. Therefore, with the comparison of the AP
score distributions in mind, one must consider the fact that ~95% or more of the peptides
with an AP >0.5 in each VOC are of course identical.

Table 2. Number of peptides with AP score >0.5 in either the mutant or the corresponding wildtype
for each of the VOCs and the fraction they represent out of the Wuhan Wildtype. “Wuhan Wildtype”
is the number of peptides with antigen presentation score >0.5 in the complete original Wuhan strain.

VOC Nb. of Non-Synonymous Mutations Nb. of Mutated Peptides Fraction of All Wildtype Peptides
in the Original Wuhan Strain

Alpha 21 14,485 0.0173
Beta 22 14,890 0.0178

Gamma 25 17,106 0.0204
Delta 22 13,952 0.0167

Omicron 59 42,356 0.0506
Wildtype (Wuhan) NA 837,211 1

As previously mentioned, the Supplementary File S2 (S2-Figures S2, S4, S6, and S10
and the raw data table) also offers, as a resource, the complete set of predicted AP scores
for all mutated peptides and all HLA alleles considered for each of the VOCs without any
filtering, allowing investigators to study the distributions of the entire set of AP scores.

We also examined the recently emerged more transmissible Omicron sub-lineage
BA.2 as a use case, the plots including this variant can be found in Supplementary File S2
(S2-Figures S1, S3, S5, S7, and S9). In brief, Omicron BA.2 diverged slightly further from
the wildtype than Omicron and presents an increase in the average difference of the AP
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score when compared to Omicron, suggesting that it may be more immunogenic from
the perspective of T-cell immunity (predicted epitope density). However, the differences
remain small. Overall, the biggest difference in AP scores due to mutations was found
in Gamma (Wasserstein: 0.0134, avg. difference in AP score: 0.0069) and Omicron-BA.2
(Wasserstein: 0.0108, avg. difference in AP score: 0.0108).

2.3. The Antigen Presentation Potential across Different VOCs Does Not Significantly Differ for
Most of the HLA Alleles Considered in the Analysis

We next examined the distribution of AP scores for the mutant and the correspond-
ing wildtype peptides on an HLA allele specific basis, to assess if there are specific HLA
alleles in the human population that are more susceptible to immune escape by the emerg-
ing VOCs.

Table 3 shows the mean and the 5th percentile (for the average AP score difference
only), in addition to the 25th, 75th, and 95th percentiles of the Wasserstein distance, two-
sided KS test statistic, and of the average AP score difference between the mutant and
wildtype epitopes for each VOC. The mean and percentiles were calculated based on the
set of individual values for each metric that were inferred for each of the available HLA
alleles per VOC. Since the Wasserstein distance and the two-sided KS test statistic have a
minimum value of 0, we are only concerned with the larger percentiles. For the average AP
score difference on the other hand, which can range from −1 to 1, we looked at the mean,
25th, and 75th percentiles, in addition to the 5th and 95th percentiles to capture the outliers.

Table 3. Mean, 5th (for the average AP score difference only), 25th 75th, and 95th percentiles of the
Wasserstein distance, of the two-sided Kolmogorov–Smirnov statistic, and of the average difference
in AP score between mutant and wildtype epitopes across the HLA alleles for each VOC.

VOC

Avg. AP Score Diff. (Mutant–Wildtype) Two-Sample Kolmogorov–Smirnov
Test Statistic Wasserstein Distance

Mean
Percentile

Mean
Percentile

Mean
Percentile

5th 25th 75th 95th 25th 75th 95th 25th 75th 95th

Alpha 0.0127 −0.0224 −0.0006 0.0217 0.065 0.1898 0.1011 0.2391 0.4779 0.0285 0.0138 0.0355 0.0729
Beta 0.0028 −0.0478 −0.0094 0.0152 0.0596 0.1935 0.0956 0.2362 0.475 0.0316 0.0136 0.0412 0.0863

