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Abstract

Background: The CLV3/ESR-RELATED (CLE) gene family encodes small secreted peptides (SSPs) and plays vital roles
in plant growth and development by promoting cell-to-cell communication. The prediction and classification of CLE
genes is challenging because of their low sequence similarity.

Results: We developed a machine learning-aided method for predicting CLE genes by using a CLE motif-specific
residual score matrix and a novel clustering method based on the Euclidean distance of 12 amino acid residues
from the CLE motif in a site-weight dependent manner. In total, 2156 CLE candidates—including 627 novel
candidates—were predicted from 69 plant species. The results from our CLE motif-based clustering are consistent
with previous reports using the entire pre-propeptide. Characterization of CLE candidates provided systematic
statistics on protein lengths, signal peptides, relative motif positions, amino acid compositions of different parts of
the CLE precursor proteins, and decisive factors of CLE prediction. The approach taken here provides information
on the evolution of the CLE gene family and provides evidence that the CLE and IDA/IDL genes share a common
ancestor.

Conclusions: Our new approach is applicable to SSPs or other proteins with short conserved domains and hence,
provides a useful tool for gene prediction, classification and evolutionary analysis.
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Background
Small secreted peptides (SSPs) play vital roles in cell-to-
cell communication during plant growth and development
[1–4]. The most well understood plant SSPs are encoded
by the CLAVATA3 (CLV3)/EMBRYO SURROUNDING
REGION (ESR)-RELATED (CLE) gene family [5, 6]. CLE
peptides have been widely identified in bryophytes, pteri-
dophytes, gymnosperms and angiosperms [7]. A typical
CLE protein contains an N-terminal signal peptide, a non-

conserved variable region in the middle, a C-terminal con-
served motif (CLE motif) and in some instances, a short
C-terminal tail downstream of the CLE motif. CLE motifs
are usually composed of 12 to 13 amino acid residues.
Exogenous peptides containing the CLE motif can mimic
the phenotypes of transgenic plants that overexpress CLE
genes [8–10]. The conserved CLE domains contain
hydroxyproline and arabinosylated hydroxyproline resi-
dues [11–13]. Interestingly, the influence of these post-
translational modifications varies in different species. For
instance, post-translational modifications are critical for
the activity of the CLV3 peptides in tomato but not in
Arabidopsis [14, 15]. Typically, the mature forms of CLE
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peptides are recognized by plasma membrane-localized
leucine-rich repeat receptor-like kinases (LRR-RLK) or
receptor-like proteins (LRR-RLP) [16–18]. The extracellu-
lar domains of LRR-RLK/RLPs bind CLE peptides. Ligand
binding activates the intracellular domain of the LRR-
RLKs or plasma membrane-associated kinases and thus,
transduces the extracellular signal. Various methods have
been used to investigate the interactions between CLE
peptides and LRR-RLK/RLPs, such as genetic and physio-
logical approaches, directly quantifying physical interac-
tions and phosphor-proteomics. However, only a small
number of possible ligand-receptor pairs have been identi-
fied [19, 20].
CLE peptides regulate the growth and development of

various tissues in Arabidopsis, such as the apical and
vascular meristems. Well-known CLE peptides include
CLV3, CLE40 and TRACHEARY ELEMENT DIFFEREN
TIATION INHIBITORY FACTOR (TDIF), which regu-
late the CLAVATA1 (CLV1)–WUSCHEL (WUS) signal-
ing pathway in the shoot apical meristem (SAM) [21],
the ARABIDOPSIS CRINKLY4 (ACR4)–WUSCHEL-re-
lated Homeobox5 (WOX5) signaling pathway in the root
apical meristem (RAM) [22], and the TDIF RECEPTOR/
PHLOEM INTERCALATED WITH XYLEM (TDR/
PXY)–WOX4 signaling pathway in the vascular cambial
meristem (CAM) [10, 17, 23], respectively. In addition,
CLE6 promotes gibberellin (GA)-mediated shoot growth
[24]. The CLE8–WOX8 signaling pathway regulates
endosperm and embryo development [25]. CLE9 and
CLE10 regulate the formation of protoxylem by binding
BARELY ANY MERISTEM (BAM) [26, 27]. CLE9/
CLE10–HAESA-LIKE1 (HSL1)-SOMATIC EMBRYO-
GENESIS RECEPTOR KINASEs (SERKs) regulate sto-
matal lineage cell division [27]. CLE20 inhibits root
growth and lateral root growth by inhibiting RAM and
CAM activity, respectively [28, 29]. CLE25–BAM in-
duces stomatal closure and promotes drought tolerance
by controlling abscisic acid accumulation. Additionally,
CLE25 promotes phloem initiation by regulating a CLE-
RESISTANT RECEPTOR KINASE (CLERK)–CLV2
receptor complex [30, 31]. CLE26 regulates root archi-
tecture and protophloem formation [32–34]. CLE45–
BAM3 suppresses protophloem differentiation and RAM
growth. In contrast, CLE45–STERILITY-REGULATING
KINASE MEMBER1/2 (SKM1/SKM2) promotes seed
production in plants grown in elevated temperatures by
maintaining pollen performance [35, 36].
Each amino acid of the CLE motif plays different roles

in peptide modification, peptide activity, and ligand–re-
ceptor binding [37–41]. For example, clv3 mutants and
plants expressing a CLV3 motif with the Gly residue at
the 6th position substituted with Leu, Ile, Val, Phe, Tyr,
or Pro are phenotypically similar [38]. Similarly, struc-
tural and functional analyses of the TDIF–TDR/PXY

