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Abstract: Cancer is responsible for ~18 million deaths globally each year, representing a major cause
of death. Several types of therapy strategies such as radiotherapy, chemotherapy and more recently
immunotherapy, have been implemented in treating various types of cancer. Microbes have recently
been found to be both directly and indirectly involved in cancer progression and regulation, and
studies have provided novel and clear insights into the microbiome-mediated emergence of cancers.
Scientists around the globe are striving hard to identify and characterize these microbes and the
underlying mechanisms by which they promote or suppress various kinds of cancer. Microbes may
influence immunotherapy by blocking various cell cycle checkpoints and the production of certain
metabolites. Hence, there is an urgent need to better understand the role of these microbes in the
promotion and suppression of cancer. The identification of microbes may help in the development
of future diagnostic tools to cure cancers possibly associated with the microbiome. This review
mainly focuses on various microbes and their association with different types of cancer, responses to
immunotherapeutic modulation, physiological responses, and prebiotic and postbiotic effects.

Keywords: microbiome; cancer progression and microbes; physiological responses; CTLA-4;
immunotherapy; immuno-oncology

1. Introduction

The microbiome refers to the total collection of trillions of microbes, such as bacteria,
fungi, and viruses that are living in the human body. The presence of microbes can be
beneficial or harmful to health. Microbes that are not pathogenic assist in digestion and
the production of vitamins such as K, A, and E in addition to releasing certain enzymes
and producing other useful byproducts such as acids. The major microbes are found in
the intestinal tract and colon followed by skin and vagina [1]. These microbes have been
evolved along with human beings as part of an evolutionary phenomenon characterized
by processes lasting many years [2]. The development of the intestinal microbiome starts
at a very early stage during childhood, through intimate interactions of the microbiome
associated with the maternal body [3]. This ecology of the microbiomeis basically affected
by the diet consumed by the mother, gestational age, delivery type, and exposure to various
antibiotics [4]. Both types of innate and adaptive immune systems have intimate associ-
ations with the microbiome that continuously resides in the human intestine [5]. Recent
studies have demonstrated that the intestinal microbiome plays very critical role in the
regulation of human homeostasis and the immune system, and can probably causeshuman
metabolic disorders, including cancer [6]. Studies have shown that commensal microbes are
useful in supporting the immune system through inhibiting inflammatory responses and
eliciting Toll-like receptors (TLR) responses [7]. The intestine is the site for the absorption of
nutrients and other important metabolites. The metabolites of microbiota are also absorbed
in the intestine and ultimately assimilate into the bloodstream. Once assimilated into the
bloodstream, these metabolites start to associate with G-protein coupled receptors [8] and
ultimately contribute to the regulation of human physiology and pathogenesis. Therefore,
the gut microbiome is also called the human’s second brain. The GBA (gut–brain axis)
works as a two-way flow of important information and signaling between the systems of
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the brain and the microbiome [9]. The gut microbiome has a great impact on the heart and
its related diseases, the regulation of glucose metabolism, insulin sensitivity; andhuman
energy homeostasis [10]. The microbiome is also associated with inflammatory pathways,
lipid metabolism and the initiating obesity through genetic and epigenetic crosstalk [11].
The gut microbiota also affects mood fluctuations, especially in cases of depression and
anxiety [12]. 10 × 106.

The role of microbes in cancer initiation and progression have not been clearly as-
certained yet. Some microbes have been broadly studied in certain cancer types, e.g., the
presence of F. bravibacterium has been reported in colon cancer. Firmicutes and Enterobacteri-
aceae have been widely characterized in the case of gut cancer [13,14]. Different types of
cancer have been reported to have different kinds of microbes (bacteria and viruses). Recent
advances in metagenomics and transcriptomics analysis have made it easy to recognize and
characterize various microbiomes in related cancer and their role in increasing or inducing
physiological changes. While an individual’s microbiome in various types of cancer is sup-
posed to be the same, environmental variations may lead to new kinds of microbes [15–19].
There is an urgent requirement to characterize microbes in healthy and diseased conditions.
Correlations between these two conditions can help to trace the availability of microbes
and the development of diagnostic tools for the targeted treatment of cancers. In this
review, we summarize the microbes that are generally found to be associated with various
types of cancer and the effect of immunotherapy on their microbiomes. In addition, the
effect of probiotics and prebiotics on the role of microbes that play a role in disease and the
associated physiological changes in the host and microbes will also be discussed.

2. The Microbiome and Its Association with Various Kinds of Cancer

The human gut has a diverse microbial ecosystem that includes viruses, fungi, archaea,
and bacteria. Bacteria play a major role as microbiota and mostly belong to phyla Bac-
teroidetes, Proteobacteria, Firmicutes, and Actinobacteria. Microbes have been found to be
involved and associated with 10–20% types of human cancer (Figure 1). Efforts are being
made to characterize microbes affecting cancer progression and inhibition, including in af-
fecting responses to various treatments given to patients. In response to cancer progression,
various microbes have been reported that causes disease, as shown in Table 1 [20–25]. Incre-
ment level of Escherichia coli, Staphylococcus bovis, Fusobacterium nucleatum, Clostridium spp.,
Streptococcus spp., and Bacteroides have been reported incolorectal cancer, while decrement
in level of Lactobacillus, Microbacterium, Anoxybacillus, and Akkermansia muciniphila. A list of
common cancers and their associated microbes is given in Table 1 [26–35]. The presence of
microbes could be used as a bioindicator to ensure early detection and therefore treatment
of disease at its early stages. A method to trace those microbes in response to disease
should be devised [36–40]. Microbes need to be characterized in each kind of cancer, and
proper control measures need to be devised for treatment [40–43]. Several microbes have
been causally linked to various types of cancers, e.g., Helicobacter pylori are the major
causative agent of gastric lymphoma, gastric adenocarcinoma, and esophageal adeno-
carcinoma, while the Epstein–Barr virus (EBV) causes lymphomas and nasopharyngeal
carcinoma [44,45]. Other viruses have been reported to cause other types of liver and lym-
phatic cancers are shown in Table 2 [46]. Intestinal flora and its metabolites work as major
causativeagents ofcolorectal cancer. Diverse flora present in the intestine are manyprobiotic
microbes, namely Bifidobacterium, Streptococcus thermophilus, Lactobacillus rhamnosus and
Lactobacillus acidophilus, in addition to pathogenic bacteria such as Enterococcus faecalis,
Bacteroides fragilis, Clostridia, Fusobacterium nucleatum, Streptococcus bovis, Salmonella and
Enterotoxigenic [47,48]. Therefore, proper screening and microbiome classification could
further provide knowledge of disease occurrence and progression.
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Figure 1. Human microbiomes of various organs. The human gut is a diverse microbial ecosystem
comprising viruses, fungi, archaea, and bacteria. These microbiomes affect cancer progression and
inhibition in response to various treatments given to patients.

Table 1. Microbiota changes reported in human cancer types.

Type of Cancer Sampling Location Microbial
Increase/Decrease References

Colorectal Biopsied tissue and
feces materials

Increased: Escherichia coli,
Staphylococcus bovis,
Fusobacterium nucleatum,
Clostridium spp.,
Streptococcus spp., and
Bacteroides.
Decreased:
Butyrate-producing bacteria,
Lactobacillus, Microbacterium,
Anoxybacillus, and
Akkermansia muciniphila.

[26–28]

Gall bladder Bile samples

Increased: Salmonella
paratyphi and S. typhi;
Bile is typically considered to
be bacteria-free but is
infected in many cases.

[28,29]

Esophageal and
Barrett’s esophagus

Saliva sample and
biopsy tissue

Increased: S. anginosus,
Treponema denticola,
Campylobacter concisus, C.
rectus and S. mitis.
Decreased: Helicobacter pylori.

[30–32]

Mouth carcinoma Saliva culture

Increased: Eubacterium
sabureum, Leptotrichia buccalis,
C. ochracea, Capnocytophaga
gingivalis and
Streptococcus mitis

[33–35]
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Table 2. Specific microbes (virus/bacteria) identified to cause various human cancers.

