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Neurodevelopmental and neuropsychiatric disorders (such as autism spectrum disorder)

have broad health implications for children, with no definitive cure for the vast majority

of them. However, recently medicinal cannabis has been successfully trialled as a

treatment to manage many of the patients’ symptoms and improve quality of life. The

cannabinoid cannabidiol, in particular, has been reported to be safe and well-tolerated

with a plethora of anticonvulsant, anxiolytic and anti-inflammatory properties. Lately,

the current consensus is that the endocannabinoid system is a crucial factor in neural

development and health; research has found evidence that there are a multitude

of signalling pathways involving neurotransmitters and the endocannabinoid system

by which cannabinoids could potentially exert their therapeutic effects. A better

understanding of the cannabinoids’ mechanisms of action should lead to improved

treatments for neurodevelopmental disorders.

Keywords: anxiety, autism, cannabinoid, cannabidiol, endocannabinoid system, neuroinflammation,
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NEURODEVELOPMENTAL AND PSYCHIATRIC DISORDERS

Neurodevelopmental disorders in children have profound impacts on the functioning of children
and families particularly where an additional mental health diagnosis is present. The prevalence
of any neurodevelopmental disorder seems to vary depending on the study; however, it seems to
be around 15% of children (3–17 years) in the United States of America (USA) based on parental
concerns (1). This includes diagnoses such as Attention Deficit Hyperactivity Disorder (ADHD),
Autism Spectrum Disorder (ASD), Intellectual Disabilities (ID) and syndromic disabilities.
According to Boyle et al., around 4% of affected children had at least 2 diagnoses. Those who have
a neurodevelopmental disorder are often two to four times more at risk of developing a mental
health problem than a typically developing child (1). Neurodevelopmental disorders can include
anxiety and mood disorders, Tourette’s syndrome, psychosis, and bipolar disorders. Individuals
with neuroatypical presentations may pose particular challenges to assessment and understanding
of the psychiatric diagnosis. They may resort to behavioural escalations (such as tantrums and self-
injury) as a manifestation of their extreme distress and inability to communicate their distress and,
as such, can be very difficult for families and communities to support (2, 3).

The aetiology of neurodevelopmental disorders is multifactorial with polygenic risk as well
as the impact of perinatal exposures to biological or environmental factors that may act as
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epigenetic modifiers of neuronal networks and structures. The
biological underpinning of many of these disorders is only, in
part, minimally understood and thus therapies are usually based
on responses in typically developing individuals, older paediatric
populations and adults. Treatment options for comorbid mental
health problems are limited on the whole to symptomatic
therapies and often evidence is restricted in these populations
as to the treatment’s effectiveness and the mechanisms involved.
For example, stimulants for ADHD and some newer therapies
are frequently used where attention and impulsivity issues are
present in other, non-ADHD disorders while anxiety medication
may be trialled off-label on a child with ID diagnosed with
significant anxiety. Interestingly, a common trait of ASD and
ASD-related disorders (such as Fragile X syndrome and 22q11.2
deletion syndrome) is anxiety and seizures (with or without
epilepsy) (4–7). The use of atypical antipsychotics continues to
be one of the only evidence-based treatments in children with
autism and escalated behaviour; however, the side effect profile
of antipsychotics is very difficult to manage, which relegates
them to be used only as a short-term last resort. Clinicians are
regularly trialling medication to support children and families
in significant distress, leading to most of these medications to
be prescribed off-label for neuroatypical children; therefore, new
medications with clear relationships to aetiology and biological
underpinnings are required to support these individuals as they
develop into adulthood.

CANNABINOIDS AS POTENTIALLY
THERAPEUTIC FOR PAEDIATRIC
PSYCHIATRIC DISORDERS

There has been interest for a long time in the impact of
medicinal cannabis on neurological and psychiatric disorders
(8). Phytocannabinoids (cannabinoids) have been found to be
molecules that could be pharmaceutically beneficial for some
ailments (9). However, the prescription of medical cannabis has
been very conservative because of its stigma as a substance of
abuse in many jurisdictions (10). Thanks to some well-publicised
case studies, a recent increase in community acceptance of
cannabis’s medical benefits (11) has been shifting government
policy in favour of cannabis decriminalisation/legalisation in

