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ABSTRACT: The present investigation was designed to evaluate the mineral element bio-accessibility and antioxidant in-

dices of blanched Basella rubra at different phases of simulated in vitro digestion (oral, gastric, and intestinal). The phenol-

ic composition of processed vegetable was determined using high-performance liquid chromatography (HPLC)-diode-ar-

ray detection method. Mineral composition, total phenolic content (TPC), total flavonoid content (TFC), ferric reducing 

antioxidant power (FRAP), and total antioxidant activity (TAA) of the in vitro digested blanched and raw vegetable were 

also determined. HPLC analysis revealed the presence of some phenolic compounds, with higher levels (mg/g) of poly-

phenols in raw B. rubra (catechin, 1.12; p-coumaric acid, 6.17; caffeic acid, 2.05) compared with the blanched counterpart, 

with exeption of chlorogenic acid (2.84), that was higher in blanched vegetable. The mineral content (mg/100 g) showed 

a higher value in enzyme treated raw vegetable compared to their blanched counterparts, with few exceptions. The results 

revealed a higher level of some of the evaluated minerals at the intestinal phase of digestion (Zn, 6.36/5.31; Mg, 5.29/8.97; 

Ca, 2,307.69/1,565.38; Na, 5,128/4,128.21) for raw and blanched respectively, with the exception of Fe, K, and P. The re-

sults of the antioxidant indices of in vitro digested B. rubra revealed a higher value at the intestinal phase of in vitro diges-

tion, with raw vegetal matter ranking higher (TPC, 553.56 mg/g; TFC, 518.88 mg/g; FRAP, 8.15 mg/g; TAA, 5,043.16 

µM Trolox equivalent/g) than the blanched counterpart. The studied vegetable contains important minerals and anti-

oxidant molecules that would be readily available after passing through the gastrointestinal tract and could be harnessed 

as functional foods.
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INTRODUCTION

Leafy vegetables constitute an indispensable component 

of human diets in Africa and West Africa in particular. It 

has been estimated that over 60 species of leafy vegeta-

bles are consumed in Nigeria alone (1). Numerous stud-

ies have conclusively shown that plant foods are good 

sources of minerals (2-6). Green plants absorb the min-

erals they need for diverse metabolic processes from the 

soil. The complex organic compounds manufactured in 

plant leaves include antioxidant molecules for protection 

against oxidative solar radiation (7). Leafy vegetables are, 

therefore, important dietary sources of minerals, trace el-

ements, and phytochemicals with health-protective and 

immune-strengthening properties.

The dominant basic elements in plants and vegetables 

are calcium, potassium, iron, sodium, zinc, magnesium, 

manganese, and selenium (8). Mineral elements are cru-

cial for many body functions which include transporta-

tion of oxygen, normalizing of the nervous systems, stim-

ulation of growth, and maintenance and repair of tissues 

and bones. Some of these elements are needed in small- 

amounts (few milligrams) per day, and when absorbed in 

excess, may be toxic and cause damage to the body (9).

Most vegetables and fruits have been reported to pos-

sess antioxidant activities which allow them to scavenge 

both reactive oxygen species and electrophiles, inhibit 

nitrosation, chelate metal ions, and modulate certain cel-

lular enzyme activities. It has been established that an 

appreciable part of the antioxidant activities of vegetables 

and fruits are related to phenolic compounds (10,11).

B. rubra belongs to the family Basellaceae and of the 
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genus Basella, commonly called Indian spinach, climbing 

spinach, Asian spinach, ‘Amunututu’ (Yoruba tribe in 

Nigeria). B. rubra is a versatile green leafy vegetable and 

revered in some African and East Asian cultures for its 

wholesome phyto-nutrient profile (12). It holds an in-

credibly good amount of vitamins, minerals, and antioxi-

dants (6). B. rubra leaves are good sources of minerals like 

potassium, manganese, sodium, calcium, magnesium, 

copper, iron, phosphorus, selenium, and zinc (6). How-

ever, to understand the potential health benefit of B. ru-

bra, it is essential to determine the bio-accessibility or 

bio-availability of the phyto-nutrient in the gut and to 

measure the ratio of the ingested vegetal material, which 

is available for utilization in the human system.