Microbes Type(s) of Cancer

Human herpes virus 8 Kaposi’ssarcoma

Type 1 human T-cell lymphotropic virus
(HTLV-1) T-cell lymphoma, leukemia (adult)

Hb-B virus Hepatocellular carcinoma

Hb-Cvirus Lymphoma, hepatocellular carcinoma

HIV (human immunodeficiency virus) Kaposi’s sarcoma, lymphomas

EBV (Epstein–Barr virus) Nasopharyngeal carcinoma, lymphomas

HPV (human papilloma virus) Oropharyngeal carcinoma, anogenital
carcinomas

Helicobacter pylori Esophageal adenocarcinoma, gastric
lymphoma, gastric adenocarcinoma

Tumor promoting or suppressing effects have also been reported in gastric, lung, liver,
and colorectal cancer when microbes are present [49]. Germ-free models have shown less
capabilities of tumors growth in comparison with microbe-associated models, as shown in
Table 3 [50–60]. Each type of microbe needs to be characterized so that the early detection
of cancer is possible for every type of disease. Table 3 [50–60] shows the murine models for
various types of cancers and the treatments that were applied, and their results in terms of
reduced tumor incidence in relation to the presence of germs.

Table 3. Several studies on murine models showing tumor-promoting effects of bacterial microbiota.

Cancer Study Model Outcome/s References

Murine Studies

Breast Germ-free rats treated
with DMAB.

Reduced tumors growth in
germ-free rats. [50]

Lung Germ-free rats treated
with NHMI.

Fewer tumors in male
germ-free rats.
No observed changes in
female germ-free rats.

[51]

Gastric

1. INS-GAS mice
(gnotobiotic) infected
with Helicobacter pylori.

Fewer tumors in
germ-free mice. [52]

2. Antibiotic-treated
INS-GAS mice infected
with Helicobacter pylori.

Fewer tumors in mice
treated with antibiotics. [53]
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Table 3. Cont.

Cancer Study Model Outcome/s References

Murine Studies

Liver

1. Germ-free mice treated
with (DEN) and CCl4.

Fewer tumors in
germ-free mice. [53]

2. An antibiotic cocktail
was administered to DEN
and CCl4-treated mice.

Fewer tumors in
antibiotic-treated mice. [54]

3. Rifaximin
administered to DEN and
CCl4-treated mice.

Fewer tumors in
rifaximin-treated mice. [54]

4. Neomycin
administeredto
DEN-treated rats.

Fewer tumors in
neomycin-treated rats. [54]

5. Vancomycin
administeredto
DMBA-treated miceon a
high-fatdiet.

Fewer tumors in
vancomycin-treated mice. [55]

6. An antibiotic cocktail
administered to
DMBA-treated mice on a
high-fat diet.

Fewer tumors in
antibiotic-treated mice. [55]

Colorectal

1. Germ-free mice
(ApcMin/+).

Fewer tumors in
germ-free mice. [56]

2. Gnotobiotic mice
(AOM in IL-10−/−).

Fewer tumors in
germ-free mice. [57]

3. Mice (ApcMin/+
Cdx2-Cre) treated with an
antibiotic mixture.

Fewer tumors in
antibiotic-treated mice. [58]

4. Mice (Nod1−/−)
treated with an antibiotic
mixture.

Fewer tumors in
antibiotic-treated mice. [59]

5. Mice (DSS and AOM)
treated with an antibiotic
mixture.

Fewer tumors in
antibiotic-treated mice. [60]

6. Mice (Nod2−/−) were
transplanted with
wild-type microbiota.

Fewer tumors after
transplant. [60]

Microbe availability can influence physiological changes in cells. For instance, the
presence of particular microbes can lead to inflammation via IL-10 generation. Recent
studies on other types of cancer and microbial metabolomics have led to the discovery o
new biomarkers. In colitis cases, there is a 10-fold increase in the incidence ofcolorectal
cancer and inflammation occurs due to the presence of members of the Enterobacteriaceae
family, such as Enterococcus faecalis and Escherichia coli. These strains are upregulated
>100-fold in colon cancer [61–63].Polyketide synthases (pks) found in E.coli, synthesizes the
genotoxiccolibactin. However, this gene is not found in E. faecalis, which makes E. faecalis
less virulent in comparison to E. coli. The metabolic product of E. coli, pks induces DNA
damage [63]. The risk factor may even be increased due to the presence of food, which
affects the microbiota. The heterocyclic amines present in red meatare fermented by gut
microbiota to yield hydrogen sulfide and electrophilic free radicals, which cause DNA
damage and subsequent mutation via faulty DNA repair [64]. In cases of obesity, microbiota
is found to be enriched by diverse microbes. Therefore, the chances of cancer occurrence are
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higher in obese persons [65]. Individuals on a high fat diet are rich in group IX Firmicutes
bacteria, such as Clostridium, which convert bile acids into secondary compounds, often
deoxycholic acid (DCA). DCA generates free radicals, so it is a potent carcinogen and
has been reported to cause liver and colorectal cancers [66]. More information related to
microbes and mechanisms is given in Table 4 [67–94].

Table 4. Microbes and carcinogenic mechanisms.

Type of Cancer Role of Microbes/Mechanism of
Carcinogenesis Evidence/Proof References

Gastric
lymphoma of the gastric

MALT,
IPSID,

MALT lymphoma of the skin,
adnexal ocular lymphoma

Chronic infection with Helicobacter pylori
Patients with chronic infection with
H. pylori, Campylobacter jejuni,
Borreliaburgdorferi, or Chlamydia psittaci

Epidemiology support
Reduction by H. pylori
Eradication
Antibiotic treatment

[63–73]

Esophageal Decreased risk in patients who have
H. pylori infection Epidemiology support [70,74]

Gallbladder Chronic infection with Salmonella enteric
subsp. enterica serovar Typhi Epidemiology support [75,76]

Breast Increased T regulatory cell-mediated
inflammation

Cancer promoted in
ApcMin/+ mice infected with
Helicobacter hepaticus

[77]

Liver Chronic hepatitis Cancer facilitated in mice
infected with H. hepaticus [78]

Colorectal TNF-mediated and NO-mediated Cancer supported in Rag2−/−

mice infected with H. hepaticus
[79]

Colorectal

• Barrier failure
• Dysbiosis
• Bacterial genotoxicity
• Chronic inflammation

Cancer reduction by
antibiotics and in germ-free
mice; transmission of
dysbiotic microbiota triggers
cancer development

[80–84]

Liver

• Increased liver sensitivity to
MAMP-activating TLRs

• Increased sensitivity to the secondary
bile acid (DCA)

Cancer reduction by treatment
with antibiotics and in
germ-free mice
Cancer increased by treatment
with LPS and DCA

[85,86]

Lung Increased bacterial infection in COPD

Decreased cancer in germ-free
animals
The promotion of cancer by
LPS and infections

[87–91]

Pancreatic LPS-TLR4-mediated increase LPS treatment increases
cancer development [92–94]

2.1. Colon Cancer

Colon cancer is the third deadliest cancer globally. The colon is the main area where
microbesrecides, especially bacteria (phylum Firmicutes). These bacteria remain inside
the colon and utilize the food materials found within [95]. In response to food materials
and their post metabolism, they secrete several byproducts into the bloodstream. These
byproducts can increase or decrease the levels and expression of certain cancer-causing
molecules and genes. Microbes promote intestinal homeostasis and anti-oncogenic re-
sponses but may elicit oncogenic responses through chronic dysregulated inflammation
and genotoxic effects. Certain microbes that can increase the risk of colorectal cancer have
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recently been identified [95,96]. The promotion of a healthy vs. cancerous colon depends
on the basic composition of the gut microbiota and the dynamic equilibrium within the
microbial community [97,98]. Recently, disturbances in the normal population of micro-
biota have been reported to be the main cause of colorectal cancer (CRC), as shown by
dysbiosis [99,100]. F. nucleatum and E. coli have been reported in most CRC patients [101].
Recent studies on mice have concluded that F. nucleatum directly participates in enhance-
ment of tumor growth. Hence, F. nucleatum can work as a major prognostic biomarker in
colon cancer studies [102] (Figure 2). CD3+ T cell count decreases as F. nucleatum increases.
Proteins from F. nucleatum bind with TIGIT, E-cadherin, Fap2, and FadA and providing
very important information for the design of drugs against these targets. E. coli is more
tumorigenic with polyketide synthase than without, indicating that intestinal inflammation
helps in targeting the cancer-inducing activity of the microbiota [103] (Figure 2). Butyrate,
an important byproduct metabolite of SCFA (short chain fatty acid), is derived from E. coli
and is a potential major genotoxic and epigenetic modulating molecule. It has deleterious
effects on local gut flora. It is clear that balance of microbes present in the gut determines
initiation and suppression of cancer. It has been shown that, compared with control mice,
germ-free mice that lack microbes are more prone to tumor development after treatment
with the carcinogens dextran sulfate sodium (DSS) and azoxymethane (AOM) [104].The
mechanisms behind this support the repair of epithelial and barrier functions that allow
for the resolution of inflammation at the time of epithelium damage.The down regulation
of inflammatory pathways likely induces the prevention of dysbiosis, tumorigenesis and
the increased apoptosis of tumor cells, while the up regulation of cytokines such as IL-18
likely induces antitumor responses and tissue repair.
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2.2. Breast Cancer