(ligand–receptor pair) demonstrate that each amino acid
residue of the TDIF motif is important. Indeed, amino
acid substitutions at the 1st, 3rd, 4th, 6th, 8th, 9th and
12th positions of the TDIF motif result in reduced or
complete loss of function [39]. Although amino acid
substitutions at the 2nd, 5th, 10th and 11th sites of the
TDIF motif have very little impact on its TE differenti-
ation activity, these sites are important for specifically
binding the TDR/PXY receptor [40, 41].
Because of the short coding sequences and the gener-

ally low sequence similarity among the CLE proteins,
the identification and classification of CLE genes has al-
ways been a challenge, even in the model plant A. thali-
ana. Originally, using TBLASTN, 39 typical CLE
polypeptides were identified. Twenty four of them were
from A. thaliana [42]. Subsequently, CLE40, CLE41 and
a nematode CLE (HgCLE) gene were identified using the
same approach [43]. The latter one provided evidence of
ligand mimicry. CLE41 was the first of a novel class of
CLE genes, the TDIF and TDIF-like genes [39, 44]. A
total of 32 CLE genes have been identified in A. thaliana
defining 26 unique CLE peptides [45]. The Arabidopsis
CLE genes have been used to identify CLE homologues
in many other plant species, such as Oryza sativa [46],
Lotus japonicas [47], Selaginella moellendorfii [48], Med-
icago truncatula [49, 50], Picea abies [51], Solanum lyco-
persicum [52], Glycine max [53], Raphanus sativus [54],
and Populus trichocarpa [55]. Goad et al. [7] predicted
CLE polypeptides from 57 plant species. The classifica-
tion of CLE gene families has been based on their func-
tions or sequence similarities. Based on the effects of
CLE peptides on plant growth, 22 Arabidopsis CLE poly-
peptides were classified into two groups [56]. According
to their physiological functions, four classes of CLE pep-
tides were proposed [57]. On the other hand, 13 categor-
ies of CLE motifs were generated by clustering the
conserved sequences using the CLANS software [7, 58].
The objective of this study was to develop a novel ap-

proach for efficiently and accurately predicting and clas-
sifying CLE proteins. The general substitution matrix
was replaced with a modified amino acid substitution
matrix that is based on the weight of each position of
the CLE motif. Machine learning (ML) was used to im-
prove the accuracy of CLE gene predictions. This study
helps to define the characteristics of different groups of
CLE genes and therefore, to explore the origin and evo-
lution of the CLE gene family.

Results
Developing a new residual score matrix for CLE motifs
To predict CLE genes in plants, we developed a new re-
sidual score matrix for CLE motifs by integrating the
amino acid substitution matrix, amino acid usage fre-
quency matrix and site weights of the CLE motif.
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The amino acid composition of the CLE motif was an-
alyzed in 69 species at different levels that included total
proteins, small proteins (≤ 200 residues in length) and
CLE precursor proteins (Additional file 1: Figure S1).
The amino acid composition of small proteins was simi-
lar to total proteins (Pearson Correlation Coefficient:
0.23, p = 4.4e-17). However, a higher frequency of par-
ticular amino acid residues was observed in CLE precur-
sors. For example, the frequency of histidine (H) was
74% higher in CLE precursors than in total proteins
(Additional file 1: Figure S1). The amino acid compos-
ition in different regions of CLE proteins was also ana-
lyzed (Additional file 1: Figure S1). The frequency of P
and H in CLE motifs were both more than fourfold
higher than in total proteins, which provides evidence
that they are functionally important amino acids for pep-
tide processing or for the recognition of peptides by re-
ceptors (Fig. 1a). In contrast, some residues were very
scarce in CLE motifs, such as the three aromatic amino
acids (phenylalanine (F), tyrosine (Y) and tryptophan
(W)) and the two sulfur-containing amino acids (cyst-
eine (C) and methionine (M)) (Fig. 1a; Additional file 1:
Figure S1). This strong bias in amino acid composition
encouraged us to try and build a CLE-specific score
matrix.
We tested three commonly used substitution matrices—

BLOSUM62, BLOSUM80 and PAM250—and found that
the performance of each was similar (Additional file 2: Fig-
ure S2). Nevertheless, the BLOSUM80 matrix provided a
slightly better resolution of the motif scores and therefore,
was used to develop the new score matrix. For the amino
acid usage frequency matrix, 1628 reported CLE genes from
57 species [7] were chosen as references (Additional file 12:
Table S1). The amino acid usage frequency at each site of
the CLE motif was calculated as a percentage (Add-
itional file 3: Figure S3) and was represented as a Weblogo
sequence (Fig. 1d). The conservativities of each site were
largely different, as previously reported [38]. Sites with
higher conservativity were considered to hold higher weight
in our new score matrix. Some sites contained two domin-
ant residues, such as the 8th site (50.03% N and 47.06% D)
and the 12th site (66.49% N and 31.38% H). Based on the
modified method for evaluating site weight, the weight of
the 12th site was set at 1.00, and the 1st, 6th–9th, and 11th
sites had weights no less than 0.70 (Fig. 1b).
In the new CLE score matrix, each residue of a candi-

date CLE motif made a contribution to its total score.
Residues at the conserved sites contributed more than
those at less conserved sites. Dominant residues contrib-
uted more than scarce residues. For example, the proline
at the 9th site alone had a score of 6.62, which made the
most striking contribution to the score matrix (Fig. 1a).
It is worth mentioning that the combination of 12 resi-
dues with the highest frequency at each site was

“RLVPSGPNPLHN”, found in CLE9/10 in A. thaliana.
The combination of residues with the highest score was
“RRVPSGPNPLHN”. The total motif score was 38.00.

Machine learning aided the prediction of CLE genes in
plants
In addition to the CLE motif score, we also included the
protein length, motif position and signal peptide score
to predict CLE genes in 69 plant species. Three machine
learning algorithms, C4.5, ANN and SVM, were
employed to categorize all candidate genes into CLE
genes or non-CLE genes using the reported CLE genes
in the training data set. Our analysis of the training data
set, based on 53 species, yielded 1709 CLE candidate
genes, including the 1529 genes that were predicted
using the Hidden Markov Model (HMM) [7] and 180
novel genes. All three machine learning algorithms sup-
ported 1475 (96.5%) of the reported CLEs and 106
(58.9%) of the novel CLEs. In total, 94 (5.5%) of the can-
didate genes were supported by only one algorithm (Fig.
1e). Additionally, machine learning aided in the predic-
tion of 447 novel CLE candidates from the 16 species in
the testing data set. Therefore, our method identified a
total of 2156 CLE candidates in 69 species (Add-
itional file 12: Table S1).