It has been established that not all nutrients are ab-

sorbed with equal efficacy after passing through the gas-

trointestinal tract in the human body during digestion 

process. This is due to the fact that components available 

to be absorbed and utilized in the body may vary quanti-

tatively and qualitatively due to the physical properties 

of the food matrix (13). Moreover, the bioavailability of 

compounds in plant products may differ because of in-

teractions between their chemical structures and macro-

molecules within the food matrix, as well as their uptake 

rates into the body (14). 

Bio-accessibility of phyto-nutrient is a measure of the 

amount of plant nutrients that are soluble in gastroin-

testinal digestive enzymes which are ultimately available 

for utilization in humans. It can also be described as any 

potentially available part of a nutrient after gastrointes-

tinal digestion. Bioavailability of various phyto-nutrients 

is determined by either in vivo administration to similar 

species to humans, e.g., rats or in vitro methods by simu-

lating digestive system conditions in the laboratory. 

Therefore, the use of in vitro methods will address the is-

sue of animal rights that is gaining a global concern. In 

vitro procedures involve the simulation of the gastric and 

intestinal digestive conditions in the laboratory. The re-

sults obtained by in vitro methods are based on the for-

mation of digestive products that are soluble. The deter-

mined values thus correspond to bio-accessible fractions 

which represent maximum concentrations of elements 

soluble in gastrointestinal media (15).

There is, however, limited information on the effect of 

in vitro gastrointestinal digestion on the stability and bio- 

accessibility of minerals and antioxidant molecules from 

vegetables. Hence, the objective of this work is to eval-

uate the actual antioxidant activities and mineral compo-

sition by simulating the gastrointestinal digestion in vi-

tro on the processed vegetal matter.

MATERIALS AND METHODS

Materials 

α-Amylase, pepsin, and pancreatin were bought from 

Fluka Chemie (Wahlkreis Rheintal, Switzerland) and 

Merck KGaA (Darmstadt, Germany). Other chemicals 

used in the experiments were of analytical grade and 

were used without further purification. Freshly prepared 

solutions of digestive enzymes were used in the experi-

ments. All the solutions were prepared in distilled water. 

α-Amylase was prepared by dissolving 32.5 mg of α-amy-

lase in 25 mL of 1 mM calcium chloride at pH 7; pepsin 

solution was obtained by dissolving 10 mg pepsin in 5 

mL of 0.05 M HCl (pH 2). Pancreatin solution was pre-

pared by dissolving 3 g of pancreatin in 20 mL distilled 

water and the pH adjusted to 7.5 after incubation.

Sample treatment and preparation

Fresh B. rubra leaves were carefully detached from its suc-

culent stem. The leaves were carefully selected, washed, 

sliced, and divided into two portions. One portion was 

oven dried (hot box oven, size 2) raw at 40oC and milled 

to powder while the other portion was blanched, oven 

dried at 40oC and milled to fine powder. Both processed 

samples were stored in air tight plastic containers at 

room temperature (27∼32oC). 

In vitro enzymatic digestion

The in vitro digestion was done using sequential enzymat-

ic steps based on a slightly modified method reported by 

Deigado-Andrade et al. (16). It involved three distinct 

stages (oral, gastric, and total gastro-intestinal digestion) 

and each stage was terminated by inactivating the en-

zyme.