Abbreviations: 22QS, 22q11. 2 deletion syndrome; 2-AG, 2-arachidonoylglycerol;
5-HTR, 5-hydroxytryptamine receptor; AA, Arachidonic acid; ADHD,
Attention Deficit Hyperactivity Disorder; AEA, N-arachidonoyl-ethanolamine or
anandamide; AEDs, Anti-epileptic drugs; ASD, Autism Spectrum Disorder; BBB,
Blood-brain barrier; CBD, Cannabidiol; CB1R, Cannabinoid receptor 1; CB2R,
Cannabinoid receptor 2; Cys-LT, Cysteinyl leukotriene; CNS, Central nervous
system; COX, Cyclooxygenase; CYP, Cytochrome P450; EA, Ethanolamide; ECS,
Endocannabinoid system; EET, Epoxyeicosatrienoic acid; ENT1, Equilibrative
nucleoside transporter; FAAH, Fatty acid amide hydrolase; FDA, Food and
Drug Administration; FXS, Fragile X syndrome; GABA, γ-Aminobutyric
acid; GPR, G-protein coupled receptor; HETE, Hydroxyeicosatetraenoic acid;
HPETE, 5-hydroperoxyeicosatetraenoic acid; ID, Intellectual disabilities; IL-1β,
Interleukin-1β; LOX, Lipoxygenase; LT, Leukotriene; MAGL, Monoacylglycerol
lipase; MAM, Methylazoxymethanol acetate; PG, Prostaglandin; TGA,
Therapeutic Goods Administration; TNF-α, Tumour necrosis factor-α; 19-
THC or THC, Delta-9 tetrahydrocannabinol; TRPV, Transient Receptor Potential
Vanilloid; VDAC1, Voltage-dependent anion selective channel protein 1.

jurisdictions such as Canada, Israel, Uruguay, a majority
of USA states, and the Food and Drug Administration
(12–15). In Australia, the Therapeutic Goods Administration
(TGA) currently allows strict, limited prescription of medical
cannabis by registered medical practitioners (16), and in
2019 the Australian Capital Territory legalised the individual
possession and cultivation of small amounts of cannabis
(17). Consequently, this surge in therapeutic cannabinoid
usage is encouraging a rise in cannabis research, as the
cannabis farming industry, biotechnology and pharmaceutical
corporations compete to develop more medical cannabinoid
products and better commercialise their usage.

Among the 126 cannabinoids in the cannabis plant and
its many variants (18), only delta-9-tetrahydrocannabinol (19-
THC or THC) is strongly psychoactive and its effects on the
developing brain have been a concern for many clinicians as it
can induce short-term alterations in mood, behaviour, appetite
and cognition (19). Pathological and behavioural aberrations
have been detected in chronic cannabis users and can vary
with individuals as well as over time (20, 21), making the
effects of long-term cannabis treatment on individuals difficult
to predict with current methodology. The neurodevelopment of
children and adolescents can be disrupted by the cannabinoids’
wide-ranging effects on the central nervous system (CNS)
(22). The uncertainty of THC’s long-term safety has directed
society’s contemporary focus on cannabidiol (CBD) as the
most promising therapeutic cannabinoid due to its relative
abundance in the plant, lack of psychoactive effects, positive
safety profile (23) and purported benefits (24). There are some
synergies between THC and CBD [i.e., THC can reinforce CBD’s
beneficial properties while CBD dampens THC’s psychotropic
effects (25, 26)], but THC’s psychoactive properties and strong
neural interactions can be detrimental after long-term frequent
exposure, especially in the developing brain. Indeed, significant
alterations in brain structure/function have been observed
in humans, adult and adolescent rodents (27–31) frequently
consuming cannabis compared to cannabis-free controls. But
there is no definitive consensus as other experiments have
either reported no significant difference in brain morphology
(32) or have been contradictory; for example, one study found
thinner brain cortices in adolescent/young adult cannabis users
(33) while another study reported increased cortical thickness
in adolescent cannabis users (34), compared to non-users
of cannabis. Such uncertainty about the long-term effects of
cannabinoids on the human brain reinforces the need for in-
depth investigations of the cannabinoids’ positive and negative
effects. There is still very little understanding of how the intake
of THC, CBD, and/or other cannabinoids may affect developing
neurodivergent brains and research is urgently needed as the
use of medicinal cannabis becomes legalised in various parts of
the world.

The precise mechanisms behind CBD’s beneficial effects
are currently not well-understood. CBD does not significantly
interact with the cannabinoid receptors that THC interacts
strongly with, and its actions have been attributed to
inhibition of anandamide degradation (35), serotoninergic,
anti-inflammatory and/or its antioxidant properties (36–39).
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Therapeutic administration of CBD has been demonstrated to
alleviate a range of neuropsychiatric symptoms in schizophrenia
(35, 40, 41), depression (42) and anxiety (24, 43, 44) (Table 1
summarises a selection of experiments/trials). Encouraged by
these findings, CBD therapy has recently been clinically tested in
case studies of autism. Aran (3) and Barchel et al. (46) reported
improvements in behaviour, anxiety, and communication in
oral CBD treatment trials with ASD children—about 60–70% of
patients responding well to the treatment, with the side-effects
of somnolence and appetite loss being reasonably tolerated.
Phase 1b-2 trials of CBD therapy in ASD have demonstrated a
positive response in irritability scales on the Aberrant Behaviour
Checklist-Community (ABC-C) as well as some core features
such as hyperactivity, anxiety. Other trials in phase 2 and phase
3 are underway for anxiety/ behavioural outcomes in ASD,
22q11.2 deletion syndrome (22QS), ID and Tourette’s syndrome,
with the results of phase 3 studies being awaited. In the case
of Fragile X syndrome (FXS) treatment, positive results have
also been obtained with successful case studies (5) and clinical
trials (45) that involved the participation of children; the studies
reported clinically significant improvements in emotional and
behavioural symptoms of FXS, namely anxiety, social avoidance,
and irritability. The CBD in Heussler’s study was administered
by transdermal application of a CBD gel patented by Zynerba
Pharmaceuticals (4). Most side-effects were mild enough for this
novel CBD treatment to be deemed tolerable by the FXS patients
(45). Unlike ASD and FXS, there have been no reports published
on the efficacy of CBD treatment on 22QS patients as of the
time of writing. There is an ongoing clinical trial sponsored by
Zynerba Pharmaceuticals, where the efficacy of their CBD gel is
being tested on 22QS minors. Due to the commonalities shared
by ASD, FXS, and 22QS, the rationale is that CBD would exert
anxiolytic and behavioural improvements, resembling those
observed in CBD therapy of ASD and FXS (4, 45).

