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Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical disease 
that affects millions of people mainly in Latin America. To establish a life-long infection, 
T. cruzi must subvert the vertebrate host’s immune system, using strategies that can 
be traced to the parasite’s life cycle. Once inside the vertebrate host, metacyclic trypo-
mastigotes rapidly invade a wide variety of nucleated host cells in a membrane-bound 
compartment known as the parasitophorous vacuole, which fuses to lysosomes, 
originating the phagolysosome. In this compartment, the parasite relies on a complex 
network of antioxidant enzymes to shield itself from lysosomal oxygen and nitrogen 
reactive species. Lysosomal acidification of the parasitophorous vacuole is an important 
factor that allows trypomastigote escape from the extremely oxidative environment of 
the phagolysosome to the cytoplasm, where it differentiates into amastigote forms. In 
the cytosol of infected macrophages, oxidative stress instead of being detrimental to the 
parasite, favors amastigote burden, which then differentiates into bloodstream trypo-
mastigotes. Trypomastigotes released in the bloodstream upon the rupture of the host 
cell membrane express surface molecules, such as calreticulin and GP160 proteins, 
which disrupt initial and key components of the complement pathway, while others such 
as glycosylphosphatidylinositol-mucins stimulate immunoregulatory receptors, delaying 
the progression of a protective immune response. After an immunologically silent entry 
at the early phase of infection, T. cruzi elicits polyclonal B cell activation, hypergamma-
globulinemia, and unspecific anti-T. cruzi antibodies, which are inefficient in controlling 
the infection. Additionally, the coexpression of several related, but not identical, epitopes 
derived from trypomastigote surface proteins delays the generation of T. cruzi-specific 
neutralizing antibodies. Later in the infection, the establishment of an anti-T. cruzi CD8+ 
immune response focused on the parasite’s immunodominant epitopes controls para-
sitemia and tissue infection, but fails to completely eliminate the parasite. This outcome 
is not detrimental to the parasite, as it reduces host mortality and maintains the parasite 
infectivity toward the insect vectors.
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iNTRODUCTiON

Chagas disease, also known as American trypanosomiasis, is 
caused by the protozoan parasite Trypanosoma cruzi, a highly 
diverse taxon. This disease is endemic to Latin America, with 
sporadic cases mainly in the United States and Europe, and 
affects nearly 8 million people, accounting for the loss of 662,000 
disability-adjusted life years (1–3) (WHO).1 This parasite alter-
nates between invertebrate hematophagous insects from the 
Reduviidae family and a broad range of mammalian hosts (4). 
Although the estimated period for T. cruzi speciation is still a 
matter of debate (5–9), recent molecular studies suggest that 
the ancestor of T. cruzi may have been introduced to South 
America approximately 7–10 million years ago (8, 9), and the 
oldest record of human infection dates from 9,000  years ago 
(10). Since then, this parasite has evolved fascinating strategies to 
evade and subvert the mammalian host immune system, leading 
to life-long last infections. These strategies can be traced to the 
parasite’s life cycle.