Breast cancer is reported in one of eight women in the United States. It is the most
prevalent cancer in women after lung and colon cancer. Breast cancer is regarded as a
familial (genetically) HR+-related mutation and is linked with changes related to estro-
gen. However, in recent studies, it has been reported that microbes (especially in the
gut) also play a role in progression in breast cancer. Bile acid production is controlled by
microbes found in the gut. Dihydroxy acid (DHA), secreted by the action of microbes,
especially E. coli, has a direct influence on the estrogen metabolome [105]. Excess estrogen
can deregulate various regulated pathways and cause overexpression of factors that cause
breast cancer. It is now known that microbes present in the gut, mouth, breast, and breast
milk influence estrogen metabolism, inflammation, and epigenetic alterations [106]. Some
bacteria and their secreted metabolites can affect different types of signaling pathways,
such as E-cadherin/β-catenin [107], which functions as a major promoter of apoptosis and
double-strand breaks in DNA [59], alters cell differentiation [108], and is linked with innate
immunity and some toll-like receptors (TLRs), which activates inflammatory signaling
pathways that ultimately help in maintaining body homeostasis [109–111]. In the case of
Breast Cancer (BC), Proteobacteria and Firmicutes species have been found in greater abun-
dance. In separate samples, these two groups of bacteria serve as the key causative agent
of breast cancer. In patients with advance breast cancer, 16S rRNA analysis demonstrated a
very high relative abundance of three groups of bacteria, namely Staphylococcus, Bacillus,
and Enterobacteriaceae spp. Moreover, Escherichia coli (Enterobacteriaceae) and Staphylococ-
cus epidermidis are known to be responsible for double-stranded DNA breaks [112]. A study
on Irish and Canadian women with breast cancer found they were more likely to have
elevated levels of bacteria belong to the Enterobacteriaceae, Staphylococcus, and Bacillus com-
pared with women who do not have breast cancer [113]. Enterobacteriaceae (8.3%), Prevotella
(5.0%), Bacillus (11.4%), Acinetobacter (10.0%), Pseudomonas (6.5%), Propionibacterium (5.8%),
Comamonadaceae (5.7%), Gammaproteo bacteria (5.0%) and Staphylococcus (6.5%) were all
represented as indicated in Canadian women with breast cancer. The most abundant repre-
sented taxon was Pseudomonas (5.3%), Enterobacteriaceae (30.8%), Propionibacterium (10.1%),
Listeriawelshimeri (12.1%), and Staphylococcus (12.7%) were present in samples taken from
Irish women with BC. The composition of bacterial and viral populations associated with
breast cancer differs according to the examined breast position, as revealed by 16S RNA
sample analysis, as explained by Zahra Eslami-S et al., 2020 (Figure 3). More abundant
Methylobacterium, Staphylococcusand Actinomyceteswere found in urine samples of breast
cancer patients. Lactobacillus acidophilus, a well-known probiotic present in kimchi and
yogurt, can easily enter the mammary gland of the breast and displays a variety of anti-
cancer properties [114]. Women can face a high incidence of protective antioxidant effects
if they consume fermented milk products. It is very widely stated that the abundance
of Lactococcus and Lactobacillus spp. in healthy breast tissues, relative to cancerous breast
cancer tissues, possibly plays a role in the cure and prevention of breast cancer. Some
studies indicate that Lactobacillus is often involved in controlling the immune system and
reducing the amount of C-reactive protein and IL-6 that function as pro-inflammatory
factors during inflammatory reactions [115]. In benign and malignant breast tissue samples,
there is an enormous difference in the persisting microbiome composition (Figure 3). A
review of taxonomic studies reveals that in the case of benign and invasive breast cancer,
the overall microbiota of breast tissue, were very similar and dominated by the bacterial
phyla Firmicutes and Bacteroidetes, as expected. The malignancy associated with enrichment
could be determined by the assessment of differential taxa of bacterial species between
these two classes. The lower abundance taxa are likely to include Hydrogenophaga, Lacto-
bacillus, Atopobium, Gluconacetobacter and Fusobacterium genera [116]. In the case of breast
cancer, the carcinogenic effect of 10 well-known infectious pathogens has been identified.
A greater understanding of the effects and function of these microbial agents in breast
cancer would broaden our ability to prevent development of tumor and potentially lead
to future diagnosis tools and treatments. In the late nineties, gastric cancer and breast
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cancer were linked to infections with Helicobacter pylori and Salmonella typhi these two
well-known bacterium also participates in gallbladder cancer. More surprisingly, in the
case of bladder cancer, breast cancer, colon cancer, and melanoma, S. typhus also serves as
a promising carrier of therapeutic agents [116]. It is important to study the interactions
between microenvironments and microbiomes linked to different organs within the human
body and understanding their breast cancer development [117].
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2.3. Oral Cancer

High throughput16S rRNA sequencing of mouth cavity of healthy individuals reveals
the presence of five major phyla namely Fusobacteria, Bacteroidetes, Actinobacteria, Proteobac-
teria, and Firmicutes. Major genera Veillonella, Streptococcus, Prevotella, Haemophilus, Neisseria
and Leptotrichia as found when assaying various parts of the mouth [118]. According to
recent reports, the principal pathogen present in periodontal Porphyromonas gingivalis has
been identified as a major biomarker for oral digestive cancer and related death and it
also expand to colorectal and pancreatic cancer [119]. Recent studies suggest correlations
between both oral fungal and viral microbes in the development of oral cancer. A prime
example of this is human papillomavirus 16 (HPV-16), a major causative agent of several
carcinomas related to oropharyngeal squamous cells [120,121]. Early studies through
culture-dependent assays show that squamous cells of oral carcinomas have enormously
increased abundance of both aerobic and anaerobic types of bacteria. The anaerobes belong
to Clostridium, Veillonella, Fusobacterium, Porphyromonas, Prevotella and Actinomyces, while
aerobes belong to Streptococcus, Haemophilus and Enterobacteriaceae. In addition, about 30%
of oral cancers have been shown to be due to Candida albicans [122].

2.4. Liver Cancer

The third leading cause of cancer mortality belongs to hepatocellular carcinoma (HCC).
Bacterial dysbiosis, leaky gut, microbe-associated bacteria and metabolite molecular pat-
terns work as key pathways that impel cancer-induction, genotoxicity, liver inflammation,
and fibrosis [123,124]. Therefore, it is difficult to both manage and diagnose liver cancer.
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The microbiome present inside the human gut may answersome present unexpected ques-
tions. Researchers have developed a new method for microbiome-based identification of
liver fibrosis and cirrhosis easily, economically with more than 90% accuracy [125,126].
Non-alcoholic fatty liver disease (NAFLD) is the world’s leading cause of chronic liver
disease and can lead to cirrhosis and liver fibrosis and, eventually the development of
cancer [127,128]. However, advanced diagnostic methods for liver cirrhosis and fibrosis
diagnosis are still lacking. In certain regions of the liver, biopsies function as an invasive
tool and can cause damage. Magnetic Resonance Imaging (MRIs) are costly and are less
commonly available in rural areas [129]. One study group studied the microbiome as a
method to administer new tests to classify patients as vulnerable to liver cancer in order
to bypass potential development. This procedure is based on 19 species of bacteria that
have been described and are often present in a patient’s stool samples. Microbiome signa-
ture associated with liver cirrhosis was identified using microbiome genetic profiling and
metabolites analysis fromstool samples with 94% accuracy [130]. In future, this can poten-
tially assist clinicians in assessing the stage and level of the disease and eventually promote
the development care strategies. The basic patterns we observed reflect the complexity
of the microbiome and the way in which liver cancer disease affects gut health [131]. The
study suggested investigating the causal relation between the liver and microbiome dis-
ease. They are also optimistic that this method may be used to characterize other diseases,
such as inflammatory bowel disease and Alzheimer’s disease, in which a dysregulated
microbiome has been associated diseases [132,133]. Compared with minimal fibrosis and
stable controls, the microbiome composition is very distinct in liver cancer patients with
advanced fibrosis. The effect of the intestinal microbiome on the characteristics of chronic
liver disease, its association with non-alcoholic liver fatty liver disease (NAFLD), and
primary sclerosing cholangitis has recently been demonstrated [134].

