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Abstract
Structural genomics strives to represent the entire protein space. The first step
towards achieving this goal is by rationally selecting proteins whose structures have
not been determined, but that represent an as yet unknown structural superfamily
or fold. Once such a structure is solved, it can be used as a template for modelling
homologous proteins. This will aid in unveiling the structural diversity of the protein
space. Currently, no reliable method for accurate 3D structural prediction is available
when a sequence or a structure homologue is not available. Here we present a
systematic methodology for selecting target proteins whose structure is likely to
adopt a new, as yet unknown superfamily or fold. Our method takes advantage
of a global classification of the sequence space as presented by ProtoNet-3D, which
is a hierarchical agglomerative clustering of the proteins of interest (the proteins in
Swiss-Prot) along with all solved structures (taken from the PDB). By navigating in
the scaffold of ProtoNet-3D, we yield a prioritized list of proteins that are not yet
structurally solved, along with the probability of each of the proteins belonging to a
new superfamily or fold. The sorted list has been self-validated against real structural
data that was not available when the predictions were made. The practical application
of using our computational–statistical method to determine novel superfamilies for
structural genomics projects is also discussed. Copyright  2003 John Wiley & Sons,
Ltd.
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Introduction

The goal of the structural genomics initiative is to
provide a description of the structural protein space.
Expanding the coverage of the structural fold space
will have impact on biomedical research, including
drug development [4, 8, 9, 28].

Currently, over 120 000 proteins are archived
in the Swiss-Prot database and about 800 000 in
the TrEMBL database (as at June, 2003). Still,
the number of protein structures that are being
solved to high resolution by X-ray and NMR tech-
nologies is substantially smaller. Solving a protein
structure at a high resolution is a tedious multi-
stepped task with some unpredicted failures along

the way. Thus, choosing the correct set of pro-
teins is critical [32]. From a sequence perspective,
two proteins sharing about 35% (or more) identical
amino acids will probably adopt a similar structural
fold and thus, their structures can be modelled with
reasonable accuracy. A good prediction for pro-
tein structure for unsolved proteins relies on the
availability of a rich archive of templates for mod-
elling [2]. Although the number of solved domains
has increased significantly recently, and despite the
constant effort to discover new superfamilies and
folds, only a small fraction (<5%) of newly solved
structures have been identified as new folds. It is
clear that selecting targets with a high success rate
for structural determination is a primary goal. In
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order to reach this goal, the structural community
must first select target proteins that have a high
probability of belonging to new superfamilies and
folds [9,10,21,25,26]. Due to the enhanced pace
of new structural determination, a constant update
of the target list becomes essential for coping with
the dynamic nature of structural genomics research.
One should recall that even when a new structure
is solved, the prediction of its function is still a
non-trivial task [18,19,27].

Estimation of the complexity of the
protein space

Two large databases, Swiss-Prot and TrEMBL
(www.expasy.ch/sprot/), accumulate the currently
annotated proteins and potentially translated ORFs,
respectively. As protein sequences accumulate,
many of them already have homologues in the
current database [13]. Thus, reducing the number
of individual proteins to a condensed set of protein
families is a step towards reconstruction of the
protein space [12,22]. The number of proteins that
need to be structurally solved is tightly linked to
the degree of compaction of proteins into families
[3,7].

As proteins not sharing any significant sequence
similarity may still adopt the same structural fold,
the information that is extracted from sequence
homology search cannot satisfy structural infer-
ence. Several global efforts to develop methods to
maximize the information from sequence towards
a fold assignment have been conducted [24]. In
one study, only about a quarter of the ORFs from
20 complete proteomes were assigned to known
structural folds [17]. A systematic estimation of the
number of structures needed to model all currently
known protein families reveals that the coverage
based on actual amino acids is only 10% of the
entire protein mass [34]. Based on this estimation,
about 16 000 coordinately selected targets will suf-
fice to cover about 90% of all families currently
known. Along this line, the remaining 10% con-
tains most singletons or proteins that belong to
small remote families. There is a more optimistic
view [15], according to which the current level
of protein coverage by structural models ranges
between 30% and 60% for eukaryotes and prokary-
otes, respectively. The conclusion from such stud-
ies is that a major portion of most proteomes still

remains to be structurally explored [14]. Based on
the current structural databases and the number of
known homologous proteins, the number of differ-
ent folds in the entire structural space (for soluble
globular proteins) is estimated to range between
700 and 2000 folds [3,11]. However, without a
coordinated effort for selecting targets, we expect
that certain folds will become over-represented in
time, while others will not be selected at all [6].

All high-resolution 3D structures are collected in
the Protein Data Bank (PDB) archive that serves as
a repository of all 3D structures (www.rcsb.org/
pdb) [5]. Currently (July 2003) over 19 500 pro-
teins are included in the main database of 3D
biological macromolecular structure data (there
are ∼21 500 entries, including nucleic acids and
carbohydrates). This collection consists of some
2000–2500 non-redundant protein structures. Sev-
eral databases are available for classifying all
structures to non-redundant representatives and
to structurally related groups [1,30]. One such
classification is provided by SCOP (http://scop.
mrc-lmb.cam.ac.uk/scop). SCOP is a hierarchi-
cal classification of all known structural domains
derived from the PDB [29] based on semi-
automatic methods supported by human refinement.

