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Abstract

Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens
which disrupt epithelial barrier function, damage cells and activate or modulate host immune
responses. Until now human pathogenic fungi were not known to possess such toxins. Here we
identify the first fungal cytolytic peptide toxin in the opportunistic pathogen Candlida albicans.
This secreted toxin directly damages epithelial membranes, triggers a danger response signaling
pathway and activates epithelial immunity. Toxin-mediated membrane permeabilization is
enhanced by a positively charged C-terminus and triggers an inward current concomitant with
calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and
are avirulent in animal models of mucosal infection. We propose the name ‘Candidalysin’ for this
cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and
host recognition of the clinically important fungus, C. albicars.

Introduction

The ability of mucosal surfaces to discriminate between commensal and pathogenic
microbes is essential to human health. The fungus Candida albicans is normally a benign
member of the human microbiota but is also responsible for millions of mucosal infections
each year in immunocompromised hosts, often with severe morbidityl. A defining feature of
C. albicans pathogenesis is the transition from yeast to invasive filamentous hyphae2.
Hyphae damage mucosal epithelia and induce activation of the activating protein-1 (AP-1)
transcription factor c-Fos (via p38-MAPK) and the MAPK phosphatase MKP1 (via
ERK1/2-MAPK), which trigger pro-inflammatory cytokine responses3—7. These signaling
events constitute a ‘danger response’ against invasive hyphae, thus serving as a sensor of
pathogenic C. albicans invasion8-14. However, it is unclear how C. albicans hyphae induce
epithelial inflammatory responses and cell damage during mucosal infections. Here we
identify and characterize Candidalysin, the first cytolytic peptide toxin isolated from any
human fungal pathogen, as the hyphal factor critical for epithelial immune activation and C.
albicans mucosal infection.

Ecelp is critical for epithelial activation and damage

Despite the well-known association between filamentation and virulence, the molecular
mechanism underlying hypha-driven epithelial activation and mucosal damage has remained
obscure. To elucidate this mechanism, we screened a panel of C. albicans gene deletion
mutants that targeted key processes, pathways and proteins known or predicted to be
associated with the yeast-hyphal transition and pathogenicity (62 strains). Only hypha-
producing strains induced MKP1 phosphorylation (p-MKP1), c-Fos, cytokines (IL-1a, IL-6,
G-CSF) and damage in oral epithelial cells (Extended Data Table 1). However, one C.
albicans mutant (eceZA/A)15 formed normal hyphae but was incapable of inducing these
epithelial danger responses. C. albicans ECE1 (extent of cell elongation) is highly expressed
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by hyphae during epithelial infection (Extended Data Fig. 1a,b) and is predicted to encode a
secreted proteinl16. To probe its function we generated a panel of C. albicans ECEImutants
(Extended Data Table 2). The eceIA/A strain formed normal hyphae on (Extended Data Fig.
1c), and adhered to and invaded human epithelial cells similarly to wild type C. albicans
(Extended Data Fig. 1d, €). Indeed, eceIA/A was capable of extensive epithelial invasion,
penetrating through multiple epithelial cells (Extended Data Fig. 1f). Despite this, invasive
eceIA/A hyphae did not damage epithelia or induce p-MKP1/c-Fos mediated danger
responses or cytokine secretion (Fig. 1a-d). Thus, Ecelp is critical for epithelial damage and
innate recognition of C. albicans hyphae in vitro.

Ecelp is critical for mucosal pathogenesis

We next assessed the role of £CE1 in two in vivo models of C. albicans mucosal infection.
In murine oropharyngeal candidiasis (OPC)17, mice infected with C. albicans wild type or
ECE1 re-integrant (eceIAN/A+ECET) strains exhibited disease symptoms, including extensive
hyphal invasion of the tongue epithelium, micro-abscesses of infiltrating neutrophils and
tissue damage (Fig. 1e, f, h, i). In contrast, tongue tissue from eceIA/A-infected animals (n =
17/20) showed no invasive fungi and no inflammatory infiltrates or damage (Fig. 1g). We
detected very low numbers of eceZA/A cells in only 3/20 mice (Extended Data Fig. 2a),
which showed no evidence of local epithelial damage (not shown). Quantification of
histology sections indicated that the percentage of epithelial surface infected was
significantly greater with the wild type and £CE1 re-integrant strains (Extended Data Fig.
2b). In a zebrafish swimbladder model of mucosal infection18,19, neutrophil recruitment
and tissue damage were both significantly lower following eceZA/A infection as compared
with the wild type strain (Fig. 1j, k Extended Data Fig. 2c, d). Therefore, C. albicansEcelp
is critical for mucosal pathogenesis and is an innate immune activator /7 vivo.

Ecelp encodes a cytolytic peptide toxin

Ecelp is an /n vitro substrate for Kex2p, a Golgi-located protease that cleaves proteins after
lysine-arginine (KR) motifs20. Ecelp contains seven KR-processing sites, suggesting it has
the potential to produce eight secreted peptides from C. albicans20 (Extended Data Fig. 3a,
b). Liquid chromatography — tandem mass spectrometry (LC-MS/MS) analysis confirmed
that recombinant Kex2p (rKex2p) processes recombinant Ecelp (rEcelp) and that all eight
peptides generated terminated in KR (and fragments thereof, showing that less efficient
processing occurs also after a single K or R) (Supplementary information). The importance
of Kex2p-mediated Ecelp processing was demonstrated using a Aex2A/A null strain21,
which was unable to damage oral epithelia or induce p-MKP1/c-Fos mediated danger
responses or cytokine secretion (Extended Data Table 1). To determine which Ecelp
peptide(s) were responsible for epithelial activation and damage, oral epithelial cells were
incubated with peptides Ecel-1-VIII (1.5 — 70 uM). Only Ecel-1llg;.93 induced p-MKP1, c-
Fos, cytokines and damage (Fig. 2a-c, Extended Data Fig. 3c-e). Notably, low Ecel-Illg).93
concentrations (1.5 — 15 pM) were sufficient to induce c-Fos DNA binding (Fig. 2d), G-CSF
and GM-CSF (Fig. 2c, Extended Data Fig. 3c), while high Ecel-11lg5.g3 concentrations (70
UM) were required to induce damage (Fig. 2e) and the damage-associated cytokines IL-1a
and IL-6, respectively (Extended Data Fig. 3d, e). Ecel-lllgy.93 could also directly lyse
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multiple human epithelial cell types and induce hemolysis of red blood cells, a classical test
for cytotoxin activity (not shown). Neither the N-terminal hydrophobic region (Ecel-
I11g5_g5) nor the C-terminal hydrophilic region (Ecel-lIllgg.g3) induced p-MKP1, c-Fos,
cytokines or damage of epithelial cells, either individually or in combination (Extended Data
Fig. 3f-h), demonstrating that the peptide containing both regions is required for activity.
Therefore, Ecel-lllgy.93 is the active region of Ecelp, acting as an epithelial immune
activator and a cytolytic agent.