Oral digestion

Ten grams (10 g) of the milled B. rubra (blanched and 

raw) samples were weighed and dissolved separately in 

200 mL of distilled water. Three hundred microliters (300 

μL) of α-amylase was added to the tubes (simulating pH 

conditions in the mouth). The tubes were incubated in a 

shaking water bath set at 37oC for 40 min at 80 strokes/ 

min. After 40 min, the enzyme was inactivated by boil-

ing in water at 100oC for 4 min after which the samples 

were centrifuged for 60 min at 3,200 g. The clear soluble 

supernatant was separated and stored at −4oC prior to 

analysis. A non-enzymic digest (control sample digested 

without enzyme) was also obtained by following the 

same digestion scheme without enzyme.

Gastric digestion

Ten grams (10 g) of the milled B. rubra (blanched and 

raw) samples were weighed and dissolved separately in 

200 mL of distilled water. Three hundred microliters (300 
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μL) of α-amylase was added to the tubes (simulating pH 

conditions in the mouth). The tubes were incubated in a 

shaking water bath set at 37oC for 40 min at 80 strokes/ 

min. After 40 min, the pH was adjusted to 2 using con-

centrated HCl. After 40 min, 10 mg pepsin was added to 

the tubes, (simulating pH conditions in the stomach). 

The tubes were then incubated in a shaking water bath 

at 37oC for 40 min and at 80 strokes/min. After another 

40 min, the enzyme was inactivated by boiling in water 

at 100oC for 4 min after which the samples were centri-

fuged for 60 min at 3,200 g. The clear soluble superna-

tant was obtained and stored at −4oC prior analysis. A 

non-enzymic digest (control sample digested without en-

zyme) was also obtained by following the same diges-

tion scheme without enzyme.

Intestinal digestion 

Ten grams (10 g) of the milled B. rubra (blanched and 

raw) samples were weighed and dissolved separately in 

200 mL of distilled water. Three hundred microliters (300 

μL) of α-amylase was added to the samples (simulating 

pH conditions in the mouth). The samples were incu-

bated in a shaking water bath at 37oC for 40 min and at 

80 strokes/min. After 40 min, the pH was adjusted to 2 

using concentrated HCl and incubated at 37oC for anoth-

er 40 min in a shaking water bath. Ten milligrams (10 

mg) of pepsin was added to the samples, (simulating pH 

conditions in the stomach and incubated at 37oC for 40 

min at 80 strokes/min in a shaking water bath. After an-

other 40 min, the pH was adjusted to 6 using NaOH. Af-

ter 20 min, 50 mL of pancreatin was added to the sam-

ples and incubated in shaking water at 37oC for 40 min. 

The pH was finally adjusted to 7.5 using NaOH (simu-

lating pH conditions in the small intestine) and incubated 

for 40 min in a shaking water bath at 37oC. After 40 min, 

the enzymes were inactivated by boiling in water at 100oC 

for 4 min after which the samples were centrifuged for 

60 min at 3,200 g. The clear soluble supernatant was ob-

tained and stored at −4oC prior analysis. A non-enzymic 

digest (control sample digested without enzyme) was also 

obtained by following the same digestion scheme with-

out enzyme.

Mineral evaluation

Sixty milliliters (60 mL) of the digested samples and their 

respective control without enzyme treatments were evap-

orated to one-third its initial volume (20 mL) by boiling 

in an autoclave, after which 20 mL 1% HNO3 was added 

and heated further to 1/2 its initial volume. It was al-

lowed to cool before pouring in a sample bottle and la-

beled. Appropriate dilution was made for each element 

before analysis. The standard for each element using the 

suitable metal salt was prepared. The standard for each 

metal was aspirated into the flame along with the digest 

and control and their respective concentration in mg/L 

were read for each sample and the absorbance of the 

standards was noted. Atomic absorption spectrophoto-

meter was used for the analysis of Mg, Mn, Zn, Fe, Cu, 

and Pb, while UV visible spectrophotometer using vana-

domolybdate yellow method was used for the analysis of 

P, a flame photometer was used for Na, K, and Ca as de-

scribed in the official methods of the Association of Offi-

cial Analytical Chemists (17).