The number of unique structures with novel
folds added each year in the last 5 years has been
rather small. According to SCOP assignment, it
is only 3–5% per year for new folds and about
10% for new superfamilies. Figure 1 plots the
increase in information as reported from November
1997 to March 2003. While a constant increase
in the number of new folds as well as new
superfamilies and families is evident, the increase
is very moderate in relation to new folds.

Scaffold of the protein sequence
space — ProtoNet

In recent years, attempts to describe the protein
space by clustering and other classification meth-
ods have been introduced (reviewed in [16]). Most
methods are based on structural, evolutionary or
sequence information. The latter can be divided
into methods in which the basic element for cluster-
ing is the protein itself, or alternatively its domains.

Classification of all the proteins in the Swiss-
Prot database allows the construction of a net-
work of relatedness among different families. We
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Figure 1. Gradual addition of solved structures to SCOP classification. SCOP major releases (from 1.37 to 1.63, total of
5.5 years) are included according to the Family, Superfamilies and Folds classification

have shown that in many instances, neighbour-
ing clusters encode biologically meaningful rela-
tions [31,35]. The notion of using a scaffold
of all protein sequences to infer information on
structural relatedness is the basis for our sta-
tistical–computational approach. Our approach is
based on advanced hierarchical clustering algo-
rithms using an all-against-all distances measure
as the input for the algorithm. Recently, we have
developed a classification method that is presented
by ProtoNet (www.protonet.cs.huji.ac.il). In Pro-
toNet, all of the proteins of Swiss-Prot are consid-
ered (∼120 000 proteins). The clustering process
continues until most proteins are converged to only
a few trees in which the leaves are the individual
proteins and each node in the tree represents a clus-
ter [33]. Altogether there are about 110 000 clusters
that contain at least two proteins throughout all lev-
els of resolution. However, toward the top of the
hierarchy, clusters are merged to a few large trees
and only <0.5% of the proteins remain singletons.

ProtoNet-3D is a new database that we have cre-
ated that includes Swiss-Prot proteins combined
with sequences archived in the PDB. This database
includes over 150 000 proteins (∼100 000 after
reducing all expected redundancy). A clustering
process was initiated on ProtoNet-3D to create
hierarchical trees in which all solved structural

domains are marked. Inspecting ProtoNet-3D clus-
ters from structural perspective reveals that rich
structural information is captured in the ProtoNet
trees. Specifically, clusters for proteins that con-
sist of single domains are generally pure in terms
of their structural family definition, while clusters
composed of multi-domain proteins often contain
more than one structural entity (Shachar and Linial,
in preparation). The notion of using the roadmap
of all protein sequences to infer information on
structural relatedness is the basis for our statisti-
cal–computational approach.

Navigating in the roadmap of sequence
and structure

One way to learn about the correspondence between
structure- vs. sequence-based classifications is to
discuss the coverage of ProtoNet-3D via SCOP
definition. In other words, how well proteins asso-
ciated with a SCOP family are included in a
sequence-based cluster vs. how well a ProtoNet
cluster is, structurally speaking, pure and does not
contain proteins belonging to other SCOP fami-
lies. The results were based on families that contain
more than one protein in our database (non-trivial
families). More than half of these SCOP fami-
lies are fully matched with their ProtoNet clusters.
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Figure 2. Correspondence of ProtoNet clusters with SCOP family assignment. About 750 SCOP families with at least
two proteins in each are analysed. All of these families are divided into 10 bins (x axis) showing the level of specificity and
selectivity (purity and coverage, respectively) for each of these SCOP families. About 50% of the SCOP families are in full
agreement with ProtoNet clusters

For those, a sequence cluster and a structural fam-
ily correspond to each other perfectly (Figure 2).
Our selection for target for structural determination
relies on such hidden structural information within
the sequence roadmaps.

A ranking method for target selection

Based on inspecting the correspondence between
sequence and structure maps (ProtoNet-3D), we
hypothesized that distances on the graph are con-
sistent with distances between protein structures.
Naively, distances can be measured by counting
the number of merging steps of a particular clus-
ter in relation to the total merging steps that are
included in ProtoNet system. Our hypothesis is that
the probability of a cluster without a solved pro-
tein to belong to a new, yet unknown superfamily
(or fold) correlates with the distance as reflected
by the ProtoNet hierarchy. Practically, if compar-
ing a cluster that is distant in the graph from
any known structure with a cluster that is near
to a known structure, the former would stand a
higher chance of containing a new superfamily or
fold.

For a global measure of the entire protein
sequence tree, we developed a scheme for prior-
itizing proteins according to the probability that

they belong to new superfamilies. The method is
based on navigation in the roadmap of protein
sequences while using all structural information
that is included in ProtoNet-3D. The more dis-
tant a cluster is from a previously solved struc-
ture, the more likely it is to contain a new, yet
unsolved structure. We define an intrinsic measure
for a protein, called ‘first-solved-ancestor’ (FSA).
An FSA for a protein is the first ancestor con-
taining a solved 3D structure that is encountered
by climbing up the clustering tree. The higher
the location in the tree the FSA of a protein, the
greater is the chance of it belonging to a new
superfamily.