To confirm that Ecel-1l1g,_g3 drives epithelial activation and fungal pathogenicity, we
generated a C. albicans strain lacking only the Ecel-11lgy_g3 region (eceIAA
+ECE14184.279)- LC-MS/MS analysis showed that the modified protein in this strain is
stable, secreted and processed into each of the predicted peptide fragments, with the
exception of the deleted peptide toxin (Supplementary information). Like eceINA,eceINA
+ECE14;84.279 efficiently formed invasive hyphae (not shown). However, eceIA/A
+ECE14184.279Was unable to induce p-MKP1, c-Fos DNA binding, cytokines, or damage
epithelia (Extended Fig. 3i-I). In murine OPC, unlike the eceIAIA+ECEI complemented
strain, eceINA+ECE1,;94.27g-infected mice demonstrated absent (n = 4/10) or low (n =
6/10) fungal burdens, with no evidence of inflammatory infiltrates or local epithelial damage
(Fig. 2f-h, Extended Data Fig. 4a and 4b) Likewise, eceIANN+ECE14;g4.279did not induce
full damage in the zebrafish swimbladder model (Fig. 2i, Extended Data Fig. 4c). In
contrast, injection of lytic doses of Ecel-1llgy_g3 into the swimbladder induced epithelial
damage (Fig. 2j, k). Thus, Ecel-lllgo.g3 is both necessary and sufficient for epithelial
immune activation, damage and mucosal infection /n vivo.

The amphipathic properties of Ecel-1llgy.g3 (SHGIMGILGNIPQVIQIIMSIVKAFKGNKR)
coupled with the a-helical structure of the N-terminal hydrophobic region (Extended Data
Fig. 5a, b) indicated that this fungal peptide may act similarly to cationic antimicrobial
peptides and peptide toxins such as melittin22 (honey bee), magainin 223 (African clawed
frog) and alamethicin24 ( 7Trichoderma viride). Cytolytic peptide toxins have not previously
been found in human pathogenic fungi but bacterial cytolytic toxins are known to induce
lesions after binding to target cell membranes25,26. To investigate the importance of lipid
composition for Ecel-Il1gy_93-mediated cytolysis, we used Forster resonance energy transfer
(FRET) and electrical impedance spectroscopy to analyze the interactions of Ecel-1llgy_g3
with model membranes comprised of lipid bilayers of dioleoylphosphatidylcholine (DOPC)
with or without cholesterol. While Ecel-I11gy.93 Was able to efficiently intercalate into
DOPC membranes (Extended Data Fig. 5¢), Ecel-lllgo.93 permeabilization was enhanced in
the presence of cholesterol (Fig. 3a). Ecel-1l1g,_g3-induced lesions were heterogeneous and
transient (Extended Data Fig. 5d), indicating that the peptide may damage target membranes
through a ‘carpet-like” mechanism27. Patch-clamp analysis of epithelial cells demonstrated
that lesion formation by Ecel-11lgy_g3 is rapid and causes an inward current (Fig. 3b),
associated with calcium influx (Fig. 3c). Similar phenomena occur with bacterial cytolytic
toxins, which are known to trigger cell activation25,26,28.

We postulated that the positively-charged C-terminal KR residues of Ecel-Illgy.93 might be
critical for interacting with negatively-charged components of host membranes to promote
lesion formation. Substitution of the KR motif to AA (alanine-alanine; Ecel-1llgy.g3a4) did
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not affect membrane intercalation (not shown) but significantly reduced the peptide’s ability
to permeabilize membranes, damage epithelial cells and induce calcium influx (Fig. 3c-e).
Thus, the positive C-terminus of Ecel-1llg,._g3 is critical for lesion formation and damage
induction in epithelial membranes. Notably, Ecel-11lgo.g3an Still induced p-MKP1, c-Fos
and the non-damage associated cytokine G-CSF (Extended Data Fig. 5e, ) but not the
damage-associated cytokine IL-1a (Fig. 3f), suggesting that Ecel-111g5_g3a4 Can be
recognized by epithelial immunity without damaging cells. This finding is important as it
means that epithelial cells are not only responding to damage but have evolved to
specifically recognize the peptide.

Ecel-lllg 9ok IS @ secreted cytolytic peptide toxin

To demonstrate that Ecel-111 is generated during epithelial infection, we performed LC-
MS/MS analysis on the secretome from wild-type C. albicans hyphae grown in the presence
and absence of epithelial cells (Supplementary information). Notably, Ecel-111 was the only
peptide detected in the presence of epithelial cells, indicating that the fungus secretes this
toxin during mucosal infection. However, the predominant form of secreted Ecel-I1l
terminated in a K residue (SHHGIIMGILGNIPQVIQIIMSIVKAFKGNK; Ecel-lllgy.gok) and
not KR (SIIGIIMGILGNIPQVIQIIMSIVKAFKGNKR; Ecel-lllgp-93xRr) (Extended Data
Table 3). In fungi, it is known that following Kex2p processing, many proteins are
subsequently cleaved by Kex1p29 (also in the Golgi), removing the C-terminal R. LC-
MS/MS analysis on the hyphal secretome of a kexZA/A mutant demonstrated that the
predominant peptide secreted terminates in KR (not K) (Supplementary information).
Therefore, Ecelp is also subject to ordered Kex2p/Kex1p processing. Accordingly, we
confirmed that Ecel-1llgy_gok functioned similarly to Ecel-lllgy_g3kr With respect to
epithelial cell activation. Specifically, Ecel-1llgy.gok is also a-helical (not shown) and
induces c-Fos, p-MKP1, cytokines (IL-1a, G-CSF), damage (LDH), membrane intercalation
and permeabilization, and calcium influx (Fig 4a-g). Thus, the dominant peptide secreted
from C. albicans hyphae during mucosal infection is Ecel-1llgy.gok, Which acts as a
cytolytic peptide toxin that activates epithelial cells.

Based on these data, we propose a model of C. albicans mucosal infection whereby invasive
hyphae secrete Ecel-l1l go_gok iNto a membrane-bound “invasion pocket’30,31, facilitating
peptide accumulation (Extended Data Fig 6). During early stages of infection, sub-lytic
concentrations of Ecel-lllgy_gok induce epithelial immunity by activating the ‘danger
response’ pathway (p-MKP1/c-Fos), alerting the host to the transition from colonizing yeast
to invasive, toxin-producing hyphae. As infection progresses, Ecel-Illgy.gok levels
accumulate and elicit direct tissue damage. Mechanistically, we propose that the asymmetric
distribution of charge along the a-helix of Ecel-1llgy_gok facilitates correct peptide
orientation relative to the host membrane, enabling intercalation, permeabilization and
calcium influx. In conclusion, our data identifies C. albicans Ecel-Illgy_gok as the first
cytolytic peptide toxin in a human fungal pathogen and reveals the molecular mechanisms of
epithelial damage and host recognition of this clinically important fungus. We propose the
name ‘Candidalysin’ for this newly discovered fungal toxin.

Nature. Author manuscript; available in PMC 2016 September 30.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Moyes et al. Page 6

METHODS

Cell lines, reagents and Candida strains

Experiments were carried out using the TR146 buccal epithelial squamous cell carcinoma
line32 obtained from the European Collection of Authenticated Cell Cultures (ECACC) and
grown in Dulbecco's Modified Eagle's Medium (DMEM, Sigma-Aldrich) supplemented with
10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. Cells were routinely tested
for mycoplasma contamination using mycoplasma-specific primers and were found to be
negative. Prior to stimulation, confluent TR146 cells were serum-starved overnight, and all
experiments were carried out in serum-free DMEM. C. albicans wild type strains included
the autotrophic strain BWP17+Clp3033 and the parental strain SC531434. Other C. albicans
strains used and their sources are listed in Extended Data Tables 1 and Extended Data Table
2 C. albicans cultures were grown in YPD medium (1% yeast extract, 2% peptone, 2%
dextrose) at 30°C overnight. Cultures were washed in sterile PBS and adjusted to the
required cell density. Antibodies to phospho-MKP1 and c-Fos were from Cell Signalling
Technologies (New England Biolabs UK), mouse anti-human a-actin was from Millipore
(UK), and goat anti-mouse and anti-rabbit horseradish peroxidase (HRP)-conjugated
antibodies were from Jackson Immunologicals Ltd (Stratech Scientific, UK). Ecelp peptides
were synthesized commercially (Proteogenix (France) or Peptide Synthetics (UK).