Since advanced fibrosis is a significant predictor of liver disease-related mortality and
morbidity, researchers are simply trying to find and classify biomarkers of gut microbiome
fibrosis. Scientists have identified that NAFLD, hepatitis B, hepatitis C, and alcoholic liver
disease are primarily caused by unique patterns in the gut microbiome of patients with
cirrhosis [135]. Lower concentrations of Bacteroides and higher levels of Prevotella bacteria
have been characterized by those with advanced fibrosis those of the species Prevotellacopri,
which acts as a good indicator of advanced liver fibrosis and chronic liver disease. The
components and relative abundance of the gut microbiome differ significantly between
individuals. The number of distinct bacterial phyla, Fusobacteria, Firmicutes, Proteobacteria,
Actinobacteria, and Bacteroidetes typically prevail in liver cancer [136]. For example, human
papillomavirus infection, H. pylori and hepatitis C viruses are major risk factors for their re-
spective development of cervical, stomach, and liver cancer [137]. Salmonella enteric, which
causes damage to DNA, produces secondary bile acids that support inflammation and
contribute to tumor development [138]. Escherichia coli cause DNA damage to hydrogen
sulfide production, which can decrease mucous production and contribute to intestinal
barrier breakdown [139]. The development of reactive oxygen species, lipopolysaccharides,
and reactive nitrogen species is indicated by Fusobacterium nucleatum, which shows leaky
junctions and inflammation [140]. This is likely to be due to the complex interplay of
a variety of other variables, such as human biology, exposure to contaminants or other
pollutants in the atmosphere, and lifestyle (diet, drinking and smoking) [141]. Among
these variables, the impact of dieting on the gut microbiome is best understood and well
founded. The key cause of the development of potentially carcinogenic compounds has
been found to be obesity and calorie-rich diets high in protein and fat. N-nitroso deriva-
tives, secondary bile acids, and branched-chain fatty acids are primarily found in these
derivatives. Decreased cancer risk has been associated with diets that are high in fiber
and plant compounds such as glucosinolates (sulfur-containing compounds), polyphenols,
and flavonoids [142]. Bifidobacterium longum is a gut commensal short-chain fatty acid
(SCFA)-producing bacterium that helps in preventing cancer. SCFAs specifically involve
butyrate, propionate, acetate [143], and complex carbohydrate and dietary fiber bacterial
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fermentation throughout the gut. These compounds can mainly assist in maintaining close
bowel junctions and nourishing colon cells. Other beneficial bacteria include Lactobacil-
lus acidophilus which helps preserve DNA [144], and Saccharomyces boulardii, which can
minimize inflammation by preventing DNA damage and tumor growth [145–147].

3. Microbiome Impact on Immunotherapy

Under normal circumstance, the immune system work to defend the host against in-
fectious diseases, autoimmunity, and allergy through the action of a series of co-stimulatory
and co-inhibitory receptors and their ligands, commonly called immune checkpoints [148].
According to recent evidence, tumors use many of these pathways to evade antitumor
immune responses and eventually progress, disseminate, and metastasize. Immune check-
points are molecules that need to be stimulated or inactivated by specific immune cells to
initiate a specific form of immune response to fight disease or inflammation [149]. Many
cancer cells often avoid being targeted and destroyed by the immune system via these check-
points. As shown by monoclonal antibodies (mAbs) inhibiting cytotoxic T-lymphocyte
antigen-4 (CTLA-4), and programmed cell death protein1/programmed cell death ligand
1 (PD-1/PD-L1) [150,151], immune checkpoint inhibitors (ICIs), referred to as novel im-
munotherapeutic agents, have shown very promising clinical implications for advanced
hematologic malignancies. It is well-established that microbiome changes to the tumor
microenvironment (TME) result in the advancement of immunomodulatory effects [152].
However, these implications pose new and wide-range concerns, such as whether there is a
correlation between cancer immunotherapy and the gut microbiome. Here, we concentrate
on recent data on developments in cancer immunotherapy and intestinal microbiome to
address these issues. Drugs that are widely used to target these targets are providing
a positive road to cancer treatment. These medications are well-known as checkpoint
inhibitors [150]. Cancer immunotherapy has become a very exciting and evolving field of
modern oncology for treating cancer patients. To generate an antitumor effect, the immune
system uses these control points and their inhibitors. The role of microbiota in managing
the immune system and inflammatory reactions has been demonstrated using germ-free
mice. Inappropriate inflammatory reactions against commensal microbiota such as E. coli
and E.hirae are prevented by interleukin-10 (IL-10) [153]. E. faecalis IL-10 knockout mice
have shown a form of colitis phenotype. However, if grown in a germ-free environment,
the colitis activity of knockout mice can be suppressed [154]. Growth factor-β1 knockout
mice also carry these forms of cancer in a germ-free background [155]. To establish the role
of microbes in certain types of humandiseases through the provision of specific microbes,
the use of germ-free mice is important. Based on previous research, multiple findings
indicate that intestinal microbes influence antitumor activity in a variety of ways. Mi-
crobes or their metabolic products, through their association with antigen-presenting cells
(APCs) or toll-like receptors (TLRS) help to alter the immune response [156]. In reaction to
chemotherapy, preclinical models have been used to demonstrate the impact of microbiota
on the gut. Cyclophosphamide and oxaliplatin have been shown to modulate antitumor
activity by involving local microbes and their metabolites (maturation of T helper 17-TH 17
is achieved) for chemotherapy purposes in cancer treatment [157].

Specific gut microbiota affects the immune response to different treatments during
the immunotherapy, surgery, and radiation [158]. Further research is needed to evaluate
the increase or decrease in the number of microbes during different treatments strategies
provided for cancer treatment. Conclusions on the impact of microbes in relation to cancer
therapy including the studied models, are detailed in Table 5 [159]. Fecal microbiota trans-
plantation (FMT) is now being investigated with different cancer types and cell models and
the findings with reference to immunotherapy are also shown in the referred Table 6 [160].
The relation between gut microbiome composition and the efficacy of carcinoma therapy is
shown in Table 7. This table presents the key findings of preclinical and clinical studies
showing the link between gut bacteria and the results of various treatments for different
types of cancer and treatment regimes.
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Table 5. Unique clinical trials carried out in response to cancer therapy worldwide to improve the gut microbiome [159].

Global NCT
Number

Type of
Malignancy Aim Intervention Results/Outcome

Measures Place

03290651 Breast cancer

To determine if
oral antibiotics can
change the breast

flora

Probiotics Natural
Health

Product-RepHresh
Pro-B

Change in breast
microbiota,

inflammatory
markers

Canada

03341143 Melanoma

To establish
concurrent use of

FMT and
pembrolizumab in

patients with
PD-1-resistant

melanoma

FMT (donor
responder to PD-1

therapy) with
pembrolizumab

ORR, change in T
cell composition

and function,
change in innate

and adaptive
immune subsets

USA

00936572 Colorectal cancer

To investigate the
effect of probiotics
on gut microflora
and the immune

and inflammatory
response

Probiotics
(La1, BB536)

To perform
morphological and

microbiological
evaluation of the

colonic microflora,
GI function

Italy

03072641 Colorectal cancer

To reactivate the
tumor-suppressor

genes using
probiotics

ProBionClinica (Bi-
fidobacteriumlactis,

L. acidophilus)

Changes in
microbiota

composition and
DNA methylation

Sweden

01609660 Colorectal cancer

To assess the
impact of

probiotics on
patients

undergoing
colorectal
resections

Saccharomyces
boulardii

To measure
mucosal cytokines,

SCFA
postoperative

complications, and
hospital LOS

Brazil

00197873 Colorectal cancer

To prevent
chemotherapy-

induced
diarrhea

L. rhamnosus
supplementation

Effect on
treatment-related
toxicity other than

diarrhea

Finland

02269150
Malignancies

requiring
allo-HSCT

To assess the utility
of FMT in

prevention of CDI
in patients who

underwent
allo-HSCT

Auto-FMT CDI USA

02928523 Acute myeloid
leukemia

To use FMT to
prevent

complications
associated with

dysbiosis in
patients

undergoing
intensive treatment

Auto-FMT

Dysbiosis
correction,

eradication of
multidrug resistant
bacteria, definition

of dysbiosis,
biosignature

France

03552458 Head-and-neck
cancer

To assess the role
of probiotics in
preventing oral

mucositis

Lactobacillus reuteri
Oral Solution

(BioGaia)

Oral mucositis
severity, oral

bacterial genetics,
and transcriptional

analysis

Singapore
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Table 6. Manipulation ofthe gut microbiome to alleviate responses to cancer immunotherapy [160].

