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Abstract: The combination of fenretinide and selenite on ovarian cancer cells was 

investigated to assess its effects on proliferation and ability to induce apoptosis. Our results 

showed that fenretinide and selenite in combination significantly suppress the proliferation  

of ovarian cancer cells and induced apoptosis (including reactive oxygen species  

generation, and the loss of mitochondrial membrane potential) compared with either drug 

used alone. The caspase3/9-dependent pathway was triggered significantly in combination 

treatment, and moreover, the AMPK pathway also mediated the apoptosis induction in 

fenretinide and selenite combination. Fenretinide and selenite combination treatment was 

demonstrated to suppress tumor growth in vivo, this drug combination has been thus found 

to have an enhanced anti-tumor effect on ovarian cancers cells. 
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1. Introduction 

Gynecologic cancers such as ovarian cancer is a common type of cancer in women, the prognosis for 

patients with these advanced cancers is extremely difficult; and the conventional chemotherapy does not 

have clinical efficiency for advanced ovarian cancer patients [1]. Thus, novel therapeutic strategies are 

urgently needed. 
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All-trans retinoic acid (ATRA) was previously widely used for treating acute promyelocytic 

leukemia (APL) [2–6]. However, in order to reduce the observed retinoid treatment-related side effects  

such as liver toxicity [7–10], several ATRA analogues have been synthesized. One of them is 

N-(4-hydroxy-phenyl)-retinamide (4-HPR, fenretinide, Figure S1) [11–13]. Holmes et al. found that 

two synthetic retinoids CD437 and 4-HPR initially activate separate pathways to induce mitochondrial 

depolarization but both utilize mitochondrial depolarization, caspase-9 activation, and caspase-3 

activation in the later stages of ovarian tumor cell line apoptosis induction [14]. Other studies have also 

demonstrated that fenretinide has great potential in cancer chemoprevention and therapy through cell 

proliferation suppression and apoptosis induction in a variety of human cancer cell types [15–18]. 

Selenium is an essential trace element existing in organic and inorganic chemical form,s which have 

been shown to play an important role in the maintenance of an optimal physiological state of mammalian 

cells. Dietary selenium deficiency is associated with increased risk for heart disease, immune 

dysfunction, male infertility and cancer [19–21]. And selenium is an essential micronutrient 

incorporated into proteins in the form of the amino acid selenocysteine [22–24]. In addition, recent 

reports have shown that selenium has chemo-preventive property against a wide range of malignancies [25]. 

However, accumulating evidence shown that selenium has cytotoxic effects at high doses [23]. 

The effects of selenium compounds depend on the drug administration and dose used. At low doses,  

it has antioxidant with cancer preventing properties; while at a higher dose it has been shown promising 

tumor specific cytotoxic effect. Clinical trials have shown that selenium is effective for the prevention of 

cutaneous melanoma [26], and the drug as part of a combined drug treatment may have an enhanced 

anti-tumor effect on some cancer cells [27]. Therefore, in present study, we examined the potentiating or 

enhanced effect of fenretinide when combined with selenite in ovarian cancer cells. 

2. Results 

2.1. Fenretinide and Selenite Enhance Suppression of Proliferation of Ovarian Cancer Cell Lines 

Fenretinide and selenite were first used separately to treat ovarian cancer cell lines, and then analyzed 

by MTT assay. As shown in Figure 1, fenretinide (Figure 1A–C) and selenite (Figure 1D–F) both 

significantly reduced viability of ovarian cancer cell line SKOV3 (p < 0.05). The fenretinide  

(5–15 μmol/L) and selenite (5–15 μmol/L) combination was then assessed for 24 and 48 h; the data 

shows that the combination of both agents exhibited a potentiating or enhanced effect (p < 0.01) (Figure 1G). 

Moreover, two different additional ovarian cancer cell lines, OVCAR3 and A2780, were also used to 

test the potentiating or enhanced effect of this combination; the cell viability of two cell lines also 

significantly decreased (Figure 1H), indicating that the fenretinide and selenite combination could 

suppress the growth of ovarian cancer cell lines additively. 
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Figure 1. Effect of fenretinide and selenite on ovarian cancer cells proliferation. Viability of 

SKOV3 cells was measured by MTT after exposure of fenretinide with different 

concentrations for 24 h (A); 48 h (B) and 72 h (C); Viability of SKOV3 cells measurement 

after exposure of selenite with different concentration for 24 h (D); 48 h (E) and 72 h (F); 

SKOV3 cells’ viability under different concentration of fenretinide and selenite combination 

treated for 24 h and 48 h (G); Viability assay using two additional different ovarian  

cell lines (OVCAR3 and A2780) after exposure of drugs alone (10 µmol/L fenretinide,  

10 µmol/L selenite) or drug combination (10 µmol/L fenretinide plus 10 µmol/L selenite) 

for 48 h, 10 µg/mL cisplatin treatment used as positive control (H). (means ± s.d., * p < 0.05). 