With many cases of epilepsy persistently resistant to the most
common treatment options (48), families of affected epileptic
individuals have advocated for the use of medical cannabis
as an alternative treatment. CBD demonstrably acts on brain
regions and neural pathways in animal and human models
of epilepsy via anticonvulsant and neuroprotective effects (38,
49–52). Therefore, cannabinoids (particularly CBD) have been
trialled for the management of epilepsy. Paediatric clinical
trials are underway in many parts of the world to evaluate
pharmaceutical CBD and its impact on a number of areas
including completed randomised clinical trials in Dravet and
Lennox-Gastaut syndromes (refractory epilepsy syndromes).
Two trials focused on the treatment of Lennox-Gastaut syndrome
while one trial selected patients affected by Dravet syndrome. All
trials had participants regularly administered with a patented oral
formulation of 98% CBD (Epidiolex R© by GW Pharmaceuticals).
In these trials, the participants’ pre-existing treatment regime
(including medications and/or interventions for epilepsy, such
as a ketogenic diet and vagus nerve stimulation) remained
unchanged throughout. According to these trials’ findings
(47, 53, 54), CBD-based pharmaceutical formulations show
promise as effective supplementary anticonvulsants, especially to
treat refractory epilepsy (55, 56).

Cannabinoid researchers are still attempting to determine the
precise effects of each cannabinoid on the human body, and
their interactions with each other as well as other xenobiotics
(25). Challenges in developing the evidence base for clinical
prescribing have been related to products of variable quality
with minimal understanding of how various cannabinoids work
either individually, together (entourage effect) or with other
drugs. One of the ways by which the cannabinoids have been
demonstrated to exert their effects is by their direct and indirect
interactions with a crucial component of the CNS, called the
endocannabinoid system (ECS) (57–59). The ECS is intrinsically
linked to neuromodulation, and therefore may be critical in
alleviating some neuropsychiatric symptoms (44, 60).

A BRIEF INTRODUCTION TO THE
ENDOCANNABINOID SYSTEM

The ECS is a major axis of the CNS, primarily responsible for
modulating excitatory and inhibitory synaptic activity through
the release of endogenous cannabinoids (endocannabinoids) that
interacts with cannabinoid (and non-cannabinoid) receptors
(61). Critical features of neural development/health and synaptic
plasticity are regulated by the ECS (62). The lipid-based
endocannabinoids are secreted extracellularly from the post-
to the pre-synaptic site where they bind to cannabinoid
receptors to initiate retrograde synaptic signalling (i.e., a negative
feedback mechanism that regulates pre-synaptic activity) (63).
The cannabinoid receptors, belonging to the G-protein coupled
receptor (GPR) family, are found throughout the entire
human body—the most well-characterised receptors being the
Cannabinoid 1, Cannabinoid 2 and GPR55 receptors.

Cannabinoid 1 receptors (CB1Rs) are particularly abundant in
the basal ganglial, cerebellar, cortical and hippocampal regions,
with the majority of them present on axon terminals and pre-
terminal axon segments (61, 64). CB2 receptors (CB2Rs) are
normally expressed at much lower levels in the CNS compared to
CB1Rs; this receptor is primarily present in microglia, vascular
elements, immune cells and some specific neurons (61, 65).
However, when the blood-brain barrier (BBB) is disrupted (by
insults such as neuroinflammation), CB2R expression levels
in the brain increase due to immune cells flooding the CNS
(66). The majority of GPR55 receptors are aggregated in the
CNS and peripheral nervous system (67, 68), where their
activation on neurons can upregulate intracellular calcium
release and inhibit potassium release, resulting in increased
neuronal excitability (69, 70).