We present a sorted list that marks each pro-
tein with a score of its probability of belong-
ing to new superfamily. Inspection of the top list
indicates that many of the top scores in our list
are membranous clusters. Those clusters include
many of the ion channels, receptors, transporters
and pumps. The abundance of membranous clus-
ters in the top of our list is consistent with the
very limited number of membranous proteins that
have been currently solved [20]. Determining the
3D structure of membranous proteins on a large
scale is beyond the reach of the current technology.
Thus, despite their high score as preferred targets,
from a practical consideration, they should be fil-
tered out.
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Validating the target list

We validated our prediction method with a ‘real-
world’ test, using major versions of SCOP (from
release 1.37 to 1.61). The rationale behind the test
is that once the target list is produced, we may
use all structures that were not included in the
prediction and were added to the SCOP database
at later stages as our unbiased test. Our structure
test set was the superfamilies that did not appear
in the SCOP release that was used for creating the
sorted list and did appear in a newer release. As
the number of records grew by almost four folds
in the last 5 years (Figure 1), we can expect the
validation tests to be statistically sound (for more
details on the validation test see [31]).

The test case includes structures that were not
available when the target list was produced. Our
results were all converted to indicate the success in
predicting new superfamilies by p-value measures.
The p-value reflects the probability of obtaining
this level of success, or better, at a random setting.
We determined the optimal possible threshold in
the ProtoNet-3D tree that accurately separates the
proteins that belong to already known superfamilies
from those representing new ones. This threshold
was used to test the performance of the prediction.
The FSA-based method that was used on SCOP
1.55 as the base set and SCOP 1.61 as the test
set resulted in a success rate of about 80% in
separating new superfamilies from known ones
(Kifer, Sasson and Linial, in preparation).

Practical considerations

Even once a list of targets is presented to the exper-
imentalist, success in obtaining high quality 3D
structure depends on many practical considerations
and constraints. Not all proteins are suitable for
crystallization, and some of those limitations can
already be suggested by inspecting their primary
sequences [17]. Practical issues, such as the level
of solubility and the predicted success in produc-
ing high enough amounts, must also be taken into
account. These factors can dominate the success
rate of structural determination in any large-scale
effort. A prediction for the success rate of structural
determination has been complicated by the fact that
many proteins do not function alone, but rather with
additional entities. These entities may be another

protein, nucleic acids, co-factors or small molecule
inhibitors. If we consider multi-domain protein, it
may be better expressed as a whole protein to
improve stability and solubility of the expressed
protein. Preferably, a protein should be chosen as
a target for a structural genomics project based on a
combination of theoretical and practical predictions
for success.

To assist the selection of appropriate targets
in the scope of structural genomics projects, we
designed an interactive website called ProTarget.
This site is designed to present potential targets
for structural determination. To this end, filter-
ing criteria to narrow down the number of tar-
gets according to biological and other practical
considerations are included. Such filters include
the length of the selected proteins, the source of
the proteins (organisms) within the cluster, the
number of proteins within the cluster and more.
In addition, experimentalists should consider their
methodology of choice, either NMR or X-ray (or
a combination of the two). Once decided, the
target list may be restricted to proteins that fit
constraints on protein length, as defined by the
user. The list of target proteins is available at
http://www.protarget.cs.huji.ac.il.

The target list that is produced using the FSA
ranking method is very sensitive to the dynamic
nature of new structures that are constantly being
solved. A dynamic iterative query indicates the
effect of solving new structures on the other clus-
ters in the map. In the new version of ProTarget, the
user will have the option of marking any cluster as
‘solved’ and thus monitoring the effect of solving
proteins on the other clusters. Following such user-
dependent iterations, new lists are calculated based
on a revised set of clusters. The ability to navigate
iteratively in the roadmap of protein clusters may
be used to scan those proteins that, once solved,
will have maximal impact on the rest of the map.

Perspective and future directions

In discussing target selection, it is extremely valu-
able to define which of the proteins with currently
unsolved structure can be modelled to a high level
by other solved structures. The challenge of struc-
tural prediction methods is to determine whether a
protein may have a new superfamily or fold. Pro-
teins sharing more than 30–35% identity in their
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sequence are candidates for accurate modelling. We
assume that for most of them, ProtoNet supports
high quality predictions and robust protein family
definition.

Due to a worldwide effort in structural genomics,
protein structures are being deposited in the PDB
archive at an accelerated pace [5]. Consequently,
an essential component of any proposed target list
is a method that copes with these advances. Set-
ting a framework that allows measuring the suc-
cess in discovering new structural superfamilies
and folds is an intriguing one. With such a setting,
the structural community may test the relevance
of a systematic approach for target selection. A
competing brute-force approach calls for experi-
mentally attempting all possible proteins that are
yet unsolved. At the moment, it is too early to esti-
mate the contribution of each of these two extreme
approaches that aim to discover the entire structural
space.
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