Trypanosoma cruzi metacyclic trypomastigotes are released 
in the feces or urine of the triatomine vector after a blood 
meal. These forms are able to infect the mammalian host if they 
encounter mucosa or discontinuous regions in the epithelium. 
Once inside the host, the parasite rapidly infects a wide variety of 
nucleated mammalian cells (11–13). T. cruzi relies on an arsenal 
of polymorphic glycosylphosphatidylinositol (GPI)-anchored 
surface proteins, such as trans-sialidases, mucins, and others, 
to attach and invade host cells, leading to the formation of the 
parasitophorous vacuole (14, 15). After lysosomes are fused to 
the parasitophorous vacuole, parasite survival is mediated by a 
complex network of antioxidant enzymes, such as peroxidases 
and superoxide dismutases (SODs), that shield it from reactive 
oxygen and nitrogen species (16). In fact, instead of being det-
rimental, the lysosomal acidification is an important signal for 
activating key mechanisms that allow the parasite to escape from 
the phagosome into the cytoplasm, where it differentiates into the 
replicative amastigote forms. After several rounds of duplication, 
the amastigotes differentiate into infective bloodstream try-
pomastigotes, which are released upon the rupture of the host cell 
membrane and infect neighboring cells or enter the bloodstream. 
Once the trypomastigotes reach the bloodstream, the parasite 
circumvents complement-mediated lysis and opsonization with 
the aid of surface proteins, such as calreticulin and GP160 (17, 
18). These proteins disrupt the initial attachment of mediators 
from the classical, alternative, and lectin complement pathways 
and dismantle the C3 convertase, a key step in all three pathways 
(19, 20). Thus, the parasite is allowed to disseminate through the 
bloodstream to many tissues during the acute phase. T. cruzi uses 
several other strategies to delay the generation of an effective 
immune response. During the initial phase of infection, the para-
site elicits polyclonal B cell activation and hypergammaglobuline-
mia based on parasite-derived B cell mitogens. The antibodies 
produced by these cells are not parasite specific and are inefficient 
in controlling infection (21, 22). With the stimulation of innate 
immune receptors, such as the intracellular toll-like receptors 

1 http://www.who.int/chagas/en/

(TLRs) 7 and 9, followed by proinflammatory cytokine produc-
tion, a Th1-focused immune response is established (23–25). 
This response leads to the production of T. cruzi-specific CD8+ 
cells directed to parasite immunodominant epitopes, derived 
from the trans-sialidase family, that are important for controlling 
parasitemia and tissue parasitism (26, 27). However, this focused 
immune response fails to clear parasite infection, leading to the 
chronic phase of Chagas disease. This control is not detrimental 
to T. cruzi, as it reduces host mortality while maintaining parasite 
infectivity toward its reduviid insect vectors. In this review, we 
will focus on the major processes behind the parasite’s survival 
during the acute phase of Chagas disease.

THe iNiTiAL PHASe OF iNFeCTiON:  
T. cruzi iNvASiON OF NON-PROFeSSiONAL 
PHAGOCYTiC CeLLS

Once a metacyclic trypomastigote penetrates the host through 
mucosa or lesions in the skin, it encounters host tissue cells and 
immune cells that populate or are recruited to that tissue. Poor 
parasite migration to surrounding tissues or draining lymph 
nodes and the evidence of parasite proliferation at the site of 
infection suggest that, immediately after the initial infection, the 
parasite invades tissues, rather than immune cells (28). In fact, 
in addition to being passively internalized by phagocytic cells, T. 
cruzi has the ability to invade any nucleated host cell.

Trypanosoma cruzi can actively invade a wide range of non-
professional phagocytic cells through two different mechanisms. 
The first strategy that occurs in 20–30% of the cases is through 
a lysosome-dependent route, which induces Ca2+ signaling by 
inositol triphosphate (IP3) generation, followed by the recruit-
ment and fusion of host cell lysosomes at the parasite entry 
site (29–33). The second pathway, which occurs in 70–80% of 
invasions, is via invagination of the plasma membrane, followed 
by intracellular fusion with lysosomes (32, 33). Regardless of 
the entry route, lysosomal fusion is essential for retaining the 
highly mobile trypomastigotes inside the host cell; otherwise, 
the parasite escapes to the extracellular environment and, 
therefore, does not establish a productive infection (33, 34). 
Additionally, the lysosomal acidification of the parasitophorous 
vacuole contributes to trypomastigote-to-amastigote differen-
tiation that takes place in the cytoplasm. After a transient, but 
crucial, association of the trypomastigotes with the lysosome-like 
parasitophorous vacuole, also known as a phagolysosome, this 
structure is disintegrated by the parasite through the action of a 
low pH-dependent pore-forming protein (35, 36). This process is 
mediated by the desialylation of the phagolysosome membrane. 
The lysosome-like parasitophorous vacuole internal surface is 
coated with two major proteins that are greatly sialylated, known 
as lysosome-associated membrane proteins 1 and 2 (LAMP 1 
and 2) (37–39). The presence of sialic acid residues appears to 
protect the parasitophorous vacuole membrane from lysis. In 
fact, trypomastigotes escape earlier from the phagolysosome in 
sialic acid-deficient Lec 2 cells than from wild-type cells (38, 40). 
In the acidic environment of the phagolysosome, however, the 
parasite surface protein trans-sialidase is shed and becomes active 
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due to the low pH. Active trans-sialidase then transfers the sialic 
acid from LAMP proteins to parasite surface protein mucins, and 
this desialylation of the LAMP proteins renders the phagolysoso-
mal membranes more susceptible to rupture (38, 39). Once the 
phagolysosome is destroyed and the trypomastigote reaches the 
cytoplasm, it differentiates into the replicative amastigote form 
and, after several rounds of replication, amastigotes differentiate 
into the bloodstream-infective trypomastigotes. These highly 
motile forms cause the rupture of the host cell membrane and 
can either infect neighboring cells or reach the bloodstream to 
disseminate the infection to distant tissues.