A new CLE classification method based on the Euclidean
distance of CLE motifs in a site-weight dependent manner
To group the 2156 CLE motifs, the Euclidean distances
(d) between each CLE candidate and the 32 Arabidopsis
CLE motifs (AtCLEs) were calculated (Fig. 2 and Fig. 3).
Motifs from the top 5% maximum d to AtCLEs were
classified into Group “Others”. The rest of the CLE mo-
tifs were classified with their closest AtCLE. Conse-
quently, all of the CLE motifs were grouped into six
groups, Group1–5 and Others. As a comparison, phylo-
genetic trees constructed using the A. thaliana CLE mo-
tifs (Fig. 2a), CLE proteins without signal peptides (Fig.
2b) and log-normalized rank of all-vs-all BLAST e-
values of full-length CLE proteins (Fig. 2c) were con-
structed using the NJ method, as previously described
[7, 59]. The new AtCLE clustering using the HCL
method was based on the Euclidean distance between
each pair of AtCLE motifs (Fig. 2d). The clustering re-
sults were similar to the third phylogenetic tree, except
for AtCLE8, AtCLE40 and AtCLE43 (Fig. 2 and Add-
itional file 13: Table S2). In Group3, the AtCLE8 and
AtCLE12 motifs, which are “RRVPTGPNPLHH” and
“RRVPSGPNPLHH”, respectively, share high sequence
similarity. However, clustering of AtCLE40 and
AtCLE43 was not consistent among the four methods
(Fig. 2d). To determine the reasons for these discrepan-
cies, Weblogos of the appropriate subgroups (Group5A
and Group5B) were created. Both subgroups were less
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conserved relative to other subgroups (Additional file 4:
Figure S4 and Additional file 14: Table S3).
A cluster tree of all CLE candidates in 69 species was

drawn that includes a heatmap indicating the Euclidean
distance between the CLE motifs (Fig. 3). The heatmap

demonstrated that the CLE candidates in Group5 and
Group “Others” have a higher diversity in residual com-
position. Based on the cluster tree, the 26 AtCLE sub-
groups were then combined into 11 subgroups.
Weblogos of the final 12 subgroups illustrated the

Fig. 1 Methods and results for predicting CLE genes. a Fold changes in the amino acid frequencies in CLE precursors and CLE motifs from 69
species. The amino acid composition of all proteins was used as a control (set to 1.0). The grey, aquamarine and lemon colored lines indicate all
proteins, CLE precursors and CLE motifs, respectively. b Weight at each site of the CLE motif. c Score matrix of CLE motifs. The amino acids are
indicated at the left using single letter codes. The numbers in the grid represent the score of each amino acid at sites 1 through 12. d Weblogo
of the 12-residue CLE motif from the 1529 reported CLE genes [7]. e UpSet plot for visualizing the intersecting sets of CLE genes predicted by
different methods. The number of CLE genes at each intersection was labeled in blue on the top of the appropriate column
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importance of “heavy-weight” sites in the classification
of CLE motifs (e.g., the 1st and 8th sites (Additional
file 4: Figure S4)). Analysis of tandem CLE genes re-
vealed that Group1 had the highest rate of tandem
genes. Besides, candidates from monocots seemed to
form clusters with other monocots, and candidates
from dicots seemed to form clusters with other dicots.
These data indicate a strong specificity among the monocot
CLE motifs and the dicot CLE motifs (Fig. 3). Statistical
analysis of the different types of CLE motifs showed that
monocots and dicots share very few CLE motifs (18 out of
the 474 CLE motifs in dicots). Furthermore, there was no
common TDIF/TDIF-like motif shared between monocot
and dicot species, probably due to the evolution of distinct
vascular patterns in monocots and dicots (Additional file 15:
Table S4).

Evolution of CLE genes in plants
To understand the evolution of CLE genes in plants,
the number of CLE genes in each species was
counted (Fig. 4 and Additional file 5: Figure S5). Al-
though three CLE genes had been detected in algae,
including one in Dunaliella salina and two in Cocco-
myxa subellipsoidea, the algal CLE genes were atyp-
ical because of their low motif scores, low signal
peptide scores and poor motif positions (Add-
itional file 16: Table S5). In contrast to algae, there
were nine typical CLE genes in Physcomitrella patens
(Fig. 4; Additional file 5: Figure S5 and Add-
itional file 16: Table S5), 11 genes in Sphagnum fallax
and eight genes in Marchantia polymorpha (Fig. 4,
Additional file 5: Figure S5). These data provide evi-
dence that CLE genes originated in a bryophyte.

Fig. 2 Clustering analysis of Arabidopsis CLE motifs. Phylogenetic tree of AtCLE motifs (a), full-length proteins without signal peptides (b) and
log-normalized rank of all-vs-all BLAST e-values generated using the NJ method based on the evolutionary distances (c), which were computed
using the Poisson correction method (a, b), and Euclidean distances (c). d Clustering of the AtCLE motifs based on the Euclidean distance of each
pair of sequences in a site-weight dependent manner. The tree was constructed using the HCL method. The names of the CLE motifs are
indicated with different colors
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The numbers of annotated transcripts in the 62 spe-
cies of land plants were largely different, ranging from
19,287 (M. polymorpha) to 99,386 (Triticum aestivum)
(Additional file 5: Figure S5). The proportion of CLE
genes in different species was not fixed, ranging from
0.015% (Vitis vinifera) to 0.204% (Phaseolus vulgaris).
The mean proportion of CLE candidates in dicots was
slightly higher than in monocots, which were 0.105 and
0.091%, respectively. Their proportions in the three
Bryophytes and the pteridophyte (Selaginella moellen-
dorffii) were 0.027, 0.041, 0.041 and 0.036%, respect-
ively, in general lower than in the monocots and
dicots.
To further investigate the evolution of CLE genes in