Identification of phenolic compounds using high-perfor-

mance liquid chromatography (HPLC)-diode-array detec-

tion (DAD)

B. rubra extracts at a concentration of 15 mg/mL was in-

jected by means of a model SIL-20A Shimadzu Auto sam-

pler (Shimadzu Corporation, Kyoto, Japan). Separations 

were carried out using Phenomenex C18 column (4.6 

mm×250 mm×5 μm particle size). The mobile phase 

was solvent A=water : formic acid (98:2, v/v) and sol-

vent B=acetonitrile. The gradient program was started 

with 95% of A and 5% of B until 2 min and changed to 

obtain 25%, 40%, 50%, 60%, 70%, and 80% B at 10, 20, 

30, 40, 50, and 80 min, respectively, following the meth-

od described by Boligon et al. (18). The sample and mo-

bile phase were filtered through 0.45 μm membrane fil-

ter (Millipore, Billerica, MA, USA) and then degassed by 

ultrasonic bath prior to use. Stock solutions of standards 

references were prepared in water : acetonitrile (1:1; v/v) 

at a concentration range of 0.030∼0.500 mg/mL. Quan-

tifications were carried out by integration of the peaks 

using the external standard method, at 254 nm for gallic 

acid and ellagic acid, 280 nm for catechin, 326 nm for 

chlorogenic, p-coumaric, and caffeic acids, and 366 nm 

for quercetin and apigenin. The chromatography peaks 

were confirmed by comparing its retention time with 

those of reference standards and by DAD spectra (200 to 

600 nm). All chromatography operations were carried 

out at ambient temperature and in triplicate. The limit of 

detection (LOD) and limit of quantification (LOQ) were 

calculated based on the standard deviation of the re-

sponses and the slope using three independent analytical 

curves. LOD and LOQ were calculated as 3.3 and 10 σ/S, 

respectively, where σ is the standard deviation of the re-

sponse and S is the slope of the calibration curve as de-

fined by Brito et al. (19).

Total phenolic content (TPC)

The TPC of the digested extracts was determined by the 

Folin-Ciocalteu assay as described by Waterman and 

Mole (20), with slight modification. One hundred micro- 

liters (100 μL) of sample digest was pipetted into a test 

tube containing 2 mL of distilled water, 500 μL of Folin 

reagent was added and the mixture was mixed. Subse-

quently, 1.5 mL of Na2CO3 solution (7.5 g/100 mL) was 
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added to the solution and the volume was made up to 

10 mL. It was incubated at 37oC for 2 h (green colored 

solution obtained), after which the absorbance of the 

mixture was measured at 760 nm using a Lambda EZ150 

spectrophotometer (Perkin Elmer, San Diego, CA, USA). 

The standard used was tannic acid and the results were 

expressed as mg tannic acid equivalent per gram of the 

sample.

Total flavonoid content (TFC)

The TFC of the digested extracts was determined using 

a slightly modified method reported by Mier et al. (21). 

Briefly, 0.5 mL of digested sample was mixed with 0.5 mL 

distilled water pipetted into a test tube and 50 μL of 10% 

AlCl3, 50 μL of 1 mol/L potassium acetate, and 1.4 mL 

of distilled water; it was allowed to incubate at 37oC for 

30 min. Thereafter, the absorbance was measured at 415 

nm using a Lambda EZ150 spectrophotometer (Perkin 

Elmer). The TFC was calculated using quercetin as stand-

ard (0∼100 μg/mL), the TFC of the digested samples 

along with its various control was determined in tripli-

cates and the results were expressed as mg quercetin 

equivalent per gram of the sample.