Generation of C. albicans ECE1 mutant strains

ECE1 deletion was performed as previously described35. Deletion cassettes were generated
by PCR36. Primers ECE1-FG and ECE1-RG were used to amplify pFA-HIS1 and pFA-
ARG4 -based markers. C. albicans BWP1737, was sequentially transformed38 with the
ECEI-HIS1 and ECE1-ARGA4 deletion cassettes and then transformed with Clp1039,
yielding the eceZA/A deletion strain. For complementation, the £CE1 gene plus upstream
and downstream intergenic regions were amplified with primers ECE1-RecF3k and ECE1-
RecR and cloned into plasmid Clp10 at M/ul and Sall sites. This plasmid was transformed
into the uridine auxotrophic eceZA/A strain, yielding the eceIAIA+ECEI complemented
strain. For generation of the eceIAIA+ECE1 ;94279 Strain, the Clpl0-E£CEZ was amplified
with primers Pep3-F1 and Pep3-R1, digested with Clal and re-ligated, yielding the
Clpl0+ECE14194.279 plasmid. This plasmid was transformed into the uridine auxotrophic
ecelNA strain, yielding the eceINA+ECE1,154.279Strain. All integrations were confirmed
by PCR/sequencing and at least two independent isogenic transformants were created to
confirm results. KEXZ deletion was performed exactly as the £CEZ deletion but using
primers KEX1-FG and KEX1-RG for creating the deletion cassette. Fluorescent strains of
eceIN/A and BWP17 were constructed as previously described40. Briefly, the eceIA/A and
BWP17 strains were transformed with the pENO1-dTom-NATr plasmid. Primers used to
clone and construct the £CE1 genes and intragenic regions are listed in Extended Data Table
4. Strains are listed in Extended Data Table 2.

Construction of C. albicans ECE1 promoter-GFP strain

ECE1 promoter (primers 5'ECEIprom-Narl / 3'ECEIprom-Xhol) and terminator
(5'ECE1term-Sacll / 5' ECEIterm-Sacl) were amplified and cloned into pADH1-GFP.
Resulting pSK-p ECE1-GFP was verified by sequencing. C. albicans SC5314 was
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transformed with the pECEZ-GFP transformation cassette38. Resistance to nourseothricin
was used as selective marker and correct integration of GFP into the £CE1 locus was
verified by PCR. Primers for cloning and validation are listed in Extended Data Table 4.
Strains are listed in Extended Data Table 2.

RNA isolation and real-time PCR analysis

C. albicans cells grown on TR146 epithelial cells were collected into RNA pure (PegLab),
centrifuged and the pellet resuspended in 400 pl AE buffer (50 mM Na-acetate pH 5.3, 10
mM EDTA, 1% SDS). Samples were vortexed (30 s), and an equal volume of phenol/
chloroform/isoamyl alcohol (25:24:1) was added and incubated for 5 min (65°C) before
subjected to 2x freeze-thawing. Lysates were clarified by centrifugation and the RNA
precipitated with isopropyl alcohol/0.3 M sodium acetate by incubating for 1 h at -20°C.
Precipitated pellets were washed (2x 1 ml 70% ice-cold ethanol), resuspended in DEPC-
treated water and stored at -80°C. RNA integrity and concentration was confirmed using a
Bioanalyzer (Agilent). RNA (500 ng) was treated with DNase (Epicenter) and cDNA
synthesized using Reverse Transcriptase Superscript 111 (Invitrogen). cDNA samples were
used for gPCR with EVAgreen mix (Bio&Sell). Primers (ACT1-F and ACT1-R for actin,
ECE1-F and ECE1-R for ECE1 - Extended Data Table 4) were used at a final concentration
of 500 nM. gPCR amplifications were performed using a Biorad CFX96 thermocycler. Data
was evaluated using Bio-Rad CFX Manager 3.1 (Bio-Rad) with ACT71 as the reference gene
and tg as the control sample.

Western blotting

TR146 cells were lysed using a modified RIPA lysis buffer (50 mM Tris-HCI pH 7.4, 150
mM NaCl, 1 mM EDTA, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS)
containing protease (Sigma-Aldrich) and phosphatase (Perbio Science) inhibitors4l, left on
ice (30 min) and then clarified (10 min) in a refrigerated microfuge. Lysate total protein
content was determined using the BCA protein quantitation kit (Perbio Science). 20 pg of
total protein was separated on 12% SDS-PAGE gels before transfer to nitrocellulose
membranes (GE Healthcare). After probing with primary (1:1000) and secondary (1:10,000)
antibodies, membranes were developed using Immobilon chemiluminescent substrate
(Millipore) and exposed to X-Ray film (Fuji film). Human a-actin was used as a loading
control.

Transcription factor DNA binding assay

DNA binding activity of transcription factors was assessed using the TransAM transcription
factor ELISA system (Active Motif) as previously described41,42. Serum-starved TR146
epithelial cells were treated for 3 h before being differentially lysed to recover nuclear
proteins using a nuclear protein extraction kit (Active Motif) according to the manufacturer's
protocol. Protein concentration was determined (BCA protein quantitation kit (Perbio
Science)) and 5 pg of nuclear extract was assayed in the TransAM system according to the
manufacturer’s protocol. Data was expressed as fold-change in Assonm relative to resting
cells.
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Cytokine determination

Cytokine levels in cell culture supernatants were determined using the Performance
magnetic Fluorokine MAP cytokine multiplex kit (Bio-techne) and a Bioplex 200 machine.
The data were analyzed using Bioplex Manager 6.1 software to determine analyte
concentrations.

Cell damage assay

Following incubation, culture supernatant was collected and assayed for lactate
dehydrogenase (LDH) activity using the Cytox 96 Non-Radioactive Cytotoxicity Assay kit
(Promega) according to the manufacturer’s instructions. Recombinant porcine LDH (Sigma-
Aldrich) was used to generate a standard curve.

Epithelial adhesion assay

Quantification of C. albicansadherence to TR146 epithelial cells was performed as
described previously43. Briefly, TR146 cells were grown to confluence on glass coverslips
for 48 h in tissue culture plates in DMEM medium. C. albicans yeast cells (2 x 10°) were
added into 1 ml serum-free DMEM, incubated for 60 min (37 C/5% CO5) and non-adherent
C. albicans cells removed by aspiration. Following washing (3x 1 ml PBS), cells were fixed
with 4% paraformaldehyde (Roth) and adherent C. albicans cells stained with Calcofluor
White and quantified using fluorescence microscopy. The number of adherent cells was
determined by counting 100 high power fields of 200 um x 200 um size. Exact total cell
numbers were calculated based on the quantified areas and the total size of the cover slip.

Epithelial invasion assay

C. albicans invasion of epithelial cells was determined as described previously43. Briefly,
TR146 epithelial cells were grown to confluence on glass coverslips for 48 h and then
infected with C. albicans yeast cells (1x10°), for 3 h in a humidified incubator (37 C/5%
COy). Following washing (3x PBS), the cells were fixed with 4% paraformaldehyde. All
surface adherent fungal cells were stained for 1 h with a rabbit anti- Candlida antibody and
subsequently with a goat anti-rabbit-Alexa Fluor 488 antibody. After rinsing with PBS,
epithelial cells were permeabilized (0.1% Triton X-100 in PBS for 15 min) and fungal cells
(invading and non-invading) were stained with Calcofluor White. Following rinsing with
water, coverslips were visualized using fluorescence microscopy. The percentage of invading
C. albicans cells was determined by dividing the number of (partially) internalized cells by
the total number of adherent cells. At least 100 fungal cells were counted on each coverslip.