Gamma 0.0151 −0.0522 0.0012 0.0266 0.0622 0.1738 0.1042 0.2301 0.475 0.0268 0.0148 0.0318 0.0959
Delta 0.0006 −0.017 −0.018 0.0129 0.0564 0.1919 0.114 0.2287 0.3333 0.0343 0.0181 0.0393 0.0595

Omicron 0.0074 −0.0302 −0.0054 0.0204 0.05 0.1473 0.0781 0.2 0.3333 0.0251 0.0115 0.0377 0.0556

From Table 3, we observed that the mean of the average difference in AP score and
the mean of the Wasserstein distance are both very small. The mean of the two-sided KS
test statistic is slightly larger, as expected, but can still be considered small in this context.
This means that on average we see no difference between the AP score distributions for
the mutant and wildtype peptides for the three metrics of interest. The absolute values
of the 25th and 75th percentiles of the average difference in AP scores were also small,
therefore we examined the 5th and 95th percentiles to see the larger differences. However,
no extreme shifts in the average difference in AP scores were observed. For the Wasserstein
distance, we observed a similar distribution at the 75th percentile, whereby the differences
in distributions between the mutant and wildtype were relatively small, while a marginally
larger difference was first observed only at the 95th percentile. As for the mean, this implies
that there is little difference between the AP score distributions for mutant and wildtype
peptides for the three metrics of interest for ~75% of the examined alleles. It is only for ~5%
of the alleles that we see larger differences.

In Figure 2 we plotted the distributions of these three metrics across the entire set of
HLA alleles for each VOC. We observed that out of the 156 HLA alleles, the vast majority
do not show substantial differences between the two AP score distributions, as also shown
in Table 3. This suggests that, at a first glance, there is no apparent HLA (sub)population at
more risk than other HLA (sub)populations due to lower predicted epitope densities (and
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presumably corresponding T-cell responses) to a given VOC versus the WT. Plots of the AP
score distribution for each allele, can be found in Supplementary File S2 (S2-Figure S5).
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Figure 3 shows the distribution of AP scores for mutant and wildtype epitopes for a
selected group of HLA alleles. Each plot in the figure corresponds to either the minimum,
maximum, or a specific percentile. For each VOC, we selected HLA alleles such that
their Wasserstein distance, between mutant and wildtype is the closest to the minimum,
maximum, or the given percentile. For instance, for “Percentile: 25th”, the HLA alleles
shown are the ones for which the Wasserstein distance is the closest to where 25% of
the data lives with respect to the Wasserstein distance metric. This analysis serves as a
guide to establish a connection between the AP score distributions and the Wasserstein
distance by showing representative samples for the AP score distributions between mutant
and wildtype epitopes. A more detailed figure with all HLA alleles can be found in
Supplementary File S2 (S2-Figure S3).

From Figure 3 we observed that up to and including the 50th percentile. (i.e., the
median) the differences in the AP score distribution between mutant and wildtype are
relatively small. Even at the 75th percentile (i.e., the third quartile) the AP score distributions
are very similar.

As such, the consensus conclusion from Table 2 and Figures 2 and 3 is that only ~5%
of the 156 HLA alleles analyzed demonstrated larger differences in AP score distributions
between the mutant and wildtype. Consequently, most HLA alleles in the human popula-
tion do not demonstrate an altered propensity to present mutated SARS-CoV-2 peptides
across the different VOCs.

Even if the vast majority of HLAs present a similar AP score distribution between
the mutant and wildtype, as Figure 3 shows, a very small subset of HLA alleles presented
a considerable gain or loss in AP score between the mutant and wildtype (see Figure 3,
“Percentile: 95th or “Maximum”). These correspond to the HLA alleles with the largest
Wasserstein distance between the mutant and wildtype, for each VOC. Based on these
findings, we then assessed which haplotypes are potentially the most affected. We took
the three HLA alleles per VOC that showed the greatest Wasserstein distance in AP score
distributions between the mutant and wildtype and queried them against the Allele Fre-
quency Net Database (AFND) [38]. This analysis did not highlight any specific ethnicity or
region of the world to be systematically affected by a given VOC, although the Australian
population seems more affected by three of the VOCs as Table 4 shows.
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Table 4. Top three HLA alleles that present the biggest Wasserstein distance for each of the VOC and
their corresponding haplotype according to The Allele Frequency Net Database (AFND). The last
column shows in which populations the set of HLA alleles is presented with the highest frequency.
For the cells denoted by an * it means that the AFND database only provided results for one of the
top three most affected HLA alleles.