Ferric reducing antioxidant power (FRAP)

The reducing power of the digested extracts was deter-

mined by assessing the ability of the extract to reduce 

FeCl3 solution as described by Oyaizu (22). Briefly, 1 mL 

of the various digested extract was mixed with 1 mL 200 

mM sodium phosphate buffer (pH 6.6) in a separate test 

tubes and 1 mL of 1% potassium ferricyanide added. The 

mixture was incubated at 50oC for 20 min. After incuba-

tion, 1 mL of 10% trichloroacetic acid was added to the 

mixture. This mixture was centrifuged at 650 rpm for 10 

min. Two mL of the supernatant was mixed with an 

equal volume of distilled water and 0.4 mL of 0.1% FeCl3 

added. The absorbance was measured at 700 nm using a 

Lambda EZ150 spectrophotometer (Perkin Elmer). FRAP 

was expressed as mg ascorbic acid equivalent per gram 

of the sample.

Total antioxidant activity (TAA)

TAA of the digested extracts was determined using the 

2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid 

(ABTS) antiradical assay reported by Awika et al. (23). 

The ABTS･+ (mother solution) was prepared by mixing 

equal volumes of 8 mM ABTS and 3 mM K2S2O8 (both 

prepared using deionized water) in a volumetric flask, 

which was wrapped in foil and allowed to react for a 

minimum of 12 h in the dark. The working solution was 

prepared by mixing 1 mL of the mother solution with 29 

mL phosphate buffer (pH 7.4). A range of Trolox (6-hy-

droxy-2,5,7,8-tetramethylchromane-2-carboxylic acid) 

standard solutions (100∼1,000 μM) were prepared. The 

working solution (2.9 mL) was added to the digests and 

the various control extracts (0.1 mL) or Trolox standard 

(0.1 mL) in a test tube and vortexed. The test tubes were 

allowed to stand for exactly 30 min at room tempera-

ture. The absorbance of the standards and samples were 

measured at 734 nm with a Lambda EZ150 spectropho-

tometer (Perkin Elmer). The results were expressed as 

μM Trolox equivalent per gram of the sample.

Statistical analysis

All analyses were run in triplicates. Means were then 

computed using Microsoft Excel software (Microsoft 

Corporation, Redmond, WA, USA) and ANOVA using 

the Duncan’s multiple tests by using SPSS 11.09 for 

Windows (IBM SPSS, Inc., Armonk, NY, USA).

RESULTS AND DISCUSSION

Mineral content

The mineral contents (Mg, Zn, Fe, Na, K, Ca, and P; 

mg/100 g) of raw and blanched B. rubra subjected to dif-

ferent phases of human digestion (oral digestion, gastric 

digestion, and intestinal digestion) and their respective 

controls are shown in Table 1. The results showed high 

mineral content for raw enzyme treated sample compared 

to their blanched counterparts, with few exceptions. The 

reduction in the amount of minerals after blanching may 

be attributed to loss into the boiled water used for blanch-

ing. This is in agreement with previous reports where 

reductions in the level of some minerals in vegetables 

were observed after boiling (24,25). Mineral loss to wa-

ter medium may however be beneficial in cases where 

the liquid is retained for consumption e.g. in preparation 

of stews or soups, as is usually practiced in Nigeria. In 

these scenarios, minerals lost from the food sample are 

still available for consumption (24,25). Conversely, a 

higher amount of some minerals were also observed af-

ter blanching. This might be associated with the fact that 

cooking increases the release of some minerals from food 

matrix by mainly reducing anti-nutrient levels in the 

food samples that may chelate the minerals (26). 

The results also showed varied amount of evaluated 

minerals at each phase of simulated human digestion in 

vitro. The result revealed a higher level of some of the 

evaluated minerals in the intestinal phase of in vitro di-

gestion (Zn, 6.36/5.31; Mg, 5.29/8.97; Ca, 2,307.69/ 

1,565.38; Na, 5,128.21/4,128.21) for raw and blanched, 

respectively. Kulkarni et al. (27) also observed that bio- 

accessibilities of wheat grass minerals were higher after 

intestinal in vitro gastrointestinal digestion than during 

gastric digestion. Iron, on the other hand, is higher at 

the oral phase of in vitro digestion for raw B. rubra (5.17), 

potassium is higher at gastric phase of in vitro digestion 



26  Salawu et al.

Table 1. Mineral composition (mg/100 g) of in vitro digested raw and blanched Basella rubra