 

2.2. Fenretinide and Selenite Induce Ovarian Cancer Cell Lines Apoptosis 

To determine whether the inhibitory effect of fenretinide and selenite on the cell viability is related to 

the induction of apoptosis, lactate dehydrogenase (LDH) leakage assay, intracellular reactive oxygen 
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species (ROS) assay, mitochondrial membrane potential (MMP) loss assay and flow cytometry analysis 

were performed. As is shown in Figure 2, 10 µmol/L fenretinide and 10 µmol/L selenite combination 

were used to treat SKOV3 and OVCAR3 cells. Cytotoxicity of the drug combination was measured by 

LDH leakage assay, as is shown in Figure 2A. The LDH leakage in drug combination increased 

significantly compared to drug used alone. ROS was measured as an increase in fluorescence intensity 

quantification by monitoring the enzymatic cleavage of DCFH-DA expressed as a percentage of 

untreated control relative to ROS levels. In combination exposure, ROS generation significantly 

increased relative ROS as observed at 24 h (Figure 2B). MMP loss usually precedes or accompanies 

with ROS production, and the dye JC-1 was used to monitor the MMP loss after drug exposure. When 

the cells were exposed to the drug treatment for 24 h, MMP loss was significantly increased (Figure 2C). 

Lastly, apoptosis assay by flow cytometry was performed after drug treatment; the number of cells in the 

sub-G1 phase (Figure 2D) was significantly increased when compared to the drugs used alone (p < 0.05). 

Bcl-2, Bcl-xL and Bak expression decreased after combination treatment, while Bax expression 

increased; the combination induced the release of cytochrome c from mitochondria to the cytosol (Figure 3A). 

Figure 2. Fenretinide and selenite cytotoxicity on SKOV3 and OVCAR3 cells. After drug 

alone (10 µmol/L fenretinide, 10 µmol/L selenite) or drug combination (10 µmol/L fenretinide 

plus 10 µmol/L selenite) exposure for 48 h, lactate dehydrogenase (LDH) leakage assay (A); 

intracellular reactive oxygen species (ROS) generation assay (B); mitochondrial membrane 

potential (MMP) loss assay (C) and the sub-G1 phase cells analysis (D) were performed. 

(means ± s.d., * p < 0.05).  
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Apoptotic signals are known to induce the activation of caspase cascades; Holmes et al. showed that 

fenretinide-induced ovarian cancer cell apoptosis requires the activation of caspases [28]. In order to 

analyze whether the fenretinide and selenite combination can significantly enhance the activation of 

caspases on ovarian cancer cells apoptosis, caspase-3 and caspase-9 expression and activity were 

examined. In Figure 3, cleaved caspase-3 and caspase-9 expression was significantly increased after the 

fenretinide and selenite combination exposure in SKOV3 cells (Figure 3C), and the activity of caspase-3 

and caspase-9 (Figure 3B) increased significantly with the drug combination, which indicated that the 

activation of caspases is associated with the apoptotic process in SKOV3 and OVCAR3 cells.  

Cell cycle or proliferation related proteins such as Cyclin D1, Survivin, Hsp 27 and Hsp 70 decreased 

significantly with the drug combination treatment (Figure 3D). 

Figure 3. Apoptosis related protein expression by Western blotting and the caspase 3/9 

activity analysis. After drug alone (10 µmol/L fenretinide, 10 µmol/L selenite) or drug 

combination (10 µmol/L fenretinide plus 10 µmol/L selenite) exposure for 48 h,  

Western blotting was performed with antibodies against apoptosis related protein such as 

Bcl-xL, Bcl-2, Bax, Bak and cytochrome c (A); Cleaved caspase-3 and caspase-9 (B); 

Caspase-3 and Caspase-9 activity was also measured (C); Cell cycle related protein Cyclin 

D1 and Survivin, the heat shock proteins Hsp27 and Hsp70 expression were analyzed (D).  