VOC HLA Allele Wasserstein Distance Populations Highest Allele Frequency (AFND)

Alpha
HLA-A*01:02 0.121

Brazil, Australia, AzoresHLA-A*25:01 0.092
HLA-B*27:05 0.092

Beta
HLA-B*27:06 0.143

Australia, BrazilHLA-B*48:01 0.115
HLA-A*25:01 0.113

Gamma
HLA-A*25:01 0.089 Australia, Austria, Azores

(results based only on HLA-A*25:01) *HLA-B*18:02 0.088
HLA-A*33:03 0.079

Delta
HLA-B*46:01 0.159 China, Hong Kong, Malaysia

(results based only on HLA-B*46:01) *HLA-B*27:03 0.152
HLA-B*27:05 0.152

Omicron
HLA-B*27:02 0.110 Bulgaria, Germany, Israel

(results based only on HLA-B*27:02)HLA-B*18:02 0.104
HLA-A*24:02 0.077

Another interesting observation, summarized in Table 5, was that the HLA-A alleles
often had a Wasserstein distance that was an order of magnitude higher than the HLA-B
alleles. Additionally, the HLA-A alleles have a higher average AP score difference than the
HLA-B alleles, for all VOCs but Beta.
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Table 5. Wasserstein distance and average difference between the distribution of AP scores for the
mutant and corresponding wildtype peptides for all HLA-A and HLA-B alleles.

VOC HLA Type Avg. AP Score Difference
(Mutant–Wildtype) Wasserstein Distance

Alpha HLA-A 0.0126 0.0126
HLA-B 0.0064 0.0065

Beta
HLA-A 0.0038 0.0039
HLA-B 0.0031 0.0045

Gamma
HLA-A 0.0185 0.0185
HLA-B 0.0093 0.0093

Delta
HLA-A −0.0004 0.0118
HLA-B −0.0011 0.0071

Omicron
HLA-A 0.0132 0.0133
HLA-B 0.0017 0.0025

2.4. A Mutation-Centric Perspective of the T Cell Epitope Landscape of VOCs

To assess the effect of a specific non-synonymous mutation on the potential of the
subsequent mutated peptides to be presented as an HLA-bound epitope to T-cells, we
examined the average difference in AP score between mutant and wildtype epitopes
for each non-synonymous mutation in each VOC. The results are illustrated in Figure 4,
stratified by each of the different SARS-CoV-2 proteins. We chose the average difference in
AP score since we were specifically interested in the direction of the change around each
mutated peptide. A positive value means that the AP score on average is increased for a
given mutation, while a negative score means that the AP score decreases for that mutation
in the variant. From Figure 4, we see that while most mutations do not seem to have a
substantial impact with respect to the AP score, there are a few outliers.
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Distinct sets of mutations that were found to have the largest impact in AP scores, were
generally co-occurring on the same candidate epitope. As depicted in Figure 5, co-occurring
mutations, for example S: S371P, S: S373F, and S: K375N in the Omicron VOC, were more
likely to increase the difference in AP potential of the candidate epitopes where they lie. In
turn, this makes these specific amino acid variations more impactful in terms of resulting
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T cell immunity. In this specific case, there was a gain in the AP scores for all three of the
co-occurring mutations.
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Figure 5. The number of HLA alleles per mutation for which there was a significant difference
(p-value < 0.05) using Table 2. For each mutation, all overlapping peptides of length 9 and 10 that
overlap a given mutation were considered as candidate HLA-restricted epitopes.