Sample Mg Zn Fe Na K Ca P 

ROC 6.98±0.06
e

4.81±0.35
d

3.68±0.47
de

181.45±20.16
ab

5,036.29±4.03
f

1,514.11±2.02
cd

4.28±0.25
g

ROD 5.33±0.07
bc

3.66±0.33
b

5.17±0.01
g

203.63±2.02
ab

4,036.29±4.03
d

1,209.68±9.80
b

3.18±0.05
c

BOC 6.47±0.46
d

3.13±0.06
a

3.59±0.18
d

886.09±1.01
c

5,515.12±7.06
h

1,915.32±9.10
f

3.58±0.05
d

BOD 4.82±0.28
ab

2.92±0.05
a

4.13±0.07
f

128.02±5.04
a

3,215.73±30.24
a

1,814.52±2.78
e

3.78±0.05
e

RGC 7.56±0.35
f

4.59±0.04
d

2.98±0.20
c

203.51±3.10
ab

5,061.98±103.31
f

1,033.06±7.70
a

2.01±0.05
a

RGD 5.51±0.11
c

4.61±0.04
d

3.40±0.23
d

231.40±4.13
b

5,309.92±61.98
g

1,446.28±8.40
c

1.96±0.10
a

BGC 5.62±0.10
c

5.47±0.18
e

1.96±0.02
ab

123.97±6.70
a

4,130.17±4.13
e

2,027.89±4.10
g

9.30±0.10
j

BGD 4.37±0.05
a

4.73±0.02
d

1.78±0.14
a

125.00±1.03
a

6,243.81±2.07
i

1,756.20±103.31
e

5.89±0.10
h

RIC 9.21±0.74
g

3.99±0.09
c

4.32±0.27
f

5,615.38±179.50
g

6,333.33±128.21
j

1,794.87±9.30
e

4.04±0.06
f

RID 5.29±0.04
bc

6.36±0.15
f

4.23±0.07
f

5,128.21±2.56
f

3,726.92±3.85
c

2,307.69±7.50
h

2.44±0.13
b

BIC 8.86±0.04
g

3.63±0.17
b

2.21±0.15
b

3,623.08±2.56
d

3,410.26±5.13
b

2,365.38±7.40
h

7.95±0.13
i

BID 8.97±0.05
g

5.31±0.25
e

4.02±0.14
ef

4,128.21±25.64
e

3,769.23±25.64
c

1,565.38±8.30
d

2.05±0.13
a

Values in the same column followed by different letters (a-j) are significantly different (P<0.05).
ROC, raw oral control; ROD, raw oral digest; BOC, blanched oral control; BOD, blanched oral digest; RGC, raw oral control; RGD, 
raw gastric digest; BGC, blanched gastric digest; BGD, blanched gastric digest; RIC, raw intestinal control; RID, raw intestinal 
digest; BIC, blanched intestinal control; BID, blanched intestinal digest.

Fig. 1. Representative high performance liquid chromatography (HPLC) profile of B. rubra raw (A) and blanched (B) extracts. Gallic
acid (peak 1), catechin (peak 2), chlorogenic acid (peak 3), caffeic acid (peak 4), ellagic acid (peak 5), p-coumaric acid (peak 6), 
quercetin (peak 7), and apigenin (peak 8).