Activation of the cannabinoid receptors by endocannabinoids
can trigger downstream signalling, such as ion channel openings,
changes in intracellular calcium ion concentrations and
regulation of inflammatory pathways (71). The two most well-
studied endocannabinoids are N-arachidonoyl-ethanolamine
(anandamide or AEA) and 2-arachidonoylglycerol (2-AG).
AEA acts as a high-affinity, partial agonist of CB1R, and barely
interacts with CB2R while 2-AG is a full agonist at both CBRs
with low-to-moderate affinity, with both endocannabinoids
being GPR55 agonists (68, 72, 73). At the end of their normal
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TABLE 1 | Summarised findings of some referenced experiments/clinical trials in humans, which demonstrate the wide range of neurological disorders that CBD therapy

could potentially be effective for.

References Disorder Experimental/clinical

model

Drug dose and route Major findings

Leweke et al. (35) Schizophrenia 42 adult schizophrenic

patients

800 mg/d, oral Alleviation of psychotic

symptoms

Heussler et al. (45) Fragile X syndrome 20 FXS patients, aged 6–17

years

Daily 50mg dose, twice

daily 50mg dose or twice

daily 125mg dose,

transdermal

Significant reductions in anxiety

and behavioural symptoms

Barchel et al. (46) Autism Spectrum Disorder 53 children diagnosed with

ASD

16 mg/kg/d (maximum of

600mg), oral

Alleviation of some ASD

comorbidity symptoms

Solowij et al. (42) Depression 20 adult frequent cannabis

users

200 mg/d, oral Significant decrease in

depressive and psychotic-like

symptoms

Shannon et al. (43) Anxiety and sleep 72 adults presenting with

high anxiety or poor sleep

25 mg/d (maximum of

175mg for 1 patient), oral

Long-term decrease in anxiety

scores within the 1st month of

treatment

Devinsky et al. (47) Refractory epilepsy 120 children and young

adults with Dravet syndrome

and refractory seizures

5–20 mg/kg/d, oral Reduction in convulsive-seizure

frequency, but higher rates of

adverse events than placebo

lifecycle, AEA is mostly degraded to arachidonic acid (AA)
and ethanolamine by fatty acid amide hydrolase (FAAH)
(71), while 2-AG is majorly converted to AA and glycerol by
monoacylglycerol lipase (MAGL) (74). Interestingly, AEA is
also a full agonist (with a different affinity than for CB1R) of
a non-ECS receptor named the Transient Receptor Potential
Vanilloid 1 (TRPV1) that regulates extracellular calcium ion
secretion and neuronal excitability (75).

Another potential way for the ECS to affect the progression
and severity of neuropsychiatric disorders is via the gut-
microbiome-brain axis (76, 77). The gut-microbiome–brain axis
is constituted of signalling (neural and humoral) pathways that
connect the gastrointestinal system (GIS) and its microbiota to
the CNS in reciprocal relationships for homeostatic and defensive
maintenance of the whole body. ECS receptors, namely CB1R and
TRPV1, peroxisome proliferator-activated receptor alpha (PPAR-
α) and GPR119 are strongly expressed throughout the gut-brain
axis (e.g., intestinal epithelial cells, myenteric and vagal fibres).
These receptors affect myenteric neuron activity, vagal and
sympathetic nerve function, and the release of gastrointestinal
neuropeptides (such as N-acyl amides), which may subsequently
have a significant impact on brain neural activity (77).

The gut microbiota produce metabolites that can interact
with the ECS (78, 79). The microbes are usually categorised
as either deleterious or beneficial (probiotic) to the host
organism, depending on their overall effects (80). Commensal
microorganism-derived molecules produce neurotransmitters
(e.g., serotonin, GABA), as well as ECS-like mediators that are
capable of interacting with host ECS receptors; for example,
commendamide is analogous to the human signalling molecules
N-acyl amides and interacts with ECS GPRs (81). Currently, the
exact effects of these ligands are still mostly unknown, but their
existence strongly hint at complex layers of interaction between
the gut-brain axis and gut microbiota (78).

Components of the ECS can thus stronglymodulate behaviour
and mood via interactions with underlying neurotransmission
and the gut-microbiome-brain axis.