(means ± s.d., * p < 0.05). 

 

2.3. AMPK Mediated Fenretinide and Selenite Combination-Induced Apoptosis 

To further examine the processes before apoptosis induction by fenretinide and selenite combination, 

we analyzed the AMPK signaling pathway (AMPK pathway down stream signaling molecules 
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including AMPK, mTOR, p70S6K, and 4EBP1 [29]). The phosphorylation status of AMPK, mTOR, 

p70S6K, and 4EBP1 proteins after drug combination treatment were assessed by Western blotting. 

Phosphorylation of AMPK increased, while there was decreased phosphorylation of mTOR, P70S6K, 

and 4EBP1 (Figure 4A). Moreover, data from cell-based ELISA have shown that AMPK 

phosphorylation significantly increased after drug combination exposure of SKOV3 and OVCAR3 cells 

(Figure 4B). In order to analyze whether the potentiating or enhanced effect of the combination is 

mediated by the AMPK pathway, AMPK signaling pathway was blocked by the AMPK inhibitor 

compound C. SKOV3 cells viability were rescued by compound C (5 mM) after drug combination 

(Figure 4C). Therefore, the AMPK signaling pathway may be necessary to induce ovarian cancer cell 

apoptosis after combination treatment with fenretinide and selenite. 

Figure 4. AMPK signaling pathway assay. After drug alone (10 µmol/L fenretinide,  

10 µmol/L selenite) or drug combination (10 µmol/L fenretinide plus 10 µmol/L selenite) 

exposure for 48 h, Western blotting analysis for the expression of phosphorylated AMPK, 

4EBP1, p70S6K and mTOR from AMPK signaling pathway (A); Cell-based enzyme-linked 

immunosorbent analysis for intracellular concentrations of phospho-AMPK of SKOV3 and 

OVCAR3 cells (B); Viability of SKOV3 cells under compound C (AMPK inhibitor) 

treatment (C). (means ± s.d., * p < 0.05). 

 

2.4. Fenretinide and Selenite Combination on Tumor Growth in SKOV3 Xenograft Model 

In order to examine the effect of fenretinide and selenite combination on tumor growth in vivo  

(in vivo experiment protocol was followed as described [27]), we used a xenograft nude mouse tumor 

model with subcutaneously implanted SKOV3 cells. Fifty days after the start of treatment, the tumor 

volume was measured every five days, and the tumor weight was measured every ten days. In the 

combination group, the tumors grew slowly in volume (Figure 5A) and weight (Figure 5B), while, in the 

single drug group, the tumors grew faster than in the combination group. The fenretinide and selenite 

combination could therefore significantly decrease the tumor growth in vivo, demonstrating the 

synergistic effect of these two drugs in combination. 
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Figure 5. In vivo anti-tumor activity of fenretinide and selenite against SKOV3 cells-bearing 

model. Tumor volumes were measured every 5 days after initiating single drug or drug 

combination therapy (A); Tumor weight of tumor bearing mice received the drug alone or 

drug combination therapy was measured every 10 days (B). SKOV3 cells-bearing model 

treated with PBS were used as control (means ± s.d., * p < 0.05). 

 

3. Discussion 

Although much effort has been made in anti-ovarian cancer therapy in recent years, there are still no 

effective low-toxicity drugs for treating ovarian cancer. Therefore, potent anti-ovarian cancer drugs or 

newly therapeutic methods are highly desired. Fenretinide, a synthetic derivative of retinoic acid, could 

induce apoptosis in a wide range of cancer cells in vitro [3–6], Holmes et al. identified the signaling 

pathways of apoptosis induced by fenretinide treatment on ovarian carcinoma cells [28]. Moreover, 

selenite is an essential trace element for the body to synthesize selenoproteins [30–33], and some studies 

shown that selenite within the nutritional range concentration can inhibit tumor formation [34–38],  

but in the over nutritional levels, selenite can induce endoplasmic reticulum stress, mitochondrial related 

apoptosis, DNA strand breaks and cell-cycle arrest [39–41], which suggests that selenite has potential 

therapeutic effects for cancer treatment [42–45]. 

According to some previous reports, drug combinations for cancer treatment often provide a 

promising approach [15,17]. Additionally, combined treatment of NB4 cells with ATRA at low 

concentration and sodium selenite exhibited a synergistic effect on apoptosis induction [46]. However, 

the anti-tumor effect of these two drugs using separate treatment on cancer cells is limited. 