Imaging of C. albicans growth and invasion of epithelial cells

TR146 cells (10°/ml) seeded on glass coverslips in DMEM/10% FBS were infected with C.
albicans (2.5 x 10% cfu/ml) in DMEM and incubated for 6 h (37°C/5% CO5). Cells were
washed with PBS, fixed overnight (4°C in 4% paraformaldehyde) and stained with
Concanavalin A-Alexa Fluor 647 in PBS (10 pg/ml) for 45 min at room temperature in the
dark with gentle shaking (70 rpm) to stain the fungal cell wall. Epithelial cells were
permeabilised with 0.1% Triton X-100 for 15 min at 37°C in the dark, then washed and
stained with 10 pug/ml Calcofluor White (0.1 M Tris-HCI pH 9.5) for 20 min at room
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temperature in the dark with gentle shaking. Cells were rinsed in water and mounted on
slides with 6 ul of ProLong Gold anti-fade reagent, before air drying for 2 h in the dark.
Fluorescence microscopy was performed on a Zeiss Axio Observer Z1 microscope, and 5
phase images were taken per picture.

Scanning Electron Microscopy

For scanning electron microscopy (SEM) analysis, TR146 cells were grown to confluence
on Transwell inserts (Greiner) and serum starved overnight in serum-free DMEM. After 5 h
of C. albicans incubation on epithelial cells at an MOI of 0.01, cell media was removed and
samples were fixed overnight at 4°C with 2.5% (v/v) glutaraldehyde in 0.05 M HEPES
buffer (pH 7.2) and post-fixed in 1% (w/v) osmium tetroxide for 1 h at room temperature.
After washing, samples were dehydrated through a graded ethanol series before being
critical point dried (Polaron E3000, Quorum Technologies Ltd). Dried samples were
mounted using carbon double side sticky discs (TAAB) on aluminium pins (TAAB) and gold
coated in an Emitech K550X sputter coater (Quorum Technologies Ltd). Samples were
examined and images recorded using a FEI Quanta 200 field emission scanning electron
microscope operated at 3.5 kV in high vacuum mode.

Zebrafish swimbladder mucosal infection model

Zebrafish infections were performed in accordance with NIH guidelines under Institutional
Animal Care and Use Committee (IACUC) protocol A2009-11-01 at the University of
Maine. To determine sample size, a power calculation was done for all experiments based on
2-tails T-test in order to detect a minimum effect size of 0.8, with an alpha error probability
of 0.05 and a power (1 — beta error probability) of 0.95. This gave a minimum number of 42
fish for each group. The fish selected for the experiments were randomly assigned to the
different groups by picking them from a pool without bias and the groups were injected in
different orders. No blinding was used to read the results. Ten to twenty zebrafish per group
per experiment were maintained at 33°C in E3 + PTU and used as previously described40.
Briefly, 4 day post-fertilization (dpf) larvae were treated with 20 pg/ml dexamethasone
dissolved in 0.1% DMSO 1 h prior to infection and thereafter. For tissue damage and
neutrophil recruitment, individual AB or mpo.GFPfish (respectively) were injected into the
swimbladder with 4 nl of PBS with/without 25-40 C. albicans yeast cells of eceIN/A-
dTomato, ecelA/A+ECE1+dTomato, ecelANA+ECEI 154.279+dTomato or BWP17-dTomato.
For tissue damage, 1 nl of Sytox green (0.05 mM in 1% DMSQO) was injected at 20 h post-
infection into the swimbladder and fish were imaged by confocal microscopy at 24 h post-
infection. For neutrophil recruitment, fish were imaged at 24 h post-injection. For synthetic
peptide damage, AB or a-catenin:citrine44 fish were injected with 2 nl of peptide (9 ng or
1.25 ng per fish) or vehicle (40% DMSO or 5% DMSO) + SytoxGreen (0.05 mM in 1%
DMSO) or SytoxOrange (0.5 mM in 10% DMSO) and the fish imaged by confocal
microscopy 4 h later. Numbers of neutrophils and damaged cells observed were counted and
tabulated for each fish.

Zebrafish swimbladder fluorescence microscopy

Live zebrafish imaging was carried out as previously described40. Briefly, fish were
anesthetized in Tris-buffered Tricaine (200 pg/ml, Western Chemicals) and further
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immobilized in a solution of 0.4% low-melting-point agarose (LMA, Lonza) in E3 +
Tricaine in a 96-well plate glass-bottom imaging dish (Greiner Bio-On). Confocal imaging
was carried out using an Olympus 1X-81 inverted microscope with an F\-1000 laser
scanning confocal system (Olympus). Images were collected and processed using Fluoview
(Olympus) and Photoshop (Adobe Systems Inc.). Panels are either a single slice for the
differential interference contrast channel (DIC) with maximum projection overlays of
fluorescence image channels (red-green), or maximum projection overlays of fluorescence
channels. The number of slices for each maximum projection is specified in the legend of
individual figures.

Murine oropharyngeal candidiasis model

Murine infections were performed under UK Home Office Project Licence PPL 70/7598 in
dedicated animal facilities at King's College London. No statistical method was used to pre-
determine sample size. No method of randomization was used to allocate animals to
experimental groups. Mice in the same cage were part of the same treatment. The
investigators were not blinded during outcome assessment. A previously described murine
model of oropharyngeal candidiasis using female Balb/c mice45 was modified for
investigating early infection events. Briefly, mice were treated sub-cutaneously with 3 mg/
mouse (in 200 ul PBS with 0.5% Tween 80) of cortisone acetate on days -1 and 1 post-
infection. On day 0, mice were sedated for ~75 min with an intra-peritoneal injection of 110
mg/kg ketamine and 8 mg/kg xylazine, and a swab soaked in a 107 cfu/ml C. albicans yeast
culture in sterile saline was placed sub-lingually for 75 min. After 2 days, mice were
sacrificed, the tongue excised and divided longitudinally in half. One half was weighed,
homogenized and cultured to derive quantitative Candlida counts. The other half was
processed for histopathology and immunohistochemistry.

Immunohistochemistry of murine tissue

C. albicans infected murine tongues were fixed in 10% (v/v) formal-saline before being
embedded and processed in paraffin wax using standard protocols. For each tongue, 5 pm
sections were prepared using a Leica RM2055 microtome and silane coated slides. Sections
were dewaxed using xylene, before C. albicans and infiltrating inflammatory cells were
visualized by staining using Periodic Acid-Schiff (PAS) stain and counterstaining with
haematoxylin. Sections were then examined by light microscopy. Histological quantification
of infection was undertaken by measuring the area of infected epithelium and expressed as a
percentage relative to the entire epithelial area.

Whole cell patch clamp

TR146 epithelial cells were grown in 35 mm petri dishes (Nunc) for 48 h before recordings
at low cell density (10-30% confluence). Cells were superfused with a modified Krebs
solution (120 mM NaCl, 3 mM KClI, 2.5 mM CaCl,, 1.2 mM MgCls,, 22.6 mM NaHCO,,
11.1 mM glucose, 5 mM HEPES pH 7.4). Isolated cells were recorded at room temperature
(21-23°C) in whole cell mode using microelectrodes (5-7 MQ) containing 90 mM potassium
acetate, 20 mM KCI, 40 mM HEPES, 3 mM EGTA, 3 mM MgCl,, 1 mM CaCl, (free

Ca?* 40 nM), pH 7.4. Cells were voltage clamped at -60 mV using an Axopatch 200A
amplifier (Axon Instruments) and current/voltage curves were generated by 1 s steps
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between -100 to + 50 mV. Treatments were applied to the superfusate to produce the final
required concentration, with vehicle controls similarly applied. Data was recorded using
Clampex software (PClamp 6, Axon Instrument) and analyzed with Clampfit 10.