THE ROLE OF THE ENDOCANNABINOID
SYSTEM IN REGULATING ANXIETY

Anxiety is usually manifested in affected individuals as
disproportionate startle response, avoidance behaviour,
autonomic hyperactivity, increased muscular tension and
reduced motion (66). Anxiety is primarily mediated by
glutamatergic (excitatory, i.e., increase likelihood of action
potentials), serotoninergic and GABAergic (inhibitory, i.e.,
decrease likelihood of action potentials) pathways. GABA is
the main inhibitory neurotransmitter, widespread throughout
the cortex and counters the excitatory activity of glutamatergic
neurons (82). Excessive anxiety as experienced by patients with
anxiety disorders is theorised to be caused by an imbalance
between excitatory and inhibitory signalling. Consequently,
such an imbalance may lead to cortical hyper-reactivity and
behavioural hypersensitivity in ASD. Puts et al. (83) and Sapey-
Triomphe et al. (84) found that cortical GABA levels appear
to be reduced in children and adults with ASD, respectively,
in comparison to those of neurotypical controls (83, 84).
However, Kolodny et al. (85) recently reported no differences
in cortical concentrations of GABA and glutamate between
neurotypical and ASD young adults (85). This discrepancy in
findings could be attributed to low participant numbers and
small differences in experimental methodologies. The proper
functioning of the ECS is also disrupted in FXS. The loss
of Fragile X mental retardation protein (which regulates the
translation and transport of messenger RNAs in brain neuron
dendrites) in FXS seems to impair the glutamate receptor-5
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(mGluR5)-dependent 2-AG signalling at excitatory synapses
(86). Additionally, administration of AEA in a mice model
of FXS (FMR1 knockout mice) reduced social anxiety (87),
suggesting a detrimental downregulation of AEA in FXS.

Functional CB1Rs and CB2Rs expressed (88, 89) in
GABAergic, dopaminergic, glutamatergic, and serotoninergic
neurons (90–93), could be crucial in regulating behavioural
and emotional states (88, 89), which are heavily disrupted in
psychiatric/mood disorders. CB1Rs, in particular, are highly
expressed on GABAergic interneurons (90, 94), on glutamatergic
terminals (90, 92) and on dopamine D1 receptor positive
neurons (95). Agonism of CB1Rs can inhibit the secretion of
GABA and glutamate from presynaptic terminals (96–99), which
indicate that endocannabinoid activation of CB1R can influence
the type of synaptic signalling. AEA-mediated TRPV1 activation
is linked to an anxiogenic response, as opposed to the anxiolytic
response elicited by AEA-mediated CB1R activation. This
suggests that there might be an imbalance between CB1R and
TRPV1 expression that might play a part in instilling excessive
anxiety (100). Inhibition of FAAH by selective inhibitor URB597
was reported to activate serotoninergic neurons in the midbrain
of stressed rats, by the associated increase in AEA-mediated
signalling at CB1R (101). Inhibition of FAAH and MAGL by
selective inhibitors produced anxiolytic effects in CB1R-deficient
mice, but not in CB2R-deficient mice, suggesting that CB2R
could play a role in regulating anxiety (102). Additionally, CB2R
might play a role in regulating anxiety as augmented activation
of CB2R by accumulation of 2-AG (via inhibition of MAGL) was
found to exert anxiolytic effects in a rat model of stress (103).

From the evidence gathered so far, therapeutic modulation
of synaptic signalling and plasticity could indeed be feasible by
regulation of the ECS. Moreover, a well-regulated ECS is critical
in ensuring good neural health and function as distressed neural
cells can lead to further neurological issues such as epilepsy (104).

HOW THE ECS COULD BE INVOLVED IN
NEUROINFLAMMATION AND EPILEPSY

The ECS is an important signalling axis for inflammatory
pathways throughout the body. Many children affected by ASD,
FXS, and 22QS suffer from epileptic/non-epileptic seizures that
stem from detrimental mutations responsible for their disorders
(5, 7, 105–107). 10–30% of people with ASD have comorbid
epilepsy and several synaptic plasticity pathways appear to be
involved in both disorders (105). As such, affected children
are at increased risk of serious seizure-related accidents and
have their neurodevelopment further impaired by frequent
seizures (108). In recent years, epilepsy has been surmised
to be strongly correlated with neuroinflammation (104, 109).
Additionally, abnormally high levels of neuroinflammation have
been associated with ASD (110); Vargas et al. (110) and
Jyonouchi et al. (111) found higher levels of proinflammatory
cytokines (e.g., tumour growth factor–β1) in the brain tissue,
cerebrospinal fluid and peripheral blood of ASD patients
(including children) (110, 111).

Neuroinflammation is the term given to a set of defensive
responses to insult and/or injury in the neural environment that
is mainly mediated by glial cells. The resident immune cells of the
CNS, themicroglia, primarily function in protecting the neuronal
population; they are called into action by inflammatory stimuli
such as foreign bodies, products from injured/inflamed neurons,
blood-brain barrier disruptions, and by chemokines/cytokines
[e.g., Interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-
α)] (112–114). Neuroinflammation is a protective physiological
process but can be harmful when it is excessive and unregulated
(115). Multiple parts of the ECS are involved in inflammatory
pathways. Moreover, microglia express many components of
the ECS (such as CB1R, CB2R and GPR55), via which they
communicate with neurons via expression of endocannabinoids
(116, 117). There is evidence of microglial involvement in ASD
from both brain tissue immunohistochemistry and positron-
emission tomography (PET)-imaging studies which revealed
increased neuroinflammation and population of activated
microglia in brains of ASD patients (118, 119) compared to non-
ASD individuals. Therefore, artificially modulating microglial
endocannabinoid signalling and treating neuroinflammation
could potentially alleviate some ASDsymptoms (117).