different species, the number of CLE genes in each sub-
group was counted in each species (Fig. 4). CLE candi-
dates appeared in fewer subgroups in lower plants. For
example, the nine CLE candidates in P. patens were all
presented in Group3B. Mapoly1011s0001.1 from M.
polymorpha was the first candidate identified in Group4.
Its motif “HKNPAGPNPIGN” shared high similarity
with the CLE motif from Arabidopsis CLE46, a homolog
of TDIF. Although none of the Group1 candidates were

identified in the bryophytes, two CLE candidates from
Group1 were identified in S. moellendorffii.
In addition, to the finding that CLE motifs are most

frequently found in monocots and dicots, the total num-
ber of each motif was counted in monocots and/or di-
cots (Additional file 6: Figure S6 and Additional file 16:
Table S5). Our results indicate that the most frequent
CLE motif in monocots is “RRVRRGSDPIH”—the same
as CLE45 in A. thaliana—and that the most frequent
CLE motif in dicots is “HEVPSGPNPISN”—the same as
CLE41/44 (TDIF) in A. thaliana. Monocots and dicots
have a strong bias for particular CLE motifs. For ex-
ample, although the TDIF motif appeared 83 times in di-
cots, the TDIF motif was not found in monocots. Only a
TDIF-like motif “HEVPSGPNPDSN” appeared in mono-
cots (Additional file 17: Table S6).

Statistics analysis of CLE precursor proteins
CLE peptides are derived from nonfunctional precursor
proteins by removal of the N-terminal signal peptide
from the latter and by enzymatic processing to yield the
mature peptide [60]. In order to get a better understand-
ing of CLE protein evolution, various characteristics of

Fig. 3 Clustering analysis of CLE motifs in plants. The heat map shows the Euclidean distance of 2156 CLE motifs in 69 plant species. Red
represents short distances. Blue represents long distances. A shorter Euclidean distance implies a higher degree of motif similarity. CLE motifs
were clustered based on the Euclidean distance of each pair of sequences in a site-weight dependent manner. The clustering tree was generated
using the HCL method. The information on the classification of the CLE motifs is shown on the top of the heatmap. All CLE motifs were clustered
into six major groups: Group 1–5 and Group “others”. “TGD” and “Non-TGD” indicate whether the motif was from a potential tandem gene
duplication (TGD). “Species” indicates that a motif was from a dicot, monocot or other type of plant species
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Fig. 4 (See legend on next page.)
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Fig. 5 Statistical analysis of the major characteristics of CLE precursors in plants. The major characteristics of 2156 CLE precursor proteins were
analyzed, including CLE motif scores (a), protein lengths (b), CLE motif positions (c), lengths of the C-terminal tails (d), and SignalP (e) and
TargetP scores (f). Different groups are represented with different colors (a-f). Histogram: the height of the column represents the CLE candidate
counts (b, d). The line in the box represents the median value. The upper and lower boundary of the box represents the upper and lower
quartile values, respectively. The top and bottom of the line represents the maximum and minimum value of non-outliers, respectively. The
points represent outliers (a, c). The widths of the violins represent the distribution density of the indicated value. The tails of the violins were
trimmed to match the range of the data (e, f). g-i Correlation between the different characteristics of each CLE candidate in three ranges of
protein length: 51–100, 101–150 and > 150 amino acid residues, respectively

(See figure on previous page.)
Fig. 4 Evolution of CLE genes in plants. The number of CLE candidate genes from each group in each species was counted and indicated in the grid. The
2156 CLE candidates were from 12 groups and 69 species. The abundance of CLE candidates in each group is indicated with different shades of red. A
darker shade of red indicates more group members. A lighter shade of red indicates fewer group members. The Latin name of each species is indicated
on the right. The group name is indicated at the top of the grid. The total number of CLE candidates in each subgroup is indicated in the appropriate box.
The clustering tree on the top is a simplified version of the tree from Fig. 3
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different groups were analyzed, including CLE motif
score, protein length, relative position of the CLE motif,
length of the C-terminal tail, signal peptide scores, and
correlations among the major variables of the score
matrix (Fig. 5, Additional file 3: Figure S3, Add-
itional file 7: Figure S7 and Additional file 8: Figure S8).
Group 3 had the highest median CLE motif score,

followed by the rest of the groups in the following order:
Group 1, Group 2, Group 4, Group 5 and Group
“Others” (Fig. 5a and Additional file 18: Table S7). Al-
though about 90% of the CLE precursor proteins contain
50–150 amino acid residues, most groups have more
candidates containing 50 to 100 residues, except for
Group 4 (Fig. 5b and Additional file 9: Figure S9). Group
1 to 4, particularly Group 3, has higher values for the
relative position of the CLE motifs (i.e., means closer to
the C-terminal end). In contrast, the motif positions
in Group 5 and “others” are more widely distributed
(Fig. 5c). Approximately two thirds of the candidates
have a 0 to 2 residues tail on the C-terminus of the
CLE motif. More than 50% of the candidates from
both Group 1 and Group 3 did not have a C-terminal
tail. The basic amino acids Arginine (R) and lysine
(K) dominated at the first amino acid residue position in
the short C-terminal tails (1–2 residues), except for the
candidates from Group 1 (Fig. 5d and Additional file 7:
Figure S7). The presence of a signal peptide in the CLE
precursors was predicted online using the SignalP/
TargetP server and illustrated with a violin plot.
Most genes in Group 1 have high signal peptide
scores (Fig. 5e, f). However, about two-thirds of the
genes in Grp. 2B and Grp. 5A have SignalP scores
lower than the cut-off value (Additional file 19:
Table S8). In general, the lengths of the CLE precur-
sor proteins in the bryophytes and S. moellendorffii
are slightly longer than the average. Other variables,
including the signalP score, motif position and the
CLE motif score, were not significantly different be-
tween vascular and non-vascular plants (Additional
file 8: Figure S8).
To determine how much each variable contributed to