Calcium flux

TR146 cells were grown in a 96-well plate overnight until confluent. The medium was
removed and 50 pl of a Fura-2 solution (5 pul Fura-2 (Life Technologies)(2.5 mM in 50%
Pluronic F-127 (Life technologies):50% DMSO), 5 pl probenecid (Sigma) in 5 ml saline
solution (NaCl (140 mM), KCI (5 mM), MgCl, (1 mM), CaCl, (2 mM), Glucose (10 mM)
and HEPES (10 mM), adjusted to pH 7.4)) was added and the plate incubated for 1 h at
37°C/5% CO». The Fura-2 solution was replaced with 50 pl saline solution and baseline
fluorescence readings (excitation 340 nm/emission 520nm) taken for 10 min using a
FlexStation 3 (Molecular Devices). Ecel peptides were added at different concentrations and
readings immediately taken for up to 3 h. The data was analyzed using Softmax Pro software
to determine calcium present in the cell cytosol and expressed as the ratio between excitation
and emission spectra.

Impedance spectroscopy of tethered bilayer lipid membranes (tBLMs)

tBLMs with 10% tethering lipids and 90% spacer lipids (T10 slides) were formed using the
solvent exchange technique46,47 according to the manufacturer’s instructions (SDx
Tethered Membranes Pty Ltd, Sydney, Australia). Briefly, 8 ul of 3 mM lipid solutions in
ethanol were added, incubated for 2 min and then 93.4 pl buffer (100 mM KCI, 5 mM
HEPES, pH 7.0) was added. After rinsing 3x with 100 pl buffer the conductance and
capacitance of the membranes were measured for 20 min before injection of Ecel peptides
at different concentrations. All experiments were performed at room temperature. Signals
were measured using the tethaPod (SDx Tethered Membranes Pty Ltd, Sydney, Australia).

FRET intercalation experiments

Intercalation of Ecel peptides into phospholipid liposomes was determined by FRET
spectroscopy applied as a probe-dilution assay48. Phospholipids mixed with each 1% (mol/
mol) of the donor dye NBD-phosphatidylethanolamine (NBD-PE) and of the acceptor dye
rhodamine-PE, were dissolved in chloroform, dried, solubilized in 1 ml buffer (100 mM
KCI, 5 mM HEPES, pH 7.0) by vortexing, sonicated with a titan tip (30 W, Branson sonifier,
cell disruptor B15), and subjected to three cycles of heating to 60°C and cooling down to
4°C, each for 30 min. Lipid samples were stored at 4°C for at least 12 h before use. Ecel
peptide was added to liposomes and intercalation was monitored as the increase of the
quotient between the donor fluorescence intensity Ip at 531 nm and the acceptor intensity I
at 593 nm (FRET signal) independent of time.

Circular Dichroism spectroscopy

CD measurements were performed using a Jasco J-720 spectropolarimeter (Japan
Spectroscopic Co., Japan), calibrated as described previously49. CD spectra represent the
average of four scans obtained by collecting data at 1 nm intervals with a bandwidth of 2
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nm. The measurements were performed in 100 mM KCI, 5 mM HEPES, pH 7.0 at 25°C and
40°C in a 1.0 mm quartz cuvette. The Ecel-1ll concentration was 15 uM.

Planar lipid bilayers

Planar lipid bilayers were prepared using the Montal-Mueller technique50 as described
previously51. All measurements were performed in 5 mM HEPES, 100 mM KCI, pH 7.0
(specific electrical conductivity 17.2 mS/cm) at 37°C.

Hyphal secretome preparation for LC-MS/MS analysis

Candida strains were cultured for 18 h in hyphae inducing conditions (YNB medium
containing 2% sucrose, 75 mM MOPSO buffer pH 7.2, 5 mM N-acetyl-D-glucosamine,
37°C). Hyphal supernatants were collected by filtering through a 0.2 um PES filter, and
peptides were enriched by Solid Phase Extraction (SPE) using first C4 and subsequently
C18 columns on the C4 flowthrough. After drying in a vacuum centrifuge, samples were
resolubilised in loading solution (0.2% formic acid in 71:27:2 ACN/H,O/DMSQO (v/viv))
and filtered through a 10 kDa MWCO filter. The filtrate was transferred into HPLC vials and
injected into the LC-MS/MS system. LC-MS/MS analysis was carried out on an Ultimate
3000 nano RSLC system coupled to a QExactive Plus mass spectrometer (ThermoFisher
Scientific). Peptide separation was performed based on a direct injection setup without
peptide trapping using an Accucore C4 column as stationary phase and a column oven
temperature of 50°C. The binary mobile phase consisting of A) 0.2% (v/v) formic acid in
95:5 H,O/DMSO (v/v) and B) 0.2% (v/v) formic acid in 85:10:5 ACN/H,O/DMSO (v/viv)
was applied for a 60 min gradient elution: 0-1.5 min at 60% B, 35-45 min at 96% B, 45.1-60
min at 60% B. The Nanospray Flex lon Source (ThermoFisher Scientific) provided with a
stainless steel emitter was used to generate positively charged ions at 2.2 kV spray voltage.
Precursor ions were measured in full scan mode within a mass range of m/z 300-1600 at a
resolution of 70k FWHM using a maximum injection time of 120 ms and an automatic gain
control target of 1e6. For data-dependent acquisition, up to 10 most abundant precursor ions
per scan cycle with an assigned charge state of z = 2-6 were selected in the quadrupole for
further fragmentation using an isolation width of m/z 2.0. Fragment ions were generated in
the HCD cell at a normalised collision energy of 30 V using nitrogen gas. Dynamic
exclusion of precursor ions was set to 20 s. Fragment ions were monitored at a resolution of
17.5k (FWHM) using a maximum injection time of 120 ms and an AGC target of 2e5.

Protein database search

Thermo raw files were processed by the Proteome Discoverer (PD) software v1.4.0.288
(Thermo). Tandem mass spectra were searched against the Candida Genome Database
(http://www.candidagenome.org/download/sequence/C_albicans_SC5314/Assembly22/
current/C_albicans_SC5314 A22 current_orf trans_all.fasta.gz; status: 2015/05/03) using
the Sequest HT search algorithm. Mass spectra were searched for both unspecific cleavages
(no enzyme) and tryptic peptides with up to 4 missed cleavages. The precursor mass
tolerance was set to 10 ppm and the fragment mass tolerance to 0.02 Da. Target Decoy PSM
Validator node and a reverse decoy database was used for (qvalue) validation of the peptide
spectral matches (PSMs) using a strict target false discovery (FDR) rate of < 1%.
Furthermore, we used the Score versus Charge State function of the Sequest engine to filter
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out insignificant peptide hits (xcorr of 2.0 for z=2, 2.25 for z=3, 2.5 for z=4, 2.75 for z=5,
3.0 for z=6). At least two unique peptides per protein were required for positive protein hits.

TransAM and patch clamp data were analyzed using a paired t-test whilst cytokines, LDH
and calcium influx data were analyzed using one-way ANOVA with all compared groups
passing an equal variance test. Murine /n vivo data was analyzed using the Mann-Whitney
test. Zebrafish data was analyzed using the Kruskal-Wallis test with Dunn's multiple
comparison correction. In all cases, £ < 0.05 was taken to be significant.
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Extended Data Figure 1. C. albicans ECE1 expression and phenotypic effects of ECE1 gene
deletion.