Agonism of CB1R and CB2R have shown anti-
inflammatory effects in human and animal models (120–123).
Antagonism/non-expression of GPR55 also resulted in
a reduction in neuronal and microglial inflammation
(116, 124, 125). However, agonism of GPR55 in animal and
human neural stem cells was found to elicit a neuroprotective
effect and rescued neurogenesis after inflammatory insult (126).
Additionally, activation of microglial GPR55 by the endogenous
ligand l-α-lysophosphatidylinositol limited neuronal damage
in rats (127). As Hill et al. suggest, the actions of GPR55
probably strongly depend on the cell type and cause of
inflammation (126). Cyclooxygenase enzymes (COX) synthesise
signalling intermediaries known as prostanoids, often derived
from AA. The constitutive isoform of COX, COX-1, found
in numerous cell types, regulates physiological responses,
while the inducible isoform, COX-2, is induced rapidly in
several cell types (including neurons and glial cells) after
biochemical stimuli, such as cytokines and pro-inflammatory
molecules (128). COX-2 is involved in the conversion of
a minor proportion of AEA and 2-AG to prostaglandin
ethanolamides (PG-EAs) (74) and prostaglandin glycerol esters
(PG-Gs) (129), respectively—both of which can contribute to
inflammatory responses (128). Other prostaglandins derived
from AA by COX-1 and COX-2, prostaglandin E2 (PGE2)
and prostaglandin F2α (PGF2α), have neurotoxic properties
(125, 130, 131). Suppression of MAGL activity (which leads to
a downregulation in AA synthesis) has shown neuroprotective
effects in mice (132). COX-2 levels have been found to be greatly
increased in the brains of patients with epilepsy, compared to
non-epileptic patients (133) and in animals that experience
prolonged seizures (134), suggesting a relationship between
epilepsy and neuroinflammation.

The Cytochrome P450 (CYP) family is another group of
enzymes that breaks down endocannabinoids. The ubiquitous
CYP enzymes are expressed at different levels across the
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body, with variations across species and amongst individuals.
The CYP enzymes are known for their ability to metabolise
xenobiotics, with the metabolites sometimes causing side-effects
(135). Changes in CYP activity can influence downstream
endocannabinoid signalling pathways by virtue of changes in
substrate and metabolite concentrations. CYP3A4, expressed
in the human brain (136, 137), derives anti-inflammatory
epoxyeicosatrienoic acids (EETs) and pro-inflammatory
hydroxyeicosatetraenoic acids (HETEs) from AA (138–141).
AEA can be broken down by CYP enzymes (namely CYP3A4,
CYP2C19, CYP2D6, and CYP2J2) into EET-ethanolamides
(EET-EAs) and HETE-ethanolamides (HETE-EAs) (142–144).
Just like their precursor molecules, the EET-EAs and HETE-EAs
can bind to CB1Rs and CB2Rs, albeit with different affinities,
e.g., 5,6-EET-EA binds much more strongly with CB2R than
AEA (145) while 20-HETE-EA and 14,15-EET-EA have only a
weak affinity for CB1R (146) in murine models. CYP2J2 breaks
down 2-AG to create two products, 2-11,12-epoxyeicosatrienoic
glycerol (EET-G), and 2-14,15-EET-G (147), which interact
strongly with both CBRs (especially CB1R) (148). Many CYP
metabolites therefore are potentially endogenous ligands for
some of the ECS receptors and could subsequently be involved in
inflammation regulation.

The lipoxygenase (LOX) enzyme pathway is another
metabolic route for endocannabinoids and other related fatty
acids (149). The LOX pathway starts with the change of AA into
leukotriene A4 by the 5-LOX enzyme (expressed on cell types
such as neurons). Leukotriene A4 (LTA4) is rapidly catalysed
into LTB4 and cysteinyl leukotrienes (i.e., Cys-LTs, which
comprises LTC4, LTD4 and LTE4) (149, 150). LTD4 has been
linked to blood-brain barrier dysfunction (151), a contributing
factor of neuroinflammation (152), as evidenced by exposure of
microglial Cys-LT1 and Cys-LT2 receptors to LTD4 resulting
in microglial secretion of pro-inflammatory IL-1β in mice
(153). In brief, the ongoing research on eicosanoids (collective
term for the endocannabinoids and the many metabolites of
the ECS) indicates that the ECS is thoroughly implicated in
regulation of neuronal activity and neuroinflammation. But until
the signalling pathways involved are thoroughly investigated,
particularly in the human brain, how neuroinflammation is
exactly linked to ECS dysfunction and psychiatric impairments
remains to be elucidated. Interestingly, inflammation in the
GIS could substantially affect the gut-microbiome-brain axis
and subsequent neuronal activity as ASD individuals have been
reported to suffer from gastrointestinal issues (such as diarrhoea
and constipation) (154–157) and dysbiotic microbiota compared
to neurotypical individuals (158). Perturbations in gut microbial
diversity has been found to influence neuroinflammation (159)
as some gut microbes can secrete pro-inflammatory metabolites
and cytokines (160) that cross the blood-brain barrier. CB1R,
TRPV1 and PPAR-α can modulate the permeability of the
gut-vascular barrier that prevents the entry of intestinal bacteria
into the bloodstream; if the GVB’s selective permeability
is compromised, the bacteria themselves can enter the
bloodstream and cross the BBB, causing an inflammatory
response (161).