Figure 5 summarizes the number of HLA alleles per mutation that present a sig-
nificantly different AP score (p-value <0.05 for the two-sided KS test) as compared to
the corresponding wildtype peptides, we also provide in Supplementary File S2 similar
plots with a summary of the number of peptides with an AP score >0.5 in either the mu-
tant or wildtype, which served as an input for the AP score difference significance test
(Supplementary File S2, S2-Figure S9). Notably, as also observed in Table 5, there seems to
be a general trend for HLA-B alleles to be more affected than HLA-A alleles with respect to
the AP score.

3. Methods
3.1. Shared Mutation Profile of VOCs

The list of mutations for each VOCs, as labeled by the World Health Organization
(WHO), was compiled from https://www.who.int/en/activities/tracking-SARS-CoV-
2-variants (accessed on 22 March 2022). For each mutation, all overlapping peptides
of length 9 and 10 that overlap a given mutation were considered as candidate HLA
restricted epitopes.

https://www.who.int/en/activities/tracking-SARS-CoV-2-variants
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants
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3.2. Predicted Probability of SARS-CoV-2 Mutated Peptides Being HLA-Presented on the Surface
of Host Infected Cells

The important determinants of antigen presentation (AP) were assessed for each
mutated peptide and their wildtype counterpart in the VOCs for their potential to be
efficiently presented. These determinants consisted of: (1) the predicted binding affinity
between the candidate peptide and 156 of the most frequent HLA molecules in the human
population, (2) the predicted potential of the candidate peptide to be efficiently processed by
the antigen processing machinery of the host infected cell and (3) the predicted probability
of the candidate mutated peptide to be presented on the host infected cell surface, which,
among other factors, takes binding and processing into account. The AI prediction platform
used was the NEC Immune Profiler (NIP), which provided the AI predictions for these key
determinants, such as the AP scores [39]. The AP score is in the range between 0 and 1,
with 1 being the maximum of the likelihood that a specific candidate mutated peptide was
presented on the host infected cell surface.

The AP scores were calculated based on a set of 156 most frequent Class I HLA
alleles (A and B) for all the possible combinations between an HLA allele and each epitope
overlapping a given mutation, for each VOC. The complete set of raw AP score predictions
is provided in the raw data table in the Supplementary File S2.

3.3. Statistical Analysis

The statistical analyses were performed in the Python programming language (ver-
sion 3.6.12) using the SciPy (version 1.3.1) package, which implements functions for the
Kolmogorov–Smirnov test and Wasserstein distance. For validation and complementarity
purposes, the R programming language (version 4.1.1) was also used to generate a separate
set of statistics on the same input data. Package stats in base R was used for the Kolmogorov–
Smirnov test and package transport (version 0.12-2) to calculate the Wasserstein distance.

4. Discussion

The health and socio-economic burden of current and future potential emerging SARS-
CoV-2 VOCs, remains entirely unknown. The most recent Omicron VOC that emerged,
fortunately produced a milder COVID-19 disease, especially in highly vaccinated or infected
populations [7]. The milder manifestation of the disease was in the backdrop of far higher
transmissibility of Omicron compared to Delta, and indeed all other VOCs. However,
Omicron and the recently emerged Omircron-BA2 subvariant, continues to circulate with
hyper-transmissible rates [27] accompanied by high immune escape, as measured through
antibody serological responses [40].

The continuous rapid circulation of Omicron emphasizes the importance of being able
to predict the various clinical, epidemiological, and immune-escape parameters of VOCs
in the human population, as Omicron and its subvariants transition toward an endemic
threat [41]. However, as SARS-CoV-2 progresses on its path toward becoming endemic [42],
this transition may not necessarily equate to a less virulent or milder disease [4]. There
is strong reasoning that Omicron’s manifestation as a milder COVID-19 disease, in the
backdrop of its rapid antigenic evolution, may be a coincidence, and more virulent and
dangerous immune escape variants may emerge in the future [43]. The distinct antibody-
based immune escape observed during the COVID-19 pandemic was not only limited to
Omicron [3], as several other VOCs also demonstrated a reduced susceptibility to being
neutralized by vaccine-induced antibodies [44]. Accordingly, as the human population
acquires increasing levels of immunity through vaccination and/or infection, the evolu-
tionary trajectory of SARS-CoV-2 toward increasing infectivity (through optimized host
receptor binding), alone, will not satisfy its natural evolutionary drive toward increasing
transmission rates. To combat the increasing immunity in the human population, SARS-
CoV-2 is predicted to also evolve by escaping natural- or vaccine-induced immunity and
gain the ability to infect previously protected individuals [43]. Thus, as SARS-CoV-2’s
future evolution drives ever increasing levels of antigenic drift, it is important that we
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characterize the correlates of protection and potential immune escape for both cellular and
humoral immunity, to guide future vaccine and diagnostic design.