Combination chemotherapy could optimize the effectiveness of each drug by inciting a 

complimentary and synergetic therapeutic response while concurrently reducing side effects associated 

with single-agent therapy. Thus, we investigated whether a combination treatment with fenretinide and 

selenite on ovarian cancer cells has a synergistic effect. Here, we show the viability of ovarian cancer 

cell lines was significantly decreased by fenretinide and selenite combination treatment. In addition, 

ovarian cancer cell lines with the combination treatment were also demonstrated to have increased levels 

of induced apoptosis compared to single drug treatment. 
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There is growing evidence that some cell metabolism related signaling pathways drive cancer cell 

growth [47]. AMPK is activated by the depletion in cellular energy levels, and allows adaptive changes 

in cell metabolism and cell survival [29], and recent reports have shown that the AMPK family member 

Snf1 protects Saccharomyces cerevisiae cells upon glutathione oxidation [48], moreover, reactive 

oxygen species play a role in cell apoptosis. Based on these cues, we investigated whether the AMPK 

pathway is involved in the fenretinide and selenite combination treatment. Analysis of the AMPK 

pathway by Western blotting, AMPK activities and the AMPK inhibitor assay, demonstrated that the 

AMPK pathway plays a key role in the fenretinide and selenite combination treatment. Therefore, the 

AMPK signaling pathway may play an important role in growth suppression and apoptosis induction in 

fenretinide and selenite combination. Lastly, in vivo studies, using tumor growth in mice revealed  

a decrease in tumor growth by the combination therapy. 

In summary, fenretinide and selenite combination treatment on ovarian cancer cell proliferation 

suppression and apoptosis have a synergistic effect, and may involve the AMPK-dependent pathway. 

Our data provide a novel insight into the potential application of fenretinide and selenite for  

ovarian cancer, and provides support for further clinical evaluation of the combination of fenretinide and 

selenite for ovarian cancer patients. 

4. Materials and Methods 

4.1. Cell Lines, Cell Culture and Reagents 

Human ovarian cancer SKOV3, OVCAR3 and A2780 cell lines were purchased from American Type 

Culture Collection (ATCC, Manassas, VA, USA). These cell lines were cultured in DMEM medium 

(Sigma, St. Louis, MO, USA) supplemented with 10% heat-inactivated fetal bovine serum  

(FBS, Hyclone, Logan, UT, USA), 100 U/mL penicillin and 100 U/mL streptomycin. Cultures were 

incubated in a humidified atmosphere containing 5% CO2 at 37 °C. 

Drugs and kit were obtained as follow: Sodium selenite and Fenretinide (Sigma Chemicals, St. Louis, 

MO, USA); JC-1 Mitochondrial Membrane Potential Detection Kit (Abcam, Cambridge, MA, USA); 

Selenite was dissolved in distilled water to the final stock concentration of 1 mM, while fenretinide was 

dissolved in DMSO (final stock concentration of 1 mM). Working concentration obtained by diluting 

the stock solution with treatment medium. 

Antibodies were purchased as follow: anti-β-actin, anti-Bcl-2, anti-Bax, anti-Bcl-xL, anti-Bak, 

anti-Survivin, anti-Cyclin D1, anti-Hsp27/70, anti-Cyto C, anti-P-AMPK, anti-AMPK, anti-p-p70S6K, 

anti-p70S6K, anti-p-mTOR, anti-mTOR, anti-4EBP1, anti-p-4EBP1, and anti-caspase-3/9  

(Catalog #9661/#9501) were purchased from Cell Signaling Technology (Boston, MA, USA). 

Horseradish peroxidase-conjugated anti-rabbit IgG, anti-mouse IgG, and enhanced chemiluminescene 

(ECL) reagents were obtained from Pharmacia-Amersham (Amersham, UK). 

4.2. Cell Viability Assay 

Cell proliferation ability was detected by the MTT analysis (Sigma, St. Louis, MO, USA). Firstly, 

cells were seeded in 96-well plates at a density of 5 × 103 cells per well, incubated for 24 h. To determine 

the growth inhibitory effect of fenretinide, selenium and their combinations on SKOV3, OVCAR3 and 
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A2780 cells. Before the drug treatment, the culture medium changed as 2% FBS in RPMI 1640 medium 

(Gibco, Gran Island, NY, USA). After 24, 48 and 72 h treatment with varying doses of single drug or its 

combination. On the day of collection, 200 µL of MTT solution was added to the well and the cells were 

incubated at 37 °C for 4 h. The MTT-containing medium was removed and DMSO (200 µL) was added 

for 30 min to dissolve MTT formazan crystals and the absorbance at 570 nm was measured using a 

multiwell plate reader (BioTek, Winooski, VT, USA). Wells containing only RPMI1640 and MTT were 

used as mock. Cell viability was calculated as percentage of viable cells in total population. Each 

experiment was performed with three replicates. 