Accession or Trial Number Intervention Targeted Patient Population Finding(s)

NCT03072641

Irregular probiotics
supplements

(ProBionClinicaB. lactis BI-04,
L. acidophilus Inulin+

NCFM) Intake

CRC patients ages18+

Primary: change in fecal and
tumor microbiota. Secondary:

Changes in epigenetics
patterns of tumor tissue.

NCT01895530 Randomized probiotic
(S. Boulardii) administration

CRC patients ages 18+

undergoing elective
CRC resection

Primary: cytokine expression
in colonic mucosa (via qPCR).

Secondary: post-operative
complications.

NCT03358511
Single-arm probiotics (Primal

Defense Ultra multi-strain
probiotics formula)

Post-menopausal breast
cancer patients (stages I–III)

Primary: change in mean
number of CD8+ cells.

NCT03353402

Single-arm FMT (colonoscopy
or gastroscopy) from patient

donors who responded to
immunotherapy

Metastatic melanoma patients
ages 18+ who previously
failed standard therapies

Primary: safety (AEs
associated with FMT),
engraftment of FMT.

Secondary: changes in
immune cell populations and

activity, objective
response rate.

NCT02928523 Single-arm autologous FMT
(frozen inoculum)

Acute myeloid leukemia
patients ages 18–65 treated

with intensive chemotherapy
and antibiotics

Primary: diversity of the gut
microbiome,

multi-drug-resistant
bacteria eradication.

Secondary: signature
of dysbiosis.

of the gut microbiome.

NCT02079662
Randomized intensive

lifestyle change (diet, exercise,
psychosocial)

Stages II and III breast cancer
patients treated at MDACC

ages 18+

Primary: disease-free survival
(DFS).

Secondary: change in fecal
and oral microbiome (via

16S profiling).

NCT02843425
Addition of 1

2 cup beans per
day to regular diet in a

crossover design

All cancer patients treated at
MDACC

Primary: change in fecal
microbiome profile.

Table 7. Link between the compositions of the gut microbiome and the effectiveness of carcinoma therapy.

Main Outcome Data Source Carcinoma/Treatment References

Immunological therapy
Commensal type of microbiota
needed for standard response
to treatment

Rodent—mouse

Several models of
carcinoma/anti-IL-10R antibody +
CpG oligonucleotide and oxaliplatin
(platinum-chemotherapy)

[161]

Irradiation of whole body with
disruption of the intestine barrier and
enhanced response of T-lymphocyte
cell-mediated treatment via
mechanisms dependent upon TLR4
signaling/microbe translocation/LPS

Rodent—mouse Melanoma/Adoptive T-lymphocyte
transfer of cells [162]
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Table 7. Cont.

Main Outcome Data Source Carcinoma/Treatment References

Firmicutes and Faecalibacterium
presence in baseline samples of stool
liked with ICB response; abundance
of Bacteroides linked with low
ICB response

Human Melanoma (Metastatic
stage)/CTLA-4 inhibitor [163]

Abundance of Blautia linked with
overall increased survival rate and
decreased GVHD risk

Human Hematologic cancers/Allo-HSCT [164]

Bacteroides abundance was associated
with resistance to ICB-induced colitis Human Melanoma (Metastatic

stage)/CTLA-4 inhibitor [165]

Abundance of Bifidobacterium linked
with enhanced automatic immunity
against tumor and ICB response

Rodent—mouse Melanoma/Anti-PD-L1 inhibitor [166]

Abundance of Bacteroides liked with
ICB response Rodent—human Melanoma (Metastatic

stage)/CTLA-4 inhibitor [167]

Abundance of Eubacterium limosum
linked with reduced chances of
progression of disease or relapse

Rodent—human Blood cancer/Allo-HSCT [168]

Faecalibacterium prausnitzii, Bacteroides
caccae, Holdemaniafiliformis, Bacteroides
thetaiotaomicron, and
Doreaformicigenerans linked with
ICB response

Human
Melanoma (Metastatic
stage)/CTLA-4 inhibitor;
PD-1 inhibitor

[169]

Large number of bacteria in the
sample of baseline stool found to be
enriched differentially between
strong ICB response patients vs. poor
ICB response patients

Human Mouse-melanoma
(Metastatic)/PD-1 inhibitor [170]

Clostridiales, high microbiome
richness and abundance of
Faecalibacterium, Ruminococcaceae
with ICB response in baseline
stool samples

Mouse; Human Melanoma (Metastatic
stage)/PD-1 inhibitor [171]

Abundance of A. muciniphila in the
samples of baseline stool found to be
linked with ICB response

Mouse; Human lung carcinoma of non-small cell;
Renal cancer/PD-1 inhibitor [172]

Chemotherapy with
immunostimulatory properties
Existence of intratumoral
Gammaproteobacteria linked with
gemcitabine chemotherapy resistance

Mouse; Human

Adenocarcinoma (Ductal
Pancreatic)/Gemcitabine
immunomodulatory
chemotherapy treatment

[173]

Abundance of Akkermansia
muciniphila in the samples of baseline
stool found to be liked with
ICB response

Rodent-Mouse
Several models of
carcinoma/immunomodulatory
chemotherapy Cyclophosphamide

[174]