ROLe OF HOST-DeRiveD NiTROXiDATive 
STReSS iN T. cruzi iNFeCTiON

Trypanosoma cruzi can also be passively internalized by phago-
cytic cells. Resident macrophages at the site of infection are among 
the first professional phagocytes to be invaded by the parasite (41, 
42). To establish a productive infection in macrophages, T. cruzi 
must endure the extremely oxidative environment inside the 
phagolysosome (43). To this end, T. cruzi has a complex network 
of antioxidant enzymes, such as peroxidases and SODs, that 
protect the parasite against macrophage-released reactive oxygen 
and nitrogen species (44) (Figure 1).

During phagocytosis, the trypomastigotes trigger activation of 
a macrophage membrane-associated NADPH oxidase, resulting 
in the continuous production of superoxide radical anions O2

•−( )
, which can be converted to H2O2 by SOD (43, 45, 46). During T. 
cruzi infection and Chagas disease progression, reactive oxygen 
species (ROS; e.g., O2

•− , H2O2, and •OH) can be generated as a 
consequence of immune-mediated cytotoxic reactions, second-
ary damage to mitochondrion, and tissue destruction caused 
by the parasite. Thereafter, ROS can oxidize DNA, proteins, and 
lipids, killing the parasite (47).

Proinflammatory cytokines (IFN-γ and TNF) triggered by 
T. cruzi acute infection also stimulate infected macrophages to 
produce large amounts of nitric oxide (•NO) via the enzymatic 
activity of inducible nitric oxide synthase (iNOS), which oxidizes 
l-arginine and transfers electrons from NADPH (47–49). •NO 
affects parasite survival in the macrophage by chemically modify-
ing cysteine-containing proteins, inhibiting the catalytic activity 
of cruzipain, and binding to parasite metalloproteins (49, 50).

Once generated, •NO can react with O2
•−  to produce peroxyni-

trite (ONOO−), a potent oxidant and cytotoxic molecule that is 
highly effective against T. cruzi (46, 51). Peroxynitrite can damage 
cells directly by lipid peroxidation (harming membrane integrity 
and membrane protein function), as well as mitochondrial func-
tion and may result in apoptotic or necrotic cell death (46, 47). 
Moreover, secondary intermediate free radicals produced from 
ONOO−, such as hydroxyl (•OH), nitrogen dioxide (•NO2), and 
carbonate CO3

•−( ) radicals, can participate in the oxidation and 
nitration of proteins, lipids, and DNA, leading to mutations and 
transcription errors (43, 46). The oxidative stress caused by •NO 
production can also be detrimental to the host, due to its high 
tissue-damaging potential (49). In fact, it has been shown that 
continuous exposure to nitroxidative-stress-induced damage 

can lead to Chagas disease progression and the development of 
myocarditis (47).