each CLE candidate, correlations between the five vari-
ables and the decision to define a candidate as a CLE
were calculated (Fig. 5g-i). Motif score and motif pos-
ition were decisive factors when the length of the CLE
proteins was between 50 and 150 residues. Protein
length was positively correlated with the decision when
the candidates were shorter than 100 residues. However,
the correlation was negative for the candidates between
100 and 150 residues in length (Fig. 5g and h). For lon-
ger candidates (> 150 residues), the correlation between
motif position and the decision was less. For these can-
didates, the motif score was the only decisive factor (Fig.
5i). It is worth mentioning that the correlation between

the signal peptide scores and the decision was less than
expected. In addition, we analyzed the gene structures of
the CLE candidates in A. thaliana and Zea mays. The
results provide evidence that alternative splicing may
allow particular CLE genes to concurrently encode pro-
teins with or without the CLE motif (e.g., CLE46
(AT5G59305) and GRMZM5G875999) (Additional file 10:
Figure S10).

Identification of new types of CLE genes
By applying our new approach, 5% (n = 136) of the CLE
candidates that are more distantly related to the Arabi-
dopsis CLEs were clustered into Group “others”. A total
of 31 of these candidates were reported previously [7].
Based on the clustering, a novel subgroup of candidates
(n = 26) was identified, with an unusual “serine (S)” at
the 12th site of the CLE motif (Fig. 6). This subgroup
could be further divided into three types, mainly based
on the last three residues of their CLE motifs. All mem-
bers of this subgroup were from monocots and dicots,
consistent with their recent evolution.
There were three subsets of CLE candidates containing

a motif similar to the Arabidopsis secreted peptide IDA
“PIPPSAPSKRHN” [19], that we named the SVPP-type
(n = 6), PVPP-type (n = 7) and RIPP-type (n = 8), respect-
ively, based on their first four residues (Fig. 6). Most of
the IDA/IDL-like candidates were from the monocots
and dicots, except for MA_9094901g0010 and AmTr_
v1.0_scaffold00135.62 from M. polymorpha and Ambor-
ella trichopoda, respectively. By clustering the IDA/IDL-
like candidates together with the Arabidopsis IDA/IDL
motifs, using PIP/PIPL motifs [61] as the outgroup, we
found that the SVPP- and PVPP-type motifs were
grouped with the IDA/IDL family, while the RIPP-type
motif was more closely related to the CLV3 motif
(Fig. 7a). All of the PVPP-type genes were predicted to
encode a potential signaling peptide “PVPPSGPSPCHN”
(Fig. 7b).
In addition to the novel CLE candidates from Group

“others”, small sets of novel candidates were identified in
the major groups. The most common residues at the 1st
site of a typical CLE motif are arginine (R) and histidine
(H). However, candidates with an initial lysine (K) or
tryptophan (W) residue in the CLE motif were identified.
These K-type and W-type CLE motifs are the most
closely related to CLE16 (Group 3C) and CLE45 (Group
2A), respectively (Additional file 11: Figure S11). The 11
K-type candidates were all from monocots. The 13W-
type candidates were exclusively found in dicots.

Discussions
Small secreted peptides (SSPs) (e.g., CLE peptides) are
difficult to predict in silico because their conserved mo-
tifs are short, usually less than 20 residues in length. The
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commonly used method for predicting SSPs use
BLAST (Basic Local Alignment Search Tool) [62].
However, when using BLAST, some thresholds should
be defined, such as the S score, which provides a
measure of local similarity for any pair of sequences,
and the E-value, which is the probability of finding a
segment pair with a score no less than the S score. It
is difficult to define an appropriate threshold for E-
values when using a CLE as query because it is too
short to achieve a high S score and therefore, yields a
much greater E-value. When using a CLE precursor
protein as query, the signal peptide and the non-
conserved variable region will interfere with the
BLAST result. Another common method for predict-
ing SSPs uses HMMER [63]. The latest version is
HMMER3 [64]. The results from HMMER depend on
the training set. Although the public database of
small proteins is expanding, it still cannot meet the
demand for predicting SSPs.

In this study, we retrieved all of the annotated amino
acid sequences for small proteins from 69 plant species.
A CLE-specific score matrix was developed because of
the hidden information for peptide processing and pep-
tide–receptor interactions in CLE motifs (Fig. 1). Three
ML algorithms were used for predicting CLE genes using
multiple variables and based on a variety of properties of
CLE precursor proteins, in addition to a motif score
matrix. A low motif score threshold was set and the
union of the ML results was analyzed, in order to keep
as many CLE candidates as possible. The “low strin-
gency” strategy allowed us to uncover some candidates
that are atypical in that they are less similar to the well-
studied AtCLEs. By using our newly developed cluster-
ing approach for identifying CLE motifs, we were able to
classify the major groups and to identify minor groups
containing new candidates (Fig. 3, Fig. 4 and Fig. 6). A
“high stringency” version of this approach could be de-
veloped by simply increasing the threshold of the motif