(5,309.92/6,243.81) for raw and blanched B. rubra and 

phosphorous ranked higher at gastric phase of in vitro di-

gestion (5.89) in blanched B. rubra. The varied level of 

the evaluated minerals at the different phases of the si-

mulated human digestion may be associated with the fact 

that the bioavailability of compounds in plant products 

differ by virtue of their interactions between the chem-

ical structures and macromolecules within the food ma-

trix, as well as their uptake rates into the body during 

gastrointestinal digestion (28). The results also showed 

that the blanched digested B. rubra have higher mineral 

composition at total in vitro digestion phases than their 

respective controls (27,29). This, by implication, suggests 

that the action of the digestive enzymes makes a number 

of minerals available from the processed vegetable to the 

body. Overall, the concentration of the evaluated miner-

als after in vitro digestion, were able to meet the Recom-

mended Dietary Allowance as reported by the World 

Health Organization (30). 

Phenolic composition

Phenolic compounds are commonly found in plants and 

have been reported to have several biological activities 

(31-33). Studies have focused on the biological activities 

of phenolic compounds, which have potential antioxi-

dants and free radical scavenging abilities (34). The 

HPLC-DAD quantification of phenolic compounds in B. 

rubra is presented in Fig. 1. The qualitative evaluation of 

phenolic compounds in B. rubra revealed the presence of 

gallic acid, chlorogenic acid, caffeic acid, ellagic acid, p- 

coumaric acid, catechin, quercetin, and apigenin. The 

presences of phenolic compounds have been reported in 

leafy vegetables by numerous researchers (32,35-38). Es-

timate of the phenolic compounds concentrations in the 

vegetable studied is shown in Table 2. The results re-

vealed a reduction in the level of some of the evaluated 

phenolic compounds after blanching, with exception of 

chlorogenic acid, with an elevated value after blanching, 

while apigenin, ellagic, and gallic acids were not signif-

icantly different after blanching. The observed reduction 
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Table 2. Quantitative estimates of phenolic compounds in raw 
and blanched Basella rubra digests

Compounds
B. rubra 

raw (mg/g)

B. rubra 

blanched 
(mg/g)

LOD 
(µg/mL)

LOQ 
(µg/mL)

Gallic acid 1.09±0.01
b

1.13±0.02
b

0.011 0.036

Catechin 1.12±0.03
b

0.52±0.01
a

0.019 0.063

Chlorogenic acid 1.97±0.02
b

2.84±0.03
c

0.024 0.080

Caffeic acid 2.05±0.01
b

0.57±0.04
a

0.028 0.094

Ellagic acid 0.48±0.04
a

0.51±0.01
a

0.007 0.023

p-Coumaric acid 6.17±0.03
d

4.16±0.01
d

0.015 0.046

Quercetin 0.43±0.01
a

− 0.026 0.087

Apigenin 3.01±0.01
c

2.87±0.03
c

0.013 0.043

Results are expressed as mean±SD of three determinations.
Values in the same column followed by different letters (a-d) 
are significantly different (P<0.05).
LOD, limit of detection; LOQ, limit of quantification.

Table 3. Antioxidant indices of raw and blanched Basella rubra 

at different phases of in vitro digestion

Sample B. rubra raw B. rubra blanched

Total phenolic content (mg tannic acid equivalent/g dry weight)

Oral 79.48±0.82
a

108.71±3.85
b

Gastric 386.71±4.50
b

80.02±0.47
a

Intestinal 553.56±5.83
c

553.56±5.83
c

Total flavonoid content (mg quercetin equivalent/g dry weight)

Oral 302.15±0.00
b

264.78±0.49
b

Gastric 260.29±0.15
a

250.80±0.74
a

Intestinal 518.88±1.21
c

488.33±0.68
c

Ferric reducing antioxidant power 
(mg ascorbic acid equivalent/g dry weight)

Oral 5.27±0.02
a

4.95±0.02
a

Gastric 5.70±0.01
b

5.19±0.00
b

Intestinal 8.15±0.01
c

8.14±0.01
c

Total antioxidant activity (mg Trolox equivalent/g dry weight)

Oral 3,087.84±2.00
a

3,106.34±2.00
a

Gastric 3,274.47±0.00
ab

3,253.83±2.10
ab

Intestinal 5,043.16±0.00
c

4,815.03±6.48
c

Values represent mean±SD of triplicate experiment.
Values in the same column followed by different letters (a-c) 
are significantly different (P<0.05).

in the levels of some of the identified phenolic com-

pounds is in agreement with previous reports (39,40). 