4.3. Lactate Dehydrogenase (LDH) Leakage Assay 

The release of cytoplasmic lactate dehydrogenase (LDH) into the culture medium was determined 

following the protocol described [49]. After ovarian cancer SKOV3 and OVCAR3 cells treated with 

drugs alone or combination for 24 h, the culture medium was aspirated and centrifuged at 2000 × g for  

10 min to obtain a cell free supernatant. LDH activity in medium was examined by conversion of lactate 

to pyruvate using a commercially available kit (Sigma, St. Louis, MO, USA). 

4.4. Intracellular Reactive Oxygen Species (ROS) Measurement 

Generation of ROS was assessed using DCFH-DA dye as a fluorescence agent. Briefly, SKOV3 and 

OVCAR3 cells (1 × 104 per well) were seeded in 96-well black bottom culture plate and allowed to 

adhere for 24 h in a CO2 incubator at 37 °C. The cells were then challenged with fenretinide and  

sodium selenite for 24 h. The medium was discarded and the cells were incubated with DCFH-DA  

(10 μM, Ex/Em = 485 nm/528 nm) for 30 min at 37 °C in the dark. The reaction mixture was aspirated 

and replaced by 200 µL of PBS in each well. The plates were kept on a shaker for 10 min at room 

temperature in the dark. Fluorescence intensity was measured using a Multiwell microplate reader 

(FLUOstar, Durham, NC, USA), and the values were expressed as a percentage of fluorescence intensity 

relative to the control wells. 

4.5. Propidium Iodide (PI) Staining and Flow Cytometry Analysis 

Sub-G1 distribution were determined by the staining of DNA with PI (Ex/Em = 488 nm/617 nm).  

In brief, 1 × 106 cells were incubated with single or dual agents for 24 h. On the day of collection, the 

cells were harvested and washed twice with ice-cold PBS. The cells were fixed with 70% ice-cold 

ethanol at 4 °C for 1 h. The cells were washed once with PBS and resuspended in a staining solution 

containing PI (50 mg/mL) and RNase A (250 mg/mL). The cell suspensions were incubated for 30 min 

at room temperature followed by flow cytometry (Beckman Coulter, Fullerton, CA, USA) using  

20,000 cells for each group. 

4.6. Mitochondrial Membrane Potential Assays 

Apoptosis often causes the mitochondrial membrane potential (MMP) loss, and this MMP loss could 

be detected by JC-1 (Ex/Em = 525 nm/610 nm). SKOV3 and OVCAR3 cells were treated with fenretinide 

and sodium selenite, or its combination for 24 h, harvested in 5 mL polystyrene tubes, and then 
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centrifuged at 400 × g for 5 min; the cell pellet was resuspended in 10 μg/mL of JC-1, incubated at 37 °C 

for 20 min. Cells were washed and resuspended in PBS, and then fixed with 4% paraformaldehyde. After 

another wash in PBS, the cells on the microplate were read by a spectrophotometer. 

4.7. Assay of Caspase Activity 

The assay is based on the cleavage of the chromogenic substrates, DEVD-pNA and LEHD-pNA, by 

caspase-3 and caspase-9, respectively. The activity of the caspase-3 and caspase-9 was determined using 

a Diagnostic Reagent kit (Nanjing Jiancheng, Nanjing, China) according to the manufacturer’s protocol. 

Briefly, both treated and untreated SKOV3 and OVCAR3 cells were washed with PBS, and then the 

cells were harvested with lysis buffer on an ice bath. The cell lysate were centrifuged at 10,000 × g for  

10 min, and 200 μg of proteins was incubated with appropriate protease assay buffer and appropriate 

substrate, respectively, at 37 °C for 4 h. The optical density of the reaction mixture was detected by a 

spectrophotometer (Molecular Devices, Sunnyvale, CA, USA) at the wavelength of 405 nm. 

Experiments were performed at least three times. 