Fig. 6 Identification of novel CLE candidates in Group “others”. From the inside to the outside of the ring diagram: clustering tree, gene ID,
reporting status, motif sequences, and annotation. The Gene IDs represented in red, blue and black indicate monocot, dicot and other plant
species, respectively. Genes that have been reported are marked with red boxes. Candidate motifs of particular interest are highlighted with
different colors. New types1, 2 and 3 are highlighted with yellow, light blue and gold, respectively. IDA-like CLE candidates are highlighted with
light green. CLE candidates that appeared more than once in Group “others” are labeled with light red. CLE candidates starting with “DY” are
indicated with purple
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score and changing the ML results from union to
intersection.
When a candidate had a low motif score, it probably

fell into Group “others” (Fig. 6). Most of the candidates
(ca. 78%) in Group “others” have not been previously re-
ported. Several criteria are needed to determine whether
a candidate from Group “others” is a CLE, such as in-
cluding the number of similar motifs, the number of
species containing the candidate, and the number of ML
algorithms that support the candidate. Candidate motifs
that are identified only in one species are more suspi-
cious than candidate motifs that are identified in more
than one species.
Although it is possible to classify CLE genes based on

their contributions to particular biological processes,
several difficulties impede a comprehensive functional
analysis of CLE genes, such as high gene redundancy,
specific temporospatial expression patterns and mostly,
unknown forms of the mature peptide. Knock-out lines
generated using the CRISPR-Cas9 system will shed some
light on the biological functions of CLE genes. However,
this approach is time consuming. Moreover, transgenic
manipulation remains difficult in particular species. In
contrast, our new clustering method is more efficient be-
cause it considers only the amino acid compositions and
site weights of CLE motifs. Functional information em-
bedded in the major residues or the heavyweight sites
will be reflected in the score matrix and the one-on-one
Euclidean distances between the CLE motifs. The clus-
tering results may in turn be helpful for functional ana-
lysis of the CLE genes that are closely grouped.
Conventional substitution matrices—BLOSUM62, BLO-

SUM80 and PAM250—are based on massive numbers of
amino acid sequences from diverse species. However,
using these conventional matrices to identify short amino
acid sequences yields results with low statistical confi-
dence, which we have noticed in our efforts to identify
CLE genes in many different plant species. The ML-
assisted method described here was developed specifically
for short amino acid sequences, such as SSPs, with high
sequence conservativeness and consequently, high residual
biasness. Previously existing methods for detecting CLE
genes did not consider the residual biasness of CLE motifs
[7, 58]. Therefore, the flanking sequences of CLE motifs
or the full-length amino acid sequences were used to in-
crease the confidence for gene predictions and clustering.
In the ML method, other characteristics in addition to the
motif sequence of the CLE protein precursors were in-
cluded. For example, we found that the position of the
CLE motif is important for predicting CLE genes (Fig. 5g).
Based on the comprehensive analysis of various parame-
ters, we conclude that the ML method can give more ac-
curate predictions without too many arbitrary judgments.
Consistent with this interpretation, the CLE genes

predicted with this method have a high degree of
consistency with previous reports (Fig. 1e) and also have a
good performance in terms of clustering statistics (Add-
itional file 20: Table S9).
A major purpose of this study was to determine how

CLE genes evolved in plants. We were not able to iden-
tify any typical CLE genes in the seven species of algae
used in this study. The existence of CLE genes in P.
patens, S. fallax and M. polymorpha provides evidence
that the CLE genes evolved in bryophytes. All of the nine
P. patens CLE candidates belong to Group 3B and have
a consensus motif sequence of “RXVP(S/T)GPNPLHN”.
The motif “RLVPTGPNPLHN” found in P. patens is one
of the top10 most frequently used CLE motifs in plants,
but it is not common in eudicots. A similar motif
“RLVPSGPNPLHN”, found in Arabidopsis CLE9/10 was
identified exclusively in eudicots. The CLE9/10 motif is
the second most abundant CLE motif in dicots. The in-
volvement of CLE9/10 in the drought response and pri-
mary root development in A. thaliana [27, 65] is
consistent with the peptide “RLVPTGPNPLHN” helping
bryophytes to develop adaptations to survive in more
arid environments. Another interesting finding in bryo-
phytes is the evolution of the Group 4 candidate
Mapoly1011s0001.1 in M. polymorpha. Its potential
motif “HKNPAGPNPIGN” is identical to the Arabidopsis
CLE46 motif “HKHPSGPNPTGN” at all of the conserved
sites (Fig. 1b and Additional file 5: Figure S5) [40, 41].
CLE46 is highly homologous to CLE41 and CLE44, two
TDIF encoding genes in Arabidopsis [39]. However, simi-
lar to other liverworts, M. polymorpha has neither vascu-
lar tissue nor true roots. Therefore, the presence of a
CLE46-like gene in M. polymorpha remains mysterious.
Nevertheless, the number of candidate genes in Group 4
rapidly increased in vascular plants, especially genes en-
coding candidates with the TDIF motif “HEVPSGPN-
PISN”. The largest number of candidates in dicots contain
the TDIF motif (Additional file 17: Table S6).
Besides the CLE gene family, several gene families have

been identified that encode SSPs [3, 20]. Among them,
the CLEL/GLV/RGF and IDA/IDL motifs share high se-
quence similarities with the CLE motif [19, 66]. How-
ever, our knowledge of the evolutional relationship
among these peptide-coding genes remains limited.
Based on our less-stringent gene prediction strategy, it is
possible to compile a list of atypical CLE genes. We
found three types of candidates: true CLE genes, non-
peptide-coding genes and novel peptide-coding genes.
We identified 21 candidates that belong to three small
but conserved groups in Group “others” (Fig. 6). Their
potential CLE motifs are highly similar to the IDA/IDAL
motifs and thus, appear to represent a transitional type
of CLE and IDA/IDL motif. The IDA/IDL genes are in-
volved in floral organ abscission, lateral root emergence
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and root cap sloughing [67]. Since we have not found
any typical IDA/IDL genes in P. patens, S. fallax and M.
polymorpha, the transitional CLE/IDA candidate MA_
9094901g0010 could be very important for functional
and evolutionary studies in the future (Fig. 6 and Fig. 7).
This study was based on a global analysis of the anno-