3.1. Microbiome Implications in CTLA-4 Based Immunotherapy

CTLA-4 is a type of protein found in specific T cells that function as a type of “off and
on switch” that introduces vigilance into the immune system [175]. Ipilimumab (Yervoy)
is a CTLA-4-associated monoclonal antibody (mAbs) that improves the body’s immune
response to cancer cells. It is widely used for the treatment of skin melanoma and cureently
under investigation for other forms of cancers [176]. Some microbes such as B. fragilis,
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B. thetaiotaomicron, B.cepacia, G. formicilis, and F. prausnitzii alter in response to the immune
checkpoint inhibitor. Mycobacterium bovis has been used to treat bladder cancer for over
a century, and other microbial products have been used for immune activation, apopto-
sis induction, and vasculogenesis inhibition [177,178]. Recent reports suggestedthat the
microbiome plays a major role in improving immunotherapy, focusing mainly on PD-1
pathways and checkpoint inhibitor therapy targeting CTLA-4 [179]. Recent observations
indicate that the response to checkpoint inhibitors differs greatly between patients. Re-
sponses, such as gastrointestinal and liver toxicity associated with checkpoint inhibitor
therapy and differences in treatment-related toxicity may also be beneficial [180]. Some
studies, for example, understanding the role of Akkermansia muciniphila, a gut microbiome
enriched with Bacteroidetes, helps to answer these questions [181]. Bifidobacteria spp. Are
known to protect against anti-CTLA-4-associated immune-mediated colitis [182]. Other
studies have shown that it is safer to react to PD-1 blockades for healthy bacteria in the
intestinal microbiome [183]. In patients with Faecalibacterium prausnitzii, higher loads and
lower abundance of Bacteroides after anti-CTLA-4 therapy led higher risk factors for coli-
tis [184]. Bifidobacteria, Akkermansia muciniphila, and Ruminococcaceae bacteria are usually
associated with health factors. Those related to immunogenicity are Alistipes, Collinsella
and Enterococcietc alters anti-CTLA-4 therapy [185]. The risk of infection and graft-versus-
host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (ASCT) in
hematological malignancies is controlled by gut bacteria. Early applications of systemic
broad-spectrum antibiotics are correlated with increased GVHD and mortality associated
with transplantation, probably due to the depletion of the gut microbiota of defensive
Clostridiales and Blautia species [186]. CTLA-4 Ab injections are sufficiently important to
influence the content of microbiomes at the level of the genus. Studies on Burkholderiales
and Bacteroidales found that the CTLA-4 blockade rapidly causes a comparative increase in
Clostridiales quantity in feces [187]. Quantitative polymerase chain reaction (qPCR) studies
have shown that targeting the Bacteroides genus and bacterial species in small intestine
mucosa and feces are novel trend to study [188]. Promenent increment of content observed
in organisms such as B. uniformis and B. thetaiotaomicron (Bt) from 24 to 48 h after CTLA-4
Ab injection in the mucosa of the small intestine [189]. Isolated and distinguished by
one of the main regulatory Bacteroides, B. fragilis (Bf) was quickly found to be observable
by regular colon mucosal PCR, while no increment of CTLA-4 Ab observed [190]. The
therapeutic effects of cyclophosphamide administration [191] are decreased by some par-
ticular bacterial organisms, such as Parabacteroides distasonis, which drives Treg effects
and SFBs that, in turn, drive Th17 responses. In response to cyclophosphamide, certain
types of Gram-positive bacteria, such as Enterococcus hirae and Lactobacillus johnsonii, have
been reported to increase [192] and carry Th1 memory cells into the lumen. Some bacte-
rial organisms, such as Clostridiales, suppress immune cell responsiveness by activating
the development of IL-10 in the intestine and extra-intestine and the differentiation of
Tregs [193]. Commensal bacteria also aid in the regulation of systemic immunity in ad-
dition to influencing local immunity. B-created polysaccharide (PSA) Bacteroides fragilisis
capable of reliably detecting immune defects in germ-free mice linked to Th1/Th2 im-
balance and CD4+ T cell deficiency [194]. E. hirae activates the response of pathogenic
Th17 (pTh17) cells and increases the extra-intestinal tissue ratio of cytotoxic T cells/Tregs,
while B. intestinihominis bacteria helps to strengthen the response to systemic Tc1 and
Th1 [195]. The gut microbiome is simultaneously formed and enriched by host immunity.
In the case of a mouse model, adaptive immune and innate responses are downregulated
with manybacterial enrichment [196]. Recent reports indicate that host immunity can also
influence the morphology of certain species of bacteria which, in turn, often hampers the
relationship between bacteria and epithelial cells (Figure 4) [151]. Cancer immunotherapy
with anti-CTLA-4 antibodies modulates the balance of the microbiota–intestinal barrier
by inducing IEC-mediated intestinal epithelial cell (IEL) apoptosis, resulting in disruption
of the barrier. In experimental settings (possibly due to pathogenic Th17 cells (pTh17)),
barrier perturbation is further increased during the co-blockade of IL-10 signaling or ICOS
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(Inducible T-cell COStimulator) signaling, resulting in higher intestinal toxicity resembling
early signs of colitis [151]. (Re)colonization of mice treated with antibiotics by B. fragilis
(Bf) and Burkholderiacepacia minimizes the toxicity caused by anti-CTLA-4 mAb (possibly
through the plasmacytoid DC (pDC) mobilization ability of B. fragilis), which facilitates
the proliferation of ICOS+ Treg in the lamina propria while retaining good antitumor
efficacy (right). Increased bacterial species uptake, for example of B. fragilis, due to lamina
propria DCs or to the possible DC absorption of soluble bacterial products results in the
maturation of DCs and the development of IL-12, enabling T cells such as Th1 cells to be
primed/activated (facilitated by the ongoing immune checkpoint blockade). These T cells,
possibly cognizant of tumor antigens or cross-reactive bacterial antigens, are involved in
antitumor immune responses (Figure 4) [197,198].
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3.2. Microbiome Implications in PD-1/PD-L1 Inhibitor-Based Immunotherapy

PD-1 is a checkpoint protein found in immune T cells. It assists and preserves the
protection of T cells from attacking and destroying other cells in the body [198]. There is a
significant expression of PD-L1 in several cancer cells, which presumably allows them to
evade an immune attack. Recent reports show that monoclonal antibodies targeting either
PD-1 or PD-L1 can block this interaction and eventually increase the immune response to
cancer cells [199]. In the treatment of variety of cancers, these drugs are a very promising
approach. Generally, these medications are administered intravenously by physicians.
Cemiplimab (Libtayo), pembrolizumab (Keytruda), and nivoluma are examples of drugs
that aid in targeting PD-1 [200]. In the treatment of many forms of cancer, these medications
were shown to be effective. New forms of cancer are being examined against these drugs
give a ray of hope. Drugs that target PD-L1, namely, durvalumab (Imfinzi), (atezolizumab
(Tecentriq), and avelumab (Bavencio) [201] are PD-L1 inhibitors. These medicines have
already been shown to be effective in the treatment of different forms of cancer and are
waiting to be tested for use against new cancers. Some inosine-related microbiomes have
been reported to modulate the effectiveness of these inhibitors [202]. Three bacterial species
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have been shown to increase the effectiveness of immune checkpoint inhibitors, including
Bifidobacterium pseudolongum, Lactobacillusjohnsonii and Olsenella [203]. Microbes may be
used for the immunotherapy of cancer patients as a successful efficacy booster for PD-1 and
PD-L1 inhibitorsCombinations of microbiomes that might boost the efficacy of immune-
check inhibitors should be tested. Microbial adjuvants could be developed to increase
the efficacy of inhibitors in the immunotherapy of cancers [204]. Advance research on the
microbiome and its efficacy could promote the treatment of cancer on a personalized basis.
Microbial distribution in healthy and disease subjects needs to be explored. Food items
with enriched microbes responsible for increasing the efficacy of treatment can be provided.
More human correlation studies are required to establish the identity of important microbes
and their role in treatment (Figure 5) [205,206].
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Figure 5. In recent research, unique species of microbiome influences the immune response to four
major immunotherapies commonly used and its mechanism. PD-1 programmed death receptor-1,
PD-L1: programmed death-ligand 1; CTLA-4: cytotoxic T lymphocyte-associated protein 4; alpPD-1:
anti-PD-1 therapy; alpPD-L1: anti-PD-L1 therapy; alpCTLA-4: anti-CTLA-4 therapy; CpG+ alpIL-10R;
TLR9 ligand CpG plus anti-IL-10R antibody and various immunotherapy components.

3.3. Microbiome Implications in Allo-HSCT (AHSCT)

Due to intense treatment with antibiotics, irradiation, and chemotherapy, some form
of disruption in the intestinal microbiota contributes to the creation of rigorous gut graft-
versus-host disease, often leading to serious infection. This often leads to worse results
in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT).
The two main causative agents, Ralstonia pickettii and Staphylococcus haemolyticus, were
found to be associated with a higher risk and mortality [207]. Allo-HSCT is a very effective
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approach for the treatment of different forms of hereditary hematopoietic disorders and
associated hematological malignancies [208]. Allo-HSCT recipients must undergo intense
complete body irradiation and chemotherapy [209] to exterminate latent malignant cells
and immunocompetent cells.

In allo-HSCT, three major microbes, namely Neisseria, Prevotella, and Streptococcus,
were found to be very high in quantity. The existence of these microbes can exacerbate the
stem cells drawn from them. These microbes secrete certain metabolites such as short-chain
fatty acids, which affect the incidence of certain diseases and graft rejection. A strong
predictor of high risk of development and mortality associated with the introduction of
allo-HSCT [210] has now been found based on the microbial diversity present in intestinal
microbiota. Therefore, the graft transplant and its success rate are influenced by microbes.
However, the precise mechanism of graft rejection through the intervention of microbes
has yet to be identified.

3.4. Microbiome Implications in Probiotic Immunotherapy

Currently, there are very fewer therapeutic methods available to control and prevent
treatment of underlying diseases such as liver, colorectal, oral, and breast cancer. Taking
the importance of disease progression into account, the gut–microbiota disease axis has
been shown to be a promising target to studythe development of cancertreatment.

3.4.1. Liver Cancer

Recently, probiotics have been implemented for re-equilibrating the gut microbiome
in the case of chronic liver disease (CLD) by selectively recruiting beneficial bacteria.
However, recentreports haveshown the efficacy of probiotics in curing liver diseases both
inanimal models and in patients [211]. In the case of rat models of DEN-mediated hepato-
carcinogenesis, the administration of VSL#3 (specifically affecting Lactobacillus paracasei,
Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus delbrueckii sub sp. Bulgaricus,
Bifidobacterium infantis, Bifidobacterium breve, Bifidobacterium longum, and Streptococcus ther-
mophiles) was effective in enteric dysbiosis, decreasing inflammation of the intestine and
leading to a decrease in liver tumor growth and its multiplicity [212].