The parasite antioxidant network consists of various enzymes 
and non-enzymatic molecules distributed in diverse cellular 
compartments: the cytosol, ER, mitochondrion, and glycosome 
(Figure 1A). The final electron donor for all the enzymatic sys-
tems is the NADPH, which is derived from the pentose phosphate 
pathway, and their reducing equivalents are delivered to enzy-
matic detoxification systems via dithiol trypanothione T(SH)2 
and the thioredoxin homolog tryparedoxin (TXN) (43). T(SH)2 
is synthesized from two molecules of glutathione (GSH) and one 
spermidine by the enzyme trypanothione synthetase (TcTS) (52).

Trypanosoma cruzi has five peroxidases (also called perox-
iredoxins) operating in its peroxide detoxification system (16). 
Cytosolic tryparedoxin peroxidase (TcCPX) and mitochondrial 
tryparedoxin peroxidase (TcMPX) have the ability to detoxify 
endogenous and macrophage-derived peroxynitrite, H2O2, 
and small-chain organic hydroperoxides (16, 53). Ascorbate-
dependent heme-peroxidase (TcAPX), present in the ER, confers 
resistance against H2O2 (16, 54). Glutathione peroxidase-I 
(TcGPXI, located in the glycosome and cytosol) and glutathione 
peroxidase-II (TcGPXII, situated in the ER) confer resistance 
against lipid- and hydroperoxides (16, 55, 56).

Additionally, T. cruzi contains four iron SODs, which protect 
the parasite from the direct cytotoxic effects of O2

•−  and, hence, 
inhibit the formation of ONOO− by superoxide radical detoxi-
fication. TcSODs A and C neutralize the O2

•− produced in the 
mitochondrion, TcSOD B1 acts in the cytosol, and TcSOD B1-2 
acts in the glycosomes (43, 57).

Several studies have described the role of T. cruzi antioxidant 
enzymes as virulence factors (43). The overexpression of the 
peroxiredoxins TcCPX and TcMPX in T. cruzi results in cell lines 
that readily detoxify ROS generated in vitro or released by acti-
vated macrophages (16, 51). The protective effects of peroxidase 
TcCPX have also been observed in vivo; when compared to mice 
infected with wild-type parasites, mice infected with TcCPX-
overexpressing T. cruzi showed increased parasitemia and higher 
inflammatory infiltrates in the skeletal muscle and heart (51). 
Parasites overexpressing TcAPX were more resistant to H2O2 but 
were not resistant to peroxynitrite (16). Proteomic analyses have 
suggested the upregulation of the T. cruzi antioxidant network 
members TXN, TcTS, TcAPX, TcMPX, and TcSOD A in the 
infective metacyclic trypomastigote when compared with the 
non-infective epimastigote stage, reinforcing the role of these 
enzymes in T. cruzi survival inside the mammalian host (58, 
59). Peroxiredoxins (TcCPX and TcMPX) and a trypanothione 
reductase (TcTR) were upregulated during the metacyclogenesis 
process regardless of the T. cruzi strain, as observed after an analy-
sis of 10 different isolates (44). Peroxidases were also observed in 
increased levels in the metacyclic forms of these virulent strains 
compared with attenuated isolates (44). These studies highlight 
the importance of the parasite antioxidant enzyme network in the 
successful establishment of host infection.

Reactive oxygen species are labile molecules and many of their 
effects are due to their rapid accumulation in different cellular 
compartments, such as macrophage phagolysosome. During  
T. cruzi infection, large amounts of O2

•−  are generated inside the 
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FiGURe 1 | Role of host-derived nitroxidative stress in T. cruzi infection. (A) After the phagocytosis of the parasite, macrophage membrane-associated 
NADPH oxidase is activated, producing the superoxide radical O2

•−( ) that can be converted into H2O2 inside the lumen of the phagolysosome. Macrophages 
stimulated with proinflammatory cytokines (IFN-γ and TNF) induce the expression of nitric oxide synthase (iNOS), generating nitric oxide (•NO) in the cytoplasm from 
the oxidation of l-arginine. •NO then diffuse into the phagolysosome vacuole and react with O2