In summary, there is little doubt that the ECS is likely to
be central in the aetiology and occurrence of neuropathology,
whereby the modulation of the ECS at multiple points
by extraneous agents such as cannabinoids could achieve
beneficent outcomes.

CANNABINOIDS INTERACT WITH THE
ECS AND NEUROTRANSMISSION

The cannabinoids’ interactions with multiple receptors and
enzymes can be safely assumed to hold the key to their wide-
ranging therapeutical benefits, but can also obscure the exact
mechanisms of their effects. THC is a partial agonist of CB1Rs
and CB2Rs, and an agonist of GPR55. On the other hand, CBD’s
antagonistic/negative allosteric modulating actions on the CB1
and CB2 receptors (57, 162–164) might help explain how CBD
can dampen THC’s psychoactivity (165) (Figure 1).

While CBD might not interact strongly with CB1R and CB2R
when administered at therapeutical levels (166), it has been
reported to regulate calcium ion homeostasis in neurons (167)
and increase inhibitory neurotransmission via interactions with
GPR55 (164). CBD therapy has been correlated with an increase
in AEA blood levels and a reduction in the psychotic symptoms of
treated schizophrenic patients vs. placebo-control patients (35);
the mechanism behind CBD’s beneficial effect in this instance
could be due to an increase in AEA levels found to be lower in the
cerebrospinal fluid of epileptic patients (168) and in the blood of
ASD children (169, 170). Of note, the mechanism by which CBD
increases AEA levels seems to differ between species; Elmes et al.
reported that, in humans, this effect may be due to CBD binding
preferentially to the fatty acid binding proteins on which AEA
depends to be transported into cells for FAAH catalysis rather
than the CBD-induced FAAH inhibition observed in rodents
(171). This interaction between CBD and AEA metabolism in
humans vs. rodents (171, 172), highlights that the differences in
xenobiotics metabolism between species can limit the utility of
animal models in cannabinoid research.

In animal models of ASD, an increase in AEA concentration
has been correlated with improvements in social interactions.
AEA can interact with oxytocin, a neuropeptide that promotes
parental and social bonding. Indeed, recent evidence has
demonstrated that oxytocin stimulates AEA release in the
nucleus accumbens, a key region for the reinforcing properties
of natural rewards, with AEA-mediated signalling a requirement
for the pro-social effects of this neuropeptide (173). A model of
defective oxytocin-driven AEA signalling in ASD could therefore
explain how CBD intake ameliorates social interactions in ASD
patients (3, 46). UpregulatedMagl gene (gene that encodes for the
MAGL enzyme) expression has been observed in rat hypothalami
treated with 10 mg/kg THC (174), supporting the hypothesis
that cannabinoids can modulate cerebral endocannabinoid
tone. Cannabinoids, like CBD, have been found to inhibit
COX-2 activity and hence reduce the production of pro-
inflammatory prostaglandins, which could be an additional
pathway by which cannabinoids increase the levels of the
endocannabinoids, triggering an indirect anti-inflammatory and
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FIGURE 1 | Concise illustration of CBD’s interactions with multiple signalling pathways that could explain its beneficial effects in neuropsychiatric disorders. This

diagram highlights the fact that CBD can modulate the ECS in multiple ways, as well as interact directly with many neural receptors (only some of which are shown in

this diagram).

anti-epileptic activity (175, 176). CBD’s inhibition of cerebral
CYP isoenzymes could, in turn, modulate the levels of EETs,
EET-EAs and HETE-EAs. Therefore, even though CBD may not
have a high affinity for CB1R, CB2R, and GPR55, the activation
of these endocannabinoid receptors may be indirectly affected
by CBD’s upregulation/downregulation of endocannabinoids and
eicosanoids (136); for example, Bornheim et al. found that CBD
inhibited the CYP-driven formation of some AEA metabolites
in mice (177) while Arnold et al. reported that THC and CBD
inhibited the production of EET-EAs by cardiac CYP2J2 (178).
Additionally, the activity and metabolite synthesis of 5-LOX was
reduced in human tumour cells treated with CBD (179). Targeted
inhibition of Cys-LT synthesis significantly attenuated seizures
in treated mice (compared to untreated mice) (180, 181) and in
epileptic patients (182), so CBD’s inhibition of 5-LOX could have
an anti-inflammatory effect.