4.8. AMPK Activation Assay 

Cell-based enzyme-linked immunosorbent assay (ELISA) [50] was used to detect the AMPK 

activity. After treatment, cells were fixed in 4% PFA; 1% H2O2 in PBS containing 0.1% Triton X-100 

(Sigma) was used to quench endogenous peroxidase; blocked with 10% FBS. Primary specific rabbit 

polyclonal antibody for mouse phospho-AMPK was incubated at 37 °C for 1 h, then the secondary 

peroxidase-conjugated goat anti-rabbit IgG undertaken for another 1 h. After incubation with the 

peroxidase substrate tetramethylbenzidine, the reaction was stopped with HCl. The absorbance of the 

cells on the microplate was measured by a spectrophotometer at 450 nm. The obtained absorbance was 

corrected for the cell number determined by crystal violet staining [51]. Experiments were performed at 

least three times. 

4.9. Subcellular Fraction Isolation 

After treatment of fenretinide and sodium selenite, cells were collected by centrifugation at 1000 × g 

for 5 min. Cell pellets were resuspended with 5.5 mL of cold RSB buffer (10 mM NaCl, 1.5 mM MgCl2, 

10 mM Tris-HCl, pH 7.5, supplemented with protease and phosphatase inhibitors) and incubated on ice 

for 90 min. Cells were then lysed in a dounce homogenizer and mixed with 4 mL 2.5 × MSB buffer  

(525 mM Mannitol, 175 mM Sucrose, 12.5 mM Tris-HCl, pH 7.5, 2.5 mM EDTA, pH 7.5). The cell 

lysate was centrifuged at 1300 × g for 5 min at 4 °C for two times, the supernatant was centrifuged at 

17,000 × g for 15 min at 4 °C and the subsequent supernatant represented cytoplasmic fraction and the 

pellets represented crude mitochondria fraction. 

4.10. Western Blotting 

After treatment, cells were washed with ice-cold PBS and extracted in protein lysis buffer. Protein 

concentration was determined by the Bradford assay (Thermo Scientific, Waltham, MA, USA). Protein 

samples of cell lysate were mixed with an equal volume of 5× SDS sample buffer, boiled for 4 min, and 
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then separated on 12% SDS-PAGE gels. After electrophoresis, proteins were transferred to 

polyvinylidene difluoride membranes. The membranes were blocked in 5% non-fat dry milk for 1 h, 

washed three times, and incubated with specific primary antibodies in Tris-buffered saline containing 

Tween-20 (TBST) overnight at 4 °C. Primary antibody was removed by washing the membranes three 

times in TBST, and incubated for 1 h with horseradish peroxidase-conjugated secondary antibody 

(1:1000–1:2000). Following three times of washing in TBST, immunopositive bands were visualized 

with the ECL kit (Amersham, Arlington Heights, IL, USA) according to the manufacturer’s instructions. 

4.11. Ovarian Cancer Cell Xenograft Models 

All experimental protocols and animal handling procedures were in accordance with the  

National Institutes of Health (NIH, Bethesda, MD, USA) guidelines for the use of experimental animals 

and the experimental protocols were approved by the Institutional Animal Care and Use Committee of 

the Fourth Military Medical University (Xi’an, China). SKOV3 cells (5 × 106) were injected into 

BALB/c nude mice (6 weeks old). Mice were randomized and assigned to treatment and control group 

(40 mice enrolled in each group) and intraperitoneally injected every two days with PBS, 1.5 mg/kg 

fenretinide, 1.5 mg/kg selenite and combination of 1.5 mg/kg fenretinide and 1.5 mg/kg selenite, 

respectively. Single or dual treatment was started on 5 days after tumor cell implantation (1 mm3 tumor 

volume). Tumor diameters were measured every 5 days, the length (L) and the width (W) of the tumors 

were measured using a slide caliper (Guanglu, Guilin, China) and the volume (V) of each tumor  

was calculated as follows: V = L × W2/2. The experiment was terminated on day 50, and the tumors  

were weighed. 

4.12. Statistical Analysis 

All data were shown as mean ± standard deviation (s.d.) of three individual experiments performed in 

triplicate; significance was assessed using Student’s t-test. p < 0.05 was considered statistically significant. 

5. Conclusions 

In conclusion, Fenretinide and selenite combination treatment was demonstrated to suppress tumor 

growth in vitro and in vivo, this drug combination has been thus found to have an enhanced anti-tumor 

effect on ovarian cancers cells. 
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