tated genes from 69 plant species, from single-cell green
algae to giant trees. Comparative analysis of CLE gene
family sequences from multiple species could increase
the reliability of gene prediction and characterization
and thus, provide information on how these genes have
evolved. There are a few challenges remaining for future
work. First, the number of lower plant and lower vascu-
lar plant species used in this study was limited. The
availability of more genome sequences from bryophyte
and pteridophyte species will be useful for understand-
ing the origin and evolution of SSP-encoding genes.
Second, the quality of genome annotation varies consid-
erably, mainly due to the complexity of each genome
and the quality of genome sequencing, assembly and an-
notation. Thus, high genome complexity or low genomic
sequencing quality will increase the frequency of miss
counts of SSP-encoding genes. Furthermore, SSP-
encoding genes could not be effectively predicted and/or
annotated [68]. It is difficult to distinguish them from
non-coding sequences because their coding regions are
small. More than this, without a reference gene, there is
no effective method to predict an SSP-encoding gene
when alternative splicing introduces additional complex-
ity. Regarding particular types of SSPs that are variable
in length, more research is required to determine how to
set a gap penalty for predicting these types of SSPs. The
in silico prediction of SSPs that are present in single-
copy or low copy numbers (e.g., Casparian Strip Integrity
Factor (CIF) from Arabidopsis) [69, 70] requires a com-
parative genomics analysis with multiple species. In
addition, integration of next-generation sequencing
(NGS)-based transcriptomics and mass spectrometry
(MS)-based proteomics analyses will provide essential
information about SSPs, especially the novel SSPs.

Conclusions
In summary, we developed a novel machine learning-
aided method for predicting CLE genes from 69 plant
species by using a CLE motif-specific residual score
matrix. We found 2156 CLE candidates, including 627
novel CLE candidates. We also developed a novel clus-
tering method based on the Euclidean distance of CLE
motifs in a site-weight dependent manner. Our grouping
was relatively consistent with the previous reports by
Oelkers et al. [58] and Goad et al. [7] Moreover, the ad-
vantage of this new clustering method is that it does not
require any flanking sequences from the CLE motifs.
Our characterization of CLE candidates provides

evidence that approximately 90% of the CLE precursor
proteins have a protein length of 50 to 150 amino acid
residues, approximately 30% of the CLE candidates may
not have a signal peptide targeting them to the secretory
pathway, two-thirds of the CLE candidates we identified
have a short C-terminal tail (i.e., 0–2 residues) down-
stream of their CLE motifs, and the CLE motif score was
the only decisive factor for identifying candidates longer
than 150 residues. These characteristics are important
for classifying novel candidates as CLE genes. The ap-
proach taken here not only helps us to investigate the
evolution of the CLE gene family, but also allows us to
discover a potential evolutionary relationship between
the CLE and IDA/IDL gene families. The IDA/IDL-like
CLE candidates represent a missing link between the
two families and provide evidence that the CLE and
IDA/IDL genes probably share a common ancestor. Our
novel approach for predicting and clustering CLE genes
may also be applicable to other SSPs and therefore, may
provide a powerful tool for studying the origin and evo-
lution of SSPs.

Methods
Developing a new residual score matrix for CLE motifs in
plants
A new residual score matrix for the CLE motif was de-
veloped by integrating the amino acid substitution
matrix, the amino acid usage frequency matrix of CLE
motifs and the site weights of CLE motifs.
To find an optimal amino acid substitution matrix,

three commonly used substitution matrices, BLO-
SUM62, BLOSUM80 and PAM250, were tested using
116 CLE candidates from A. thaliana, O. sativa, S. moel-
lendorfii and P. abies (Additional file 20: Table S9). The
scores of these 116 reported CLE genes followed an
order from large to small and were fitted to a curve
using the Local Polynomial Regression Fitting (LOESS)
method. A matrix with the highest sensitivity was chosen
to construct the score matrix for the subsequent
analyses.
To develop the amino acid usage frequency matrix for

CLE motifs, we used the 1628 reported CLE genes as
references [7]. The percentage of each amino acid resi-
due S at each of the 12 sites of the CLE motif was calcu-
lated as follows:

Sij ¼ aij
n
� 100%

where Sij represents the percentage of amino acid i at
site j; aij represents the number of amino acids i at site j
and n represents the number of reported CLE genes.
The weight of each site (wj) in the CLE motif was

based on the Bits value of each site [71]. The modified
Bits values (Bits’) were used to assign a weight to each
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Fig. 7 Clustering analysis of IDA-like CLE motifs and Arabidopsis IDA/IDL motifs. a Clustering of IDA-like CLE motifs and Arabidopsis IDA/IDL, PIP/PIPL and
CLV3 motifs. The heat map indicates the Euclidean distance of each pair of motifs. Red represents short distances. Blue represents long distances. A shorter
Euclidean distance implies a higher similarity. b Protein domain schematic diagram of Arabidopsis IDA and two “PVPP-type” IDA-like CLE candidates. Protein
domains were predicted using SMART. Blue box: RLK5-binding domain; red-brown box: low complexity domain; pale-brown triangle: location of the
cleavage site of the signal peptide for the secretory pathway; black underline: IDA or IDA-like motif
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site of the CLE motif with the following steps: (1) select
amino acids with Sij ≥ 25% as the major amino acids for
each site, (2) combine Sij values for these amino acids,
and (3) calculate the Bits’ values based on the ratio of
the amino acids at each site using the following
equation:

Bits0 jð Þ ¼ log
2
m − k þ 1ð Þ − H 0

j þ em
� �

wj ¼ Bits0 jð Þ= max Bits0ð Þ
where m represents the types of amino acids (m = 20), k
represents the number of amino acids with Sij ≥ 25% at
site j, Hj’ represents the modified entropy of site j, and
em is the correction number, which was mainly applied
when the number of input sequences was less than 20.
A novel residual score matrix N was then constructed

by integrating the amino acid substitution matrix M, the
amino acid usage frequency matrix S and the site weight
wj:

Nij ¼ wj �
Xn

k¼1

Sjk �Mik
� �

where Mik represents the substitution score between
amino acid i and amino acid k in the amino acid substi-
tution matrix, Sjk represents the frequency of amino acid
k at site j in the amino acid usage frequency matrix. The
motif score v of each CLE motif was calculated by apply-
ing the novel score matrix N:

v ¼
X12
j¼1

Nij

where i represents an amino acid of the CLE motif at
site j.