3.4.2. Breast Cancer (BC)

Staphylococcus hominis and Enterococcus faecalis have been shown to be inhibited in
recent in vitro and in vivo studies, showing the impact of probiotics on breast cancer. The
probiotic Lactobacillus reuteri suppresses early-stage cancer and has contributed to an in-
crease in susceptibility to apoptosis in breast cells [213]. The anticancer effects of advanced
probiotics on cancer cell lines have been studied by Mendoza et al. They identified the
effects of cytotoxicity, the anti-proliferative action of cell cycle arrest, apoptosis, and probi-
otic effects. Another group (NCT03760653) described the impact of probiotics (Bifidobac-
terium bifidum, Lactobacillus rhamnosus, Lactobacillus acidophilus and Lactobacillus paracasei)
and physical activity on bacterial equilibrium onthe immune system of BC survivors [214].

3.4.3. Colorectal Cancer (CRC)

CRC can be inhibited by different kinds of probiotics througha variety of mechanisms.
Recent studies have shown that probiotics lead to the biotransformation and detoxification
in conjunction with carcinogenic mutagens, depending on the secreted glycoproteins,
peptidoglycan, and polysaccharides on the surface of probiotics. In order to prevent CRC,
probiotics can assist in the down regulation of inflammation and eventually reduce the
levels of carcinogenic compounds and metabolites [215]. Recent studies have shown that,
in mice treated with Clostridium butyricum and 1,2-two hydrazine hydrochloride, tumor size
decreases due to decreased amounts of Th2 and Th17 cells, leading to the inhibition of CD4+

and CD8+ T lymphocytes. This led to decrease secretion of inflammatory factors such as
nuclear factor B and IL-22, which jams cell cycles and induces apoptosis of tumor cells [216].
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3.4.4. Oral Cancer

Certain commercially available live probiotic strains of bacterial genera, such as
Streptococcus, Bifidobacterium and Lactobacillus can increase the alpha diversity of the oral
microbiome without altering its composition [217]. As described earlier, in terms of the gut
microbiome, Lactobacillus is a widespread and effective probiotic [218], and has been found
to be directly and indirectly associated with dental caries and CRC. Streptococcus oralis is
implicated in the infection of cystic fibrosis, and Leptotrichia is implicated in pancreatic
cancer. Lactobacillus is favorable to dental caries development without a microenvironment
and helps promote better alpha diversity, leading to better oral health [219].

3.5. Microbiome Implications in CpG-Oligonucleotide (CpG ODN) Immunotherapy

Early pre-clinical and clinical studies indicate that unmethylated CG dinucleotide
(CpG ODN) synthetic oligodeoxynucleotides have a powerful immunostimulatory property
and can be used for a variety of treatments for cancer due to potent anticancer activity [220].
In a range of preclinical models, CpG ODNs and microbiome synergy have recently been
implicated. Early clinical studies have shown that monoclonal antibodies and CpG ODNs
can administered together safely [157]. Studies on preclinical models have shown that
when combined with radiation therapy and chemotherapy, CpG ODNs can also improve
antitumor activity. A type of pleiotropic cytokine formed by several cells is interleukin-10
(IL-10). IL-10 is well known for controlling the activity of APCs and helping to suppress
the proinflammatory cytokine response by delaying T-cell activation [221].

In comparison, in the case of CD8 + TILs cells, tumor progression through mediationof
IL-10 signaling can also be suppressed. Therefore, IL-10 also plays an important and
paradoxical function in cancer immunotherapy via its potential to inhibit or activate
IL-10 signaling [222]. Therefore, the selection of target cells and treatment targets is
critical. Due to uncertain therapeutic safety and effectiveness, IL-10 signaling blockades
remaina region for explorationand are being used in cancer immunotherapy [223]. The
effect of a specific blockade of IL-10R on the CD4 + T cell response against hepatitis C
virus antigens was evaluated in an ex vivo clinical trial [224]. The results showed that
inhibiting IL-10R could induce the proliferation of CD4 + T cells and lead to increased
development of interferon-gamma (IFN-γ) against the hepatitis C virus [224]. In the
case of immunostimulatory signaling of TLR9 in immune cells modulating the tumor
microenvironment in cancer patients, recent studies indicate the involvement of several
steps of negative regulation [225]. Therefore, in conjunction with techniques that target
immune control point regulation, the CpG ODN-based technique has a great advantage.
The latest clinical trials of CpG ODNs in combination with immune checkpoint inhibitors
have potential for future cancer immunotherapy, which is effective and comparatively
safe [226]. The role of the microbiome in the efficacy of CpG ODN-based treatment still
needs to be ascertained.

3.6. Microbiome Implications in Adoptive Cell Therapy (ACT)

ACT is usually referred to as the alteration and extension of in vitro-induced cancer–
cognate lymphocyte infusion to enhance immune function [227]. Tumor infiltrating lym-
phocytes (TILs), bispecific T-cell engagers (BiTEs), and chimeric antigen receptor (CAR)
T-cells [228] are promising approaches for cancer treatment. The isolation accompanied by
the ex vivo expansion of tumor-specific T-cells induces ACT. To eliminate cancer, these cells
are now transfused back to the patient. CAR T-cells are autologous T-cells that have been
previously engineered and redirected to a tumor-specific antigen, in order to enhance anti-
tumor immune response [229]. The link between ACT efficacy and gut microbiome therapy
was first demonstrated by Herranz et al. ACT has been found to be successful in HAR
mice receiving ACT and in almost completely suppressing tumor growth. Assessment
of fecal matter bacteria has shown that, compared to JAX mice, HAR mice have a more
diverse variety of Bacteroidetes [230]. The level of gram-positive bacteria and gram-negative
bacteria intervention widely affected the result of ACT. ACT efficacy improved when the
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bacterial composition was significantly modified after the decrease inGram-positive bacte-
ria resulting fromintervention with antibiotics [231]. In conclusion, intestinal microbiota
plays a vital function in ACT’s antitumor efficacy.

3.7. Microbiome Implications in Fecal Microbiota Transplantation (FMT)

Fecal microbiota transplantation (FMT) has been successfully implemented in patients
with C. difficile infection (CDI) and consequential infacilitating clinical improvements
andthe restoration of eubiosisand seems to be superior to standard antibiotic therapy [232].
FMT is a kind of infusion of a solution, created with microbiota fecal matter obtained
from a donor, into the recipient’s intestinal tract. This directly helps alter the recipient’s
microbial composition and impacts health [233]. Metagenomics analysis revealed that there
is a prominent reduction indiversity and richness in the case of gut microbiome related
to CDI patients, as compared with healthy persons [234]. This dysbiosis process is also
characterized by the enhancement of Proteobacteria species anda decrement in Bacteroidetes
and Firmicutes species [235]. Thesuccess of FMT is supported by the restored communities
of Bacteroidetes and Firmicutes followed by a decrement in Proteobacteria that outcompetes
C. difficile. Nowadays, FMT has been used in clinical trials for additional diseases such as
cirrhosis and NASH124 [236].

3.8. Microbiome—Host Crosstalk, Signalling and Immunomodulation

The gut is bidirectionally linked with the central nervous system through well-known
“gut-brain axis” (GBA), which includes central nervous system (CNS), the autonomic
nervous system (ANS), the entero-endocrine system (EES), the enteric nervous system
(ENS), and the hypothalamic pituitary adrenal (HPA) axis. Hormones and neuro-hormones
secreted helps in cross talk over GBA and modulate the metabolic activities and gastro-
intestinal digestive [237]. For that cause, the gut work as complex interface between the
gastro-intestinal microbiota and the human body. There is a bidirectional communication
system working between gut microbes and host’s GBA, in this system gut work as the
communication gatekeeper [238]. A host’s hormones and neuro-hormones can modify the
basic composition of gut microbiome during stress response [239]. The gastro-intestinal
entero-endocrine cells secrete over 30 different peptide/molecules /hormones (histidine to
histamine or glutamate to γ-aminobutyric acid (GABA), short-chain fatty acids (SCFAs),
vitamin K etc) involved in a number of functions, like neuromodulation motility, digestive
functions and gastro-intestinal [240]. There are a number of signaling pathways that may
affect gut microbiome and its metabolites that could perturb the normal physiological func-
tions of host. Interestingly, a number of these processes are controlled by the mammalian
target of rapamycin (mTOR) [241]. The mTOR pathway is well-known and is involved
in many intracellular processes like transcription, translation, cell growth, cytoskeletal
organization autophagy and environmental changes [242]. Crosstalk between the gut
microbiota and the mTOR pathway impacts the body’s homeostasis, thus, leading to unde-
sirable complications, not only in cancer, but also in a number of other diseases, like obesity,
diabetes, colon and pancreatic immune system malfunctioning and ageing. There are a
limited number of research studies regarding the communication between gut microbiota
and the mTOR pathway, that elucidate mTOR signaling in microbiota-associated metabolic
and immune regulations [243]. Gut microbiome also plays a significant role in the immune
system in controlling the functionality and development of gut-associated lymphoid tis-
sues (GALT), including mesenteric lymph nodes, isolated lymphoid follicles, and Peyer’s
patches [244,245]. Apart from this gut microbiome secreted products are very important
for the immune system to differentiate self from nonself (invaders) at very young stage and
activation and maintenance of innate hematolymphoid cells (ILC1, 2, and 3), cytotoxic and
noncytotoxic and helper lymphoid cells and natural killer (NK) cells [246]. Natural killer
cells and ILC1 produce large quantity of IFN-γ, Reg IIIγ, defensins antimicrobial peptides
(AMPs), granulysin, and lysozyme, that together play very crucial role in regulation of
immune surveillance and microbial ecology [247]. Microbiota also produces vast number
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of epigenetically active metabolites, like folate, pyridoxine (B6), folate (B9), cobalamin (B12))
A and B vitamins (including riboflavin (B2), niacin (B3), and pantothenic acid (B5), that
participate in regulation the genetic responses to environmental signalsand activity of
host chromatin-modulating enzymes [248]. Acetyl-CoA formed in number of metabolic
processes work as acetyl donor for histone modification (acetylation and deacetylation)
that is catalyzed by enzyme histone acetyltransferases. Methionine glycine and serine are
substrates for DNA methylation and demethylation enzymes [249,250].