Intriguingly, CBD has been shown to desensitise non-
cannabinoid TRPV1s (75) and related TRPV2s, hence blocking
the release of calcium ions outside cells and dampening
hyperexcitability (contributor to aberrant neuronal activity) in

neurons, suggesting another potential regulatory mechanism
(172, 183). CBD has been reported to enhance microglial
phagocytosis in rodent microglia partially via the activation of
TRPV1 and probably TRPV2 receptor channel of the microglial
cells (112); however, Hassan et al. cautioned that increasing
microglial phagocytosis might not be a positive strategy for
combating neuroinflammation, but their results might not be
applicable to human physiology.

As we highlighted beforehand, the cannabinoids may indeed
exert their effects differently between species. Another case
of CBD’s promiscuous interactions is its agonistic actions on
the serotonin (5-hydroxytryptamine-1A) receptors (5-HTR1A),
which are deeply involved in activating anxiolytic responses and
in neuronal electrochemical activity (36, 184, 185). In healthy and
ASD human adults, CBD suppressed the activity of excitatory
glutamatergic neurons in the prefrontal cortex via activation
of 5-HTR1A (186), which could contribute to restoring the
balance between inhibitory and excitatory neurotransmission.
Additionally, CBD inhibits the equilibrative nucleoside
transporter (ENT1) responsible for the synaptic uptake of
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adenosine, thereby increasing levels of extracellular adenosine.
Consequently, an upregulation in extracellular adenosine can
cascade into a decrease in neuronal hyperexcitability (187–189).
CBD has anti-oxidative and anti-inflammatory properties that
could counter neuroinflammation; modulation of TRPV1,
CB2R, and GPR55 receptors can lead to downregulation of
enzymes involved in the production of pro-inflammatory PGs,
reactive oxygen species, and cytokines (190, 191). Another
potential avenue for CBD’s anti-inflammatory action could
be its inhibition of voltage-dependent anion selective channel
protein 1 (VDAC1) conductance, leading to a decrease in
neuroinflammation (192). CBD was also found to enhance
the inhibitory γ-Aminobutyric acid (GABA)’s activation of
its associated GABAA receptors which regulate inhibitory
neurotransmission (193) and are targeted by drugs such as
clobazam; indeed, co-administration of CBD with clobazam
significantly increased the inhibitory effects of GABA compared
to either compound alone (194). Additionally, CBD’s amplifying
effects on GABA receptors could compensate for the reduced
GABAergic transmission observed in FXS (195).

Lower levels of AEA (35) and higher expression/reduced
methylation of CNR1 (the gene coding for CB1R) (196,
197) in schizophrenic patients strongly suggest a pathological
link with ECS dysfunction; CBD might compensate for
this dysfunction by indirectly modulating endocannabinoid
levels. Additionally, CBD is a partial agonist to dopamine
D3 receptor, whose expression was demonstrated to be
altered in the methylazoxymethanol acetate (MAM) murine
neurodevelopmental model (198). Gestational MAM treatment
of pregnant dams is a validated model that produces murine
offspring with adult phenotype typical of schizophrenia, such
as cognitive deficits, dopaminergic dysfunction, physical and
behavioural abnormalities (196, 198, 199). Another murine
model that mimics the development of the human schizophrenia
phenotype is perinatal THC exposure of neonates as it results
in similar neurodevelopmental impairments; the cognitive
and social deficits were then demonstrated to be reversed
by peripubertal CBD treatment (197). These experimental
results reinforce the notion that early childhood treatment
with CBD might be sufficient to minimise the impact of
neurodevelopmental disorders into adulthood.

CBD’s interactions with the GIS ECS might depend on the
mode of administration; oral intake of CBD is subject to first-
pass metabolism, which can result in most of the CBD being
transformed by liver enzymes into its metabolites prior to
reaching the gut (200). Conversely, more direct passage of CBD

in circulating blood via dermal application or inhalation would
hypothetically reduce CBD’s availability to the GIS. Research on
CBD’s effects on the gut microbiome and gut ECS are few and
limited to animal model studies (generally germ-free mice) (201),
but CBD’s anti-inflammatory properties could be potentially
involved in counteracting gut cell inflammation, gut-vascular
barrier leakage and subsequent neuroinflammation by dysbiotic
gut microbes (202, 203).

CONCLUSION

Our review has hopefully shown that there is a strong
body of evidence that early cannabinoid treatment may offer
significant potential to safely alleviate many of the common
symptoms affecting children with neurodevelopmental disorders.
Continued research and evidence in establishing definite
relationships between cannabinoid intake and alterations of the
ECS are needed to determine clear risk-benefit profiles and
to screen for potential individuals in whom benefit could be
predicted. CBD is currently the most promising therapeutic
cannabinoid for children due to its safety profile and broad-
spectrum action. A fuller understanding of CBD’s metabolism in
the human body (especially how it might interact with the GIS
andmicrobiota) andmechanisms of action could result in greater
optimisation of cannabinoid delivery and better development of
synthetic cannabinoid analogues.
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