(a) Relative expression (vs t = 0) of ECEIin C. albicanswild type over time after addition
of yeast cells to TR146 epithelial cells as measured by RT-gPCR. (b) Imaging confirmation
of ECE1 expression over time within C. albicanswild type. C. albicans cells expressing GFP
under the control of the £ECE1 5" intragenic region, containing the £CE1 promoter, were
grown on TR146 epithelial cells and stained with calcofluor white (CFW, post-

Nature. Author manuscript; available in PMC 2016 September 30.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Moyes et al.

Page 15

permeabilization) to show cell wall chitin and Alexa-Fluor-647-labelled concanavalin A
(ConA, pre-permeabilization) to show carbohydrates. A composite image showing CFW,
ConA, GFP and the brightfield (BF) image is shown. (c) Scanning electron micrographs (top
panels, 5 h) and light microscopy (bottom panels, 24 h) showing no gross abnormalities in
hypha formation between C. albicans wild type (BWP17+Clp30), £CEI-deletion (ecelA/A)
and £CE1 re-integrant (eceIANA+ECEI) strains after infection of TR146 epithelial cells. (d)
No difference in adhesion of C. albicans wild type, eceIA/A and eceINIA+ECE] strains to
TR146 epithelial cells after 60 min. (e) No difference in invasion of C. albicans wild type,
eceIN/A and eceINA+ECE1T strains into TR146 epithelial cells after 3 h. (f) Fluorescence
staining of C. albicans wild type and eceZIA/A hyphae invading through TR146 epithelial
cells. Fungal cells are stained with calcofluor white (CFW, post-permeabilization) and
Alexa-Fluor-647-labelled concanavalin A (ConA, pre-permeabilization) to show cell wall
chitin and carbohydrates, respectively, and to distinguish between invading hyphae (only
stained after permeabilization) and non-invading hyphae (stained both pre- and post-
permeabilization). Levels of chitin and B-glucan are comparable in both strains. White
arrows indicate invasion into epithelial cells. Data shown are representative (b, ¢, f) or the
mean (a, d, e) of three biological replicates. Error bars show + SEM.
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Extended Data Figure 2. C. albicans Ecelp is critical for mucosal virulence in vivo
(a)Fungal burdens recovered from the tongues of mice infected with C. albicans wild type

(BWP17+ClIp30) (n (number of mice) = 13), ECE1-deletion (eceIA/A) (n = 20) and ECE1
re-integrant (ecelA/A+ECEI) (n = 24) strains after 2 day oropharyngeal infection. (b)
Average percentage of the entire tongue epithelium area infected in different groups of mice
infected with the different C. albicans strains. (c) Confocal imaging of 4 day post-
fertilization (dpf) mpo-gfp transgenic zebrafish swimbladders infected with C. albicans wild
type (BWP17+Clp30+dTomato), ECEI-deletion (ecelA/A+dTomato) and ECEI re-integrant
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(eceld/A+ECEI+dTomato) strains for 24 h. C. albicans cells appear red whilst neutrophils
appear green. Red dots outline the swimbladder. Images are composites of maximum
projections in the red and green channels (25 slices each, approximately 100 pum depth) with
(left) or without (right) a single slice in the DIC channel overlay. Scale bars represent 100
um. (d) Confocal imaging of 4 dpf zebrafish swimbladders infected with C. albicans wild
type (BWPL17+Clp30+dTomato), ECEI-deletion (ecel4d/A+dTomato) and ECEI re-integrant
(ecelA/A+ECEI+dTomato) strains for 24 h stained with the fluorescent exclusion dye Sytox
Green. C. albicans cells appear red and damaged epithelial cells appear green. White dots
outline the pronephros and red dots outline the swimbladder. Images are composites of
maximum projections in the red and green channels (25 slices each, approximately 100 pm
depth) with (left) or without (right) a single slice in the DIC channel overlay. High
magnification images of the white boxes are shown. Scale bars (bottom right) represent 100
pum (low magnification) and 30 um (high magnification). Data shown are the mean (a, b) or
representative (c, d) of at least three biological replicates. Error bars show + SEM. Data
were analyzed by Mann-Whitney test. *** = £< 0.001.
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a Candida albicans Ece1p amino acid sequence:

MKFSKIACATVFALSSQAAIIHHAPEFNMKRDVAPAAPAAPADQAPTVPAPQEFNTAITKRSIIGIIMGILGNIPQVIQIIMSIVKA
FKGNKREDIDSVVAGI IADMPFVVRAVDTAMTSVASTKRDGANDDVANAVVRLPEIVARVATGVQQSIENAKRDGVPDVGLNLVANA
PRLISNVFDGVSETVQQAKRDGLEDFLDELLQRLPQLITRSAESALKDSQPVKRDAGSVALSNLIKKSIETVGIENAAQIVSERDIS
SLIEEYFGKA

[ SP ] KRI KRI KR I KR I KRI KR l KR I ]

Ecel- Ecet-llyg Ecet-lllg0 Ecel-4Vaq 12 Ecel-Vizra0 EcelVigiies  Ecel-Viligsam Ecel-Villyezn

Ecel-I, 3, MKFSKIACATVFALSSQAATIHHAPEFNMKR

Ecel-IIs, ¢, DVAPAAPAAPADQAPTVPAPQEFNTATTKR

Ecel-IIIs 43  SIIGIIMGILGNIPQVIQIIMSIVKAFKGNKR

Ecel-IVg, 156 EDIDSVVAGI IADMPFVVRAVDTAMTSVASTKR
Ecel-Viy7.160 DGANDDVANAVVRLPEIVARVATGVQQSTENAKR
Ecel-VIyg 154  DGVPDVGLNLVANAPRLISNVFDGVSETVQOAKR
Ecel-VIIygq 55 DGLEDFLDELLORLPQLITRSAESALKDSQPVKR
Ecel-VIII,,q ,;; DAGSVALSNLIKKSIETVGIENAAQIVSERDISSLIEEYFGKA
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Extended Data Figure 3. Ecel-111g2.g3 is the active region of Ecelp.
(a) Amino acid sequence of Ecelp and a schematic of the protein, indicating the signal

peptide (SP), lysine-arginine motifs (KR) at the C-terminus of each peptide, and the
processed peptides (Ecel-1-VIII) produced by Kex2p cleavage. (b) Amino acid sequences of
the processed peptides (Ecel-I1-VI1II) produced by Kex2p cleavage. Induction of (c) GM-
CSF, (d) IL-1a and (e) IL-6 secreted after stimulation of TR146 epithelial cells for 24 h with
varying concentrations of Ecel-1llgy_g3 (70 UM - 1.5 uM). (f) Phosphorylation of MKP-1
and c-Fos production after 2 h treatment of TR146 epithelial cells with 15 pM of Ecel-
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I11g-g5 (hydrophobic region), Ecel-111gg.93 (hydrophillic region), Ecel-1llgy.g5 and Ecel-
I11g6.93 together, or Ecel-1llg_93 alone. (g) Induction of G-CSF secretion after 24 h
treatment of TR146 epithelial cells with 15 uM of Ecel-lllgy_gs, Ecel-lllgg.g3, Ecel-1llgo g5
and Ecel-lllgg.g3 together, or Ecel-1l1g,_g3 alone. (h) Fold change induction of LDH release
after 24 h treatment of TR146 epithelial cells with 70 uM of Ecel-lllg;_gs, Ecel-Illgg g3,
Ecel-11lgy-g5 and Ecel-lllgg.g3 together, or Ecel-lllgy.g3 alone. (i) Induction of p-MKP-1
and c-Fos 2 h post-infection (p.i.) with the indicated C. albicans strains (MOI = 10). (j) c-
Fos DNA binding induction 3 h p.i. with indicated C. albicans strains (MOl = 10). (k) G-
CSF secretion and () LDH release 24 h p.i. with indicated C. albicans strains (MOI = 0.01).
Data shown are representative (f, i) or the mean (c-e, g-h, j-1) of three biological replicates.
Error bars show = SEM. Data were analyzed by one-way ANOVA (c-e, g-h,k-1) or T test (j).
* = P<0.05, ** = P<0.01, *** = P<0.001 (compared with vehicle control). For gel source
data, see Supplementary Figure 1.
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Extended Data Figure 4. Ecel-111g2.g3 is required for C. albicans mucosal infection.
(a) Fungal burdens recovered from the tongues of mice infected with C. albicans wild type