However, the increasing amount of chlorogenic acid after 

blanching might be due to alterations in chemical struc-

ture and composition as a result of heat during blanching 

(41). Thus, blanching might have enhanced the break-

down of insoluble fiber matrix of the vegetable, making 

some of its polyphenols more accessible.

Antioxidant indices

A number of studies have demonstrated the use dietary 

components in the control of free radical mediated dis-

eases, such as cancer and cardiovascular problems (42). 

The result of the antioxidant indices of B. rubra at vari-

ous stages of in vitro gastrointestinal digestion (oral, gas-

tric, and intestinal digestion) are shown in Table 3. The 

results revealed some levels of antioxidant activities at 

different stages of simulated human gastrointestinal di-

gestion, with a much higher antioxidant activity for the 

raw digested vegetal matter compared to blanched di-

gested vegetal matter. It has been established that an ap-

preciable part of the antioxidant activities of vegetables 

and fruits are related to phenolic compounds (10,11,43, 

44). Therefore, the reduced antioxidant activity in the 

blanched digested vegetal matter might be associated 

with quantitative loss of polyphenols encounterd during 

the heat treatment (39,40).

In vitro digestion method measures the potential bio-

availability of the nutrient, which is the amount of the 

nutrient liberated from the food material during gastro-

intestinal digestion, which is, in turn, available for ab-

sorption in the body (45). The result of the antioxidant 

activity of the in vitro digested vegetal matter showed 

higher antioxidant indices (TPC, TFC, FRAP, and TAA) 

at the intestinal phase of in vitro digestion. It has been 

documented that antioxidant activity from extracts of 

food materials is not usually the actual antioxidant ca-

pacity in the digestive tract (46). It has also been estab-

lished that the antioxidant activities of plant food is re-

lated to their phenolic composition (10,11,43,44). There-

fore, the observed higher antioxidant activities at the in-

testinal phase of gastrointestinal digestion may likely be 

due to the release of the bound polyphenols after the ac-

tion of the digestive enzymes. 

This implies that the maximum amount of phenolics is 

likely to be released during in vitro digestion process as a 

result of the activity of the digestive enzymes (α-amy-

lase, pepsin, and pancreatin) of the gastrointestinal tract. 

The higher antioxidant activity at the intestinal phase of 

gastrointestinal digestion is in agreement with previous 

reports (47,48), which reported high polyphenolic con-

tents and antioxidant activities of commercially available 

juices after gastric and intestinal phase of gastrointesti-

nal digestion. Additionally, it has been reported that 

higher antioxidant activity obtained during digestion 

might be due the biotransformation of polyphenolic com-

pounds to other phenolics in mild alkaline conditions 

(49). Olthof et al. (50) also reported that hydrolyzation 

of cyanidin and quercetin glycosides by digestive enzymes 

(pepsin and pancreatin) to cyanidin and quercetin respec-

tively, which have very high antioxidant potentials. This 

is an indication that the action of the digestive enzymes 

on the studied vegetal matter during digestion and most 

especially at the total intestinal digestion phase could 

make the constituent antioxidant molecules readily avail-

able to the human body and thus make it a good candi-

date in ameliorating free radical related diseases. 

The result of this study revealed that the studied vege-

table has a number of nutritional important mineral ele-
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ments and health promoting phenolic compounds with 

antioxidant potential. The results also established the 

availability of the essential minerals after simulated in vi-

tro digestion. Furthermore, the results revealed higher 

antioxidant indices after the intestinal phase of the sim-

ulated human digestion. Therefore, the consumption of 

the studied vegetable could be harnessed as functional 

food; as a source of nutritionally important mineral ele-

ment and the prevention of free radical mediated dis-

eases. 
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