As discussed in the introduction to this study, the T cell immunity that correlates with
protection against SARS-CoV-2 has been shown to be more durable and cross protective [45]
compared to the relatively transient and narrow (strain specific) protection afforded by
antibody responses, as witnessed by the recent Omicron VOC [21]. Although there have
been some efforts to profile T cell responses against SARS-CoV-2 VOCs in vitro with a
limited number of HLA alleles [11,46], an all-encompassing screen that covers the global
human population would be far too time-consuming, laborious, and expensive to generate
using wet lab approaches, necessitating the need for AI-based in silico profiling approaches.

Here we provide an AI-generated resource of mutated epitopes from all current
VOCs, as well as the Omicron BA2 subvariant, from the perspective of their antigen
presentation potential that can be used as a proxy for immunogenicity. The insights gained
from analyzing this resource correlate with the early empirical findings from wet-lab-
based studies that demonstrated that the T cell responses induced by vaccination and
natural infection (from other VOCs) remain cross reactive against the Omicron VOC. The
in silico evidence we present here highlights this trend more comprehensively across all
possible mutated epitopes in all VOCs, and across the most frequent HLA alleles in the
human population.

This finding not only informs how we can track the correlates of immune protection
across different vaccines and vaccine modalities, but also advocates the advancement of
T cell-centric vaccine approaches to combat emerging VOCs [47]. Relying on the current
spike protein vaccines for broad protection against VOCs is arguably not viable long-term;
not only because the T cell epitope cargo is limited to a single viral protein that is subject
to a high mutational rate, but also because it has been clearly demonstrated that T cell
responses to the spike protein were reduced by approximately 50%, in 20% of naturally
infected or vaccinated individuals [43].

This resource and analysis provided us the opportunity to automatically assess the
difference in immunogenic potential in candidate epitopes between a VOC lineage, a
mutant strain, and the originating SARS-CoV-2 lineage identified in Wuhan by examining
the potential T cell antigen drift of the current and emerging VOCs. We demonstrated
the robustness of the majority of identified T-cell epitopes across all VOCs using several
distance metrics; however, the Wasserstein distance and the average difference in AP score
were the most informative.

Using both the Wasserstein distance and the average difference in AP score, we were
able to examine different properties of the VOC AP score distributions. The average
difference in AP score was easy to interpret and gave us a direction for the potential
antigenic drift; however, it did not consider the shape of the two AP score distributions. The
Wasserstein distance did not give a direction for the antigenic drift; however, it considered
the shape of the two distributions aiding their comparison. Based on the observations
presented, one can argue that the Wasserstein distance and the average difference in AP
scores are very similar, so it might be sufficient to just examine the average difference in AP
score. However, we still recommend examining both to cover a wider array of patterns in
the distributions. Moreover, it seemed like no specific HLA populations are more affected
than others, and generally the differences between the mutant and wildtype per allele were
very small.

The results in this study, demonstrate comprehensively, that significant antigenic drift
resulting in escape against a pre-existing (natural- or vaccine-induced) T-cell response is
unlikely to emerge in the existing VOCs. The analysis we outlined here, such as delta calcu-
lations of AP potential between a VOC-mutated epitope and its corresponding wildtype,
serves as an index of T cell antigenic drift or T-cell immunogenicity for emerging lineages
of SARS-CoV-2. This AI-generated index may guide the development of T cell vaccines
and diagnostics that are even more robust against current and future SARS-CoV-2 VOCs,
and their emerging subvariants.
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