•−  to form peroxynitrite (ONOO−), a potent oxidant. Secondary free 
radicals, such as carbonate CO3

•−( ) , nitrogen dioxide (•NO2), and hydroxyl (•OH) radicals, are produced from ONOO−. These reactive oxygen species (ROS, 
indicated in red) can cause various cellular damages and parasite death within the phagolysosome. To survive in this highly oxidative environment, the parasite has a 
complex network of antioxidant enzymes, as peroxidases (TcAPX, TcCPX, and TcMPX) and superoxide dismutases (SOD), which act in the detoxification of ROS, 
and are distributed in various cellular compartments, such as glycosomes, mitochondrion, cytosol, and endoplasmic reticulum (ER). Enzymes derived from 
glycosome, mitochondrion, cytosol, and ER are indicated by orange, blue, green, and purple arrows, respectively. (B) To establish a productive infection, 
trypomastigotes should escape from the phagolysosome to the cytosol, where it differentiates into replicative amastigotes. In the cytosol of macrophages, ROS, 
instead of being detrimental to the parasite, can promote the intracellular growth of T. cruzi by a mechanism that may involve facilitating amastigote access to iron. In 
the cytosol, iron can be stored as ferric iron (Fe3+), a redox-inert form, associated with ferritin or can be exported from the cell as ferrous iron (Fe2+) through 
ferroportin, a macrophage-specific iron exporter. The expression of ferroportin and ferritin is upregulated by antioxidants, which can lead to reduced levels of labile 
iron pool in the cytosol. The mechanism of iron uptake by amastigotes is unknown, but the parasite may be dependent on the intracellular labile iron pool for growth.
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phagolysosome after phagocytic stimulus (60). This radical is 
maintained for only 90–120 min and presents a limited diffusion 
capacity through the membrane due to its anionic nature (61). 
Although synthesized in the cytoplasm, •NO is diffused into the 
phagolysosome vacuole due to its hydrophobic properties (60) 
and has a half-life of approximately 24 h (61). In the phagolyso-
some, •NO reacts with O2

•− generating ONOO−, which presents a 
short half-life and high diffusion capacity (60). Parasite survival 
within the phagolysosome is broadly affected by macrophage 
production of ONOO− during the first hours of infection (60).

Although the parasite faces an extremely oxidative environ-
ment inside the phagolysosome (Figure  1A), trypomastigotes 
are associated with this compartment transiently and after 24 h 
post-infection escape to the cytosol where the parasite remains 
as replicative amastigotes during the majority of its intracellular 
life cycle. A recent study has demonstrated an unexpected role 
of the oxidative stress in promoting T. cruzi infection. Paiva 
et al. (62) have shown that once the parasite reaches the cytosol 
of macrophages, oxidative stress can also contribute to parasite 
burden by a mechanism that may involve facilitating amastigote 
access to iron, which is critical for parasite growth (Figure 1B). 
Peritoneal macrophages from mice infected with the T. cruzi Y 
strain treated with cobalt protoporphyrin (CoPP) (an activator 
of the transcription factor NRF2, which orchestrates antioxidant 
responses), as other antioxidants, lead to a notably reduced para-
site burden (62). It has also been demonstrated that pro-oxidants 
promote T. cruzi growth and reverse the host-protective effects 
of CoPP (62). Similar results were observed in vivo, where CoPP 
reduced parasitemia and tissue parasitism in infected mice (62). 
The protective effect of CoPP in T. cruzi infection is independent 
of T cell-mediated immunity and does not involve apoptotic 
clearance of infected cells or effectors that act against the parasite, 
such as type I IFN, TNF, or •NO (62). These results suggest that 
the deleterious effects of antioxidants on parasite may occur by 
a mechanism different from classical innate or adaptive immune 
responses