Other variables for the prediction of CLE genes
Besides the score of each CLE motif (v), other factors
were taken into consideration to predict CLE genes, in-
cluding protein length (L), signal peptide scores (SP for
SignalP score/D-value; TP for TargetP score/SP-value),
and motif position (P). Signal peptide scores for each
protein sequence was calculated on the SignalP 4.1 Ser-
ver (http://www.cbs.dtu.dk/services/SignalP/) [72] with a
sensitive D-cutoff value (0.34 for SignalP, no TM net-
works only) and the TargetP 1.1 Server (http://www.cbs.
dtu.dk/services/TargetP/) [73] with the plant group.
Motif position P was calculated as follows:

p ¼ ls
L − 11

where L represents the length of the corresponding pro-
tein and ls represents the start position of the CLE
motif.

Machine learning aided prediction of CLE genes in plants
The coding sequences of 68 species were extracted at
the whole genome level from Phytozome v12 (https://
phytozome.jgi.doe.gov/pz/portal.html) [74]. Coding se-
quences of P. abies were downloaded from PlantGenIE
(http://plantgenie.org) [75, 76]. First, we filtered out pro-
tein sequences with L < 30 and L > 300. For the
remaining protein sequences (30 ≤ L ≤ 300), we calcu-
lated a motif score for any fragment containing 12
amino acid residues. A motif with the highest score was
chosen as a potential CLE motif for this protein. The
1529 reported CLE genes identified using the HMM al-
gorithms from 53 species in the Phytozome v12.1 data-
base [7] were labeled as CLE genes. The number of CLE
genes (X) in a particular species was counted. If X ≤ 10,
30 candidates with the highest scores were selected. For
a species with X > 10, 3X candidates with the highest
scores were selected. All of the CLE genes were removed
from the list of candidate genes. The remaining genes
were defined as non-CLE genes. To build the training
data set, the CLE and non-CLE genes were combined.
Three machine learning algorithms, C4.5, Artificial

Neural Network (ANN) and Support Vector Machine
(SVM), were used to analyze the training dataset using
the above-mentioned five variables. All three algorithms
were implemented in the R language (R-3.4.0): C4.5,
RWeka-0.4-37 package. The Confidence Pruning Factor
C was set to 0.01 (ANN, nnet-7.3-12 package). The
number of neurons in the hidden layer size was set to
20. The maximum number of iterations was set to 1000
(SVM, e1071_1.6–8 package). The default settings were
used for the other parameters. Candidate genes from the
remaining 16 species were used for the testing data set.
Candidate CLEs were supported by at least one of the
three classifiers.

Clustering of CLE genes in plants
The CLE candidates predicted by machine learning were
further clustered using a novel protocol based on the Eu-
clidean distance (d). The Euclidean distance between each
candidate sequence and each reported Arabidopsis CLE
motif was calculated to find its minimum distance (dmin).
The top 5% of motifs with the maximum dmin were cate-
gorized into the “others” group. The modified Euclidean
distance (d) between every two CLE motifs was as follow:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X12
j¼1

d j
2

vuut

d j ¼ 0 aj ¼ bj
� �

wj a j≠bj
� �

�

Where aj represents the amino acid at site j of a candi-
date CLE motif and bj represents the amino acid at site j
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of A. thaliana CLE motifs. The distance between aj and
bj was defined as dj.
For all grouped CLE candidate genes, a hierarchical

clustering (HCL) method was applied with R (R-
3.4.0) to build a clustering tree. Phylogenetic trees of
A. thaliana CLE motifs, full-length CLE proteins
without signal peptides and log-normalized rank of
all-vs-all BLAST e-values were constructed using the
neighbor-joining (NJ) method with MEGA X [77].
The clustering trees and phylogenetic trees were edi-
ted using Evolview (http://www.evolgenius.info/evol-
view/) [78].

Statistical analysis
To find out the bias in amino acid usage in CLE pre-
cursor proteins and CLE motifs, the amino acid com-
position of all proteins, all small proteins (i.e.,
proteins with lengths between 50 and 200 amino acid
residues) and all CLE candidates were analyzed in 69
plant species. To study the evolution of the CLE
genes, the numbers of CLE candidate genes were
counted in each species and in each group. CLE pre-
cursor proteins were characterized by analyzing the
distribution of motif scores, protein lengths, motif po-
sitions, lengths of C-terminal tails, SignalP and Tar-
getP scores of each CLE candidate by group. Decisive
factors in identifying a CLE candidate gene were un-
covered using a correlation analysis between each of
the above-mentioned variables and the decision in
three ranges of protein lengths, 51–100, 101–150
and > 150 amino acid residues. The clustering trees of
CLE candidates in Group “others” and IDA-like can-
didates were built by applying the HCL method—
based on Euclidean distance—to every pair of candi-
date sequences. The lengths of the C-terminal tails
and their corresponding amino acid compositions in
each subgroup were evaluated using a heatmap that
showed the counts of CLE candidates with different
lengths of C-terminal tails. Weblogos were used to
represent the conserved residues. For A. thaliana and
Z. mays, the gene structures of the CLE candidates
with alternative splicing were obtained from the gff3
files of A. thaliana and Zea mays in Phytozome v12
(https://phytozome.jgi.doe.gov/pz/portal.html).
Weblogo (http://weblogo.threeplusone.com/) [79] was

used to create the sequence logo. MEME (http://meme-
suite.org/tools/meme) [80] was used to calculate the e-
values of each CLE motif. The R package pheatmap-
1.0.17, corrplot-0.84 and UpSetR-1.4.0 were applied to
create heat maps, correlation maps and upset plots, re-
spectively. Other plots were created using ggplot2–3.2.0.
All data were processed using the R language (R-3.4.0
and R-3.6.1).
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