(BWP17+ClIp30) (n (number of mice) = 13), ECEI-deletion (eceIA/A) (n = 20), ECEI re-
integrant (eceIA/A+ECET) (n = 24) and Ecel-1llgy_g3 deletion (eceIA/A+ECE1p184.279) (n =
10) strains after 2 day oropharyngeal infection. (b) Average percentage of the entire tongue
epithelium area infected in different groups of mice infected with the different C. albicans
strains. (c) Confocal imaging of 4 dpf zebrafish swimbladders infected with C. albicans
Ecel-1llgy.g3 deletion (ecelANA+ECE1 ;9427970 Tomato) and ECEI re-integrant (ecelA/A
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+ECE1+dTomato) strains for 24 h stained with the fluorescent exclusion dye Sytox Green.
C. albicans cells appear red and damaged cells appear green. White dots outline the
pronephros and red dots outline the swimbladder. Images are composites of maximum
projections in the red and green channels (25 slices each, approximately 100 um depth) with
(left) or without (right) a single slice in the DIC channel overlay. Scale bars (bottom right)
represent 100 um. Data shown are the mean (a-b) or representative (c) of at least three
biological replicates. Error bars show + SEM. Data were analyzed by Mann-Whitney test. **
= P<0.01, *** = < 0.001.
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Extended Data Figure 5. Ecel-111go.g3 is a cytolytic a-helical peptide.

(a)Circular dichroism spectra showing the a-helical conformation of Ecel-Illg.g3 in buffer
(100 mM KCI, 5 mM HEPES, pH 7). Increasing the temperature from 25°C to 40°C did not
affect the stability of the a-helical structure. (b) Diagram to illustrate the amphipathic nature
of Ecel-1llgy_93 (residues 62-78, left panel; residues 79-93, right panel). Residues with
hydrophobic or polar/charged side chains are displayed with a blue and white background,
respectively. Modified from output generated in PEPWHEEL (http://
emboss.bioinformatics.nl/cgi-bin/emboss/pepwheel). (c) Férster resonance energy transfer
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(FRET) experiments show the intercalation of Ecel-1llgy.g3 into lipid liposomes (10 uM)
composed of DOPC in the absence or presence of cholesterol. Peptide titration of Ecel-
I11g_93 to liposomes showed slightly enhanced intercalation for pure DOPC. (d) Ecel-
I11g2-93 induced the permeabilization of planar lipid membranes composed of DOPC. The
graph shows heterogeneous and transient lesions leading finally to a rupture of the
membrane. Ecel-11lgy.g3 concentration was 0.125 uM. (e) Induction of p-MKP-1 and c-Fos
2 h in TR146 cells post stimulation (p.s.) with Ecel-lllgo.g3kr or Ecel-1llgog3aa. (f)
Secretion of G-CSF from TR146 cells 24 h p.s. with Ecel-lllgy.g3xr Or Ecel-lllgy.g3an.
Data shown are representative (a-e) or mean (f) of at least three biological replicates. Error
bars show + SEM. Data were analyzed by one-way ANOVA (f). * = £< 0.05, ** = P< 0.01,
*** = p<0.001 (compared with vehicle control). For gel source data, see Supplementary
Figure 1.

Early stage infection/Sub-lytic Ecel-lll concentration

Late stage infection/Lytic Ecel-lll concentration

C. albicans C. albicans LDH

Epithelial cell w Epithelial cell \
cat
MAPK
l LDH
PR h38/MKPL B N‘m
NGNS * | @)
- 1€ ».. 1" _J
A 4

Immune cytokines (IL-6, G-CSF, GM-CSF) Immune and damage cytokines (IL-1a)

Extended Data Figure 6. Schematic of the role of Ecel-111 in C. albicans infection of epithelial
cells.

During early stage infection of the mucosal surface by C. albicans, Ecel-111 (red a-helix) is
secreted into the invasion pocket created by the invading hypha (a). Sub-lytic concentrations
of Ecel-111 trigger epithelial signal transduction through MAPK, p38/MKP-1 and c-Fos (b)
resulting in the production of immune regulatory cytokines (c). As the severity of the
infection increases, Ecel-111 accumulates (d) and once lytic concentrations are reached,
causes membrane damage and the release of lactate dehydrogenase from the host epithelium
(e), concomitant with calcium influx (f). Epithelial signal transduction is maintained (g) and
additionally induces the release of damage associated cytokines, such as IL-1a.(h). Ecel-I11
may also have activity on the epithelial surface outside of the invasion pocket and on
neighboring cells not in contact with hyphae if Ecel-111 is produced in sufficient
concentrations.
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Extended Data Table 2.
C. albicans mutant strains constructed and used in this

study.

Strain description

Strain name

Genotype

BWP17+CIp30

ecelNA

ecelA/A+ECE1

ecelN/A +ECE14184.579

kexIN/A

SC5314+pECEI-GFP(ECEI promoter-GFP)
BWP17+Clp30+pENOI-dTom (ENOI promoter-dTom)

ecelA/A+pENO1-dTom(ENOI promoter-dTom)

ecelN/A+ECE1 + dTomato

ecelAN/A+ECE1 54579+ dTomato

M1477

M2057

M2059

M2174

M2258

CA58
RWC83

RWC84

RWC85

RWC86

ura3:: Aimm434/ura3::Aimm434
1rol::Aimm434/irol::Aimm434
his1::hisG/his1..hisG
arg4.:hisG/arg4..hisG
RPS1/1ps1::(URA3-HIS1-ARG4)

ura3:: Aimm434/ura3::Aimm434
irol::.Aimm434/irol::Aimm434
his1.::hisG/his1.::hisG
arg4::hisG/arg4.:hisG
acel::HIS1/ecel: ' ARG4
RPS1/rps1::URA3

ura3:: Aimm434/ura3::Aimm434
irol.:.Aimm434/irol::Aimm434
his1.::hisG/his1.: :hisG
arg4::hisG/arg4.:hisG
ecel:'HIS1/ecel ' ARG4
RPS1/rps1::(URA3-ECE1)

ura3:: Aimm434/ura3::Aimm434
irol.:.Aimm434/irol::Aimm434
his1.::hisG/his1.::hisG
arg4::hisG/arg4.:hisG
ecel:'HIS1/ecel ' ARG4
RPS1/rps1::(URA3-ECE1A184279)

ura3:: Aimm434/ura3::Aimm434
irol.:.Aimm434/irol::Aimm434
his1.::hisG/hisl::hisG
arg4::hisG/arg4.:hisG
kex1.:HIS1/kex1: ARG4
RPS1/rps1::URA3