3.9. Microbiome and Cancer Prevention

A number of microbiomes-derived molecules participate in anti-tumor activity. Anti-
cancer therapies are designed for effective eradication of the cancer control and prevention.
As available anti-cancer treatment has been proven to toxic also towards normal cells,
microbiomes use may be effective to combat with malignancy.

Microbial-derived SCFAs have quite effective anti-cancer property. For instance, gut
bacterial butyrate and propionate inhibit host’s tumor cells histone deacetylases with a
general anti-cancer effect. Such a mechanism of anti-tumoral in vitro and in vivo effect of
butyrate is well-established in case of both colorectal cancer (CRC) and lymphoma [251,252].
Widely studied bacterial lipopolysaccharide (LPS), a major factor of the outer membrane
in gram-negative bacteria, helps in activation of the host’s cell surface receptor toll-like
receptor 4 (TLR4), thus in turn activating immune T cell-mediated response against a
number of cancer cells [162]. Similarly, the monophosphoryl lipid A (MPL) secreted from
Salmonella enterica has been widely used as adjuvant along with vaccine against anti-
cervical carcinoma [253]. Furthermore, bacterial derived pyridoxine, a group B vitamin,
helps in modulation of host’s antitumoral immunosurveillance [254]. Ferricrome metabo-
lite secreted from Lactobacillus casei, able to induce apoptosis in tumor cells through JNK
pathway activation [255]. Lactobacilli may stimulate host’s immune cells such as dendritic
cells (DC) or TH1 response and NK cells that leads to the elimination of cancerous cells.
Heat-inactivated microorganisms (Streptococci) were injected intratumorally for in clinical
trial in humans to combat cancer [256,257]. Moreover, Mycobacterium bovis been suc-
cessfully implicated into bladder of patients, to cure bladder tumor [258,259]. Similarly,
Oral administration of Lactobacillus casei led to decrement of superficial bladder cancer
recurrence [260–263]. An underlying mechanism involves the direct bacterial stimulation of
host’s macrophages and NK cells that triggers strong antitumoral immune response [264].
Intradermal injection of Mycobacterium implicated in case of melanoma and in pancreatic.
Ductal carcinoma induces antitumoral immune based response, acting on host’s cytotoxic
T cells and antigen presenting cells (APCs) [264–266]. Anti-tumoral immune response
and also have a direct cytotoxic effect on the tumor cells, by administration of attenuated
and/or genetically modified Salmonella typhimurium [267–269].

4. Summary and Concluding Remarks

Although a series of recent studies has been performed on gut microbiome that
affects cancer immunotherapy, still much remains unexplored. The mode of action of
microbial species that modulates the betterment of immune responses still needs to be
understood. Microbes are indispensable in the human gut and for various physiological
functions of the human body. Human microbiomes vary among individuals. Various
environmental conditions also define their role in the gut. These microbes have a direct
impact on various metabolic reactions inside the cell and thus influence the physiology of
the cell and cancer treatment by radiation, chemotherapy, immunotherapy, or probiotics.
More efforts are required to establish role of each microbes or groups of microbes in
different kinds of cancer. Physiological responses to immunotherapy, antibiotic, radiation,
and chemotherapy in microbes need to be explored. The gut microbiomecan work as
a useful analytical biomarker in immunotherapy. They could be easily manipulated or
changed to improve the efficacy of immunotherapy or to minimize side effects during
treatment. Basic and multifactorial research can lead to potential treatmentsforcommon
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cancers. Multidimensional, microbial, molecular, and immunological studies for each kind
of cancer need to be conducted. This could help lead to cures, and thus, the realization of the
potential of precision and personalized medicine. At present, the enhancement of immune
system activity in the diagnosis, cure, and treatment of cancer is of urgent interest. There
are several available immunotherapy strategies that involve the manipulation of diverse
pathways or molecules. Recently, the consideration of gut microbiomes in immunotherapy
has shown a predominated impact on clinical therapeutics. The immunological status of
the host, tumor invasion status and biology of the malignancy work as determining factors
for individualized therapy. In future, we anticipate that the implementation of a commensal
microbiotomewill be a game changer affecting every facet of medical and clinical studies.
Analysis of the basic composition of the gut microbiome could lead to accurate evaluations
of cancer patients’ healthand will probably help in predicting immune responses and their
related adverse effects during cancer therapy. Conclusively, we can say that microbiome
explorations might lead to the early treatment of various cancers. However, more research
is needed globally to reach conclusions about microbes and establish possible treatments.
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Abbreviation
CTLA-4 Cytotoxic T-lymphocyte antigen-4
GBA Gut Brain Axis
EBV Epstein–Barr virus
HIV Human Immunodeficiency Virus
HPV Human Papilloma
HPTLV-1 Type 1 human T-cell lymphotropic virus
Hb-B Hepatitis B
Hb-C Hepatitis C
DMAB 3, 2′-dimethyl-4-aminobiphenol
NHMI Nitrosoheptamethyleneimine
DEN N-nitrosodiethylamine
COPD Chronic obstructive pulmonary disease
CCl4 Carbon Tetra Chloride
DCA Deoxycholic Acid
DNA Deoxyribonucleic Acid
MALT Mucosa-associated lymphoid tissue
ISPID Immunoproliferative small intestinal disease
TNF Tumor Necrosis Factor
MAMP Microbiome associated molecular pattern
TLR Toll Like Receptors
LPS Lipopolysaccharides
CRC Colorectal Cancer
SCFA Short Chain Fatty Acids
DSS Dextran Sulfate Sodium
AOM Azoxymethane
TIGIT T cell immunoreceptor with Ig and ITIM domains
IL Interleukin
BC Breast Cancer
rRNA ribosomal Ribonucleic Acid
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NAFLD Non-alcoholic liver fatty liver disease
HCC Hepatocellular carcinoma
mAbs monoclonal Antibodies
PD-1 programmed cell death protein1
PD-L1 programmed cell death ligand protein 1
ICIs Immune Check point Inhibitors
TME Tumor Microenvironment
APCs Antigen Presenting Cells
FMT Faecal Microbial Transplantation
HSCT hematopoietic stem cell transplantation
MDACC MD Anderson Cancer Centre
ICB immune checkpoint blockade
GVHD Graft versus host disease
Th17 Thyroxin receptor 17
pDC plasmacytoid DC (Dendritic cells)
TILs Tumor Infiltrating Lymphocytes
BiTEs Bispecific T-cell engagers
CAR Chimeric Antigen Receptor
ACT Adoptive Cell Therapy
CDI Clostridium difficali infection
CNS Central Nervous System
ANS Autonomous Nervous System
ENS Enteric Nervous System
GABA Gama Amino Butyric Acid
mTOR mammalian target of rapamycin
GALT Gut Associated lymphoid tissues
NK Natural Killer cells
DC Dendritic cells
MPL Monophosphoryl Lipid
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