ECEl/ecel.:GFP-SAT1

ura3:: Aimm434/ura3::Aimm434
1rol::Aimm434/irol::Aimm434
his1::hisG/his1.:hisG
arg4.:hisG/arg4..hisG
RPS1/rps1::(URA3-HIS1-ARG4)
ENOI1/enol..dTom-SAT1

ura3:: Aimm434/ura3::Aimm434
irol::Aimm434/irol.:Aimm434
his1::hisG/his1.:hisG
arg4.:hisG/arg4..hisG
ecel::HIS1/ecel:'ARG4
RPS1/mps1..URA3
ENOI/enol..dTom-SAT1

ura3:.. Aimmd434/ura3.. Aimm434
frol::AimmA434/iro1..Aimm434
his1::hisG/his1.hisG
arg4.:hisG/arg4..hisG
ecel.:HIS1/ecel'ARG4
RPS1/rpsl.::(URA3-ECEI)
ENOI1/enol::dTomato-NAT

ura3:: Aimm434/ura3::Aimm434
irol.:Aimm434/irol::Aimm434
his1.::hisG/his1.::hisG
arg4::hisG/arg4.:hisG
ecel:'HIS1/ecel ' ARG4
RPS1/rps1::(URA3-ECE1A184279)
ENO1/enol..dTomato-NAT"
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Figure 1. ECEL1 is required for epithelial activation and C. albicans infection.
TR146 cells were infected with the indicated C. albicans strains. (a) LDH release 24 h post-

infection (p.i.) (MOI = 0.1). (b) Induction of p-MKP-1 and c-Fos at 2 h p.i. (MOI = 10). (c)
c-Fos DNA binding at 3 h p.i. (MOI = 10). (d) G-CSF production at 24 h p.i. (MOI = 0.01).
(e-i) PAS-stained tongues from mice subjected to OPC 2 d p.i. (e, g, h) Whole-mount (x25)
and (f, i)high-power (x200) views of PAS-stained tongues of mice infected with C. albicans
wild type (e, ), eceIA/A (g) and ecelIAN/A+ECEI (h, i). Invading hyphae (black arrow) and
inflammatory cells (blue arrow) are indicated. (j) Quantification of neutrophils in zebrafish
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swimbladder following infection with wild type C. albicans (n (number of fish) = 47),
eceIA/A (n =53) or PBS (n = 40). (k) Quantification of damaged cells in zebrafish
swimbladder after infection with C. albicans wild type (n = 73), eceIA/A (n = 59) or vehicle
(n = 63). Data are representative (b, e-i) or the mean (a, c-d, j-k) of three biological
replicates. Error bars + SEM. Data were analyzed by one-way ANOVA (a, d), paired T test
(c) or Kruskal-Wallis (j, k) and * = < 0.05, ** = P< 0.01, *** = P< 0.001. For gel source
data, see Supplementary Figure 1.
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Figure 2. Ecel-111gy-g3 is the active region of Ecelp and is required for TR146 cell activation and
mucosal C. albicans infection

() Induction of p-MKP-1 and c-Fos 2 h post-stimulation (p.s.) with Ecel peptides at 1.5
UM. (b) LDH release 24 h p.s. with 70 uM Ecel peptides. (c) Induction of G-CSF 24 h p.s.
with Ecel-1llgy.g3. (d) c-Fos DNA binding induction 3 h p.s. with sub-lytic concentrations
of Ecel-1llgy.g3. (€) LDH release 24 h p.s. with Ecel-11lg2.93. (f-h) PAS stained tongue
sections from mice subjected to OPC, 2 d p.i. with (f, g) C. albicans eceINN+ECEI (x25
and x200) or (h) eceINA+ECEIx;4.27¢ Invading hyphae (black arrows) and infiltrating
inflammatory cells (blue arrow) are shown. (i) Damaged cells in a zebrafish swimbladder 24
h p.i. with C. albicans eceIANA+ECE1 (n (number of fish) = 44), eceINA+ECEIp194.279 (N
= 58) or vehicle (n = 58). (j) Damaged cells in zebrafish swimbladders after stimulation with
9 ng (n=51) or 1.25 ng (n = 56) Ecel-lllgy-g3 or vehicle (40% DMSO, n = 54 and 5%
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DMSO, n = 55). (k) Co-localization of adherens junctions (a.-catenin-citrine) with Ecel-
I1162-93-damaged cells (Sytox Orange-positive cells) in a zebrafish swimbladder. Data are
representative (a, f-h, k) or mean (b-e, i-j) of three biological replicates (a-d) or ten mice or
fish (f-h, k). Error bars show £ SEM. Data were analyzed by one-way ANOVA (b, c, €)
paired T test (d) or Kruskal-Wallis (i, j). * = < 0.05, ** = < 0.01, *** = P<0.001
(compared with vehicle control unless otherwise indicated). For gel source data, see
Supplementary Figure 1.
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Figure 3. Ecel-111g7.93 functions as a cytolytic peptide toxin
(a) Kinetic changes in conductance of tethered lipid membranes after exposure to different

concentrations of Ecel-lllgy.93. (b) Evoked inward current at a membrane potential of -60
mV in TR146 cells post-addition of Ecel-11lgy.g3 or ionomycin (positive control); individual
(representative) and cumulative changes (bar chart - number of cells analyzed below each
bar) shown. (c) Intracellular calcium level kinetics in TR146 cells post-stimulation (p.s.)
with Ecel-llgo.93 wild type (Ecel-lllgo.g3kRr) OF Ecel-lllgy.g3 AA C-terminal substitution
(Ecel-lllgo-93an)- (d) Kinetic changes in conductance of tethered DOPC membranes after

Nature. Author manuscript; available in PMC 2016 September 30.



s1duosnuBIA Joyiny sispund DN edoin3 ¢

s1dLIOSNUBIA JoLINY sispund DN 8doin3 ¢

Moyes et al.

Page 42

exposure to different concentrations of Ecel-Illgy.93xr and Ecel-Illgy.g3a4. (€) LDH
release and (f) Secretion of IL-1a from TR146 cells 24 h p.s. with Ecel-11lg.93xRr Or Ecel-
Ilg2-93aa. Data shown are representative (a, d) or mean (b-c, e-f) of three biological
replicates. Error bars show + SEM. Data were analyzed by one-way ANOVA (c, e and f). **
= P<0.01, *** = P<0.001.
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Figure 4. Ecel-111gp-gok functions as a cytolytic peptide toxin that activates and damages

epithelial cells

(@) Induction of p-MKP-1 and c-Fos 2 h post-stimulation (p.s.), and (b) secretion of G-CSF
and IL-1-a 24 h p.s., and (c) LDH release 24 h p.s. of TR146 cells with Ecel-Illgy.gok- (d)
Forster resonance energy transfer (FRET) showing intercalation of Ecel-11lgy_gok (10 uM)
into lipid liposomes. (e) Average peptide concentration-dependent changes in conductance
of tethered lipid membranes. (f) Ecel-lllgo.gok (4 UM) induced permeabilization of planar
lipid membranes showing heterogeneous and transient lesions leading to membrane rupture.
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(9) Intracellular calcium level kinetics in TR146 cells p.s. with Ecel-11lg_gok. Data shown
are representative (a, d, f) or mean (b-c, e, g) of three biological replicates. Error bars show
+ SEM. Data are analyzed by one-way ANOVA (b, ¢). * = £<0.05, ** = P<0.01, *** = P
< 0.001 (compared with vehicle control). For gel source data, see Supplementary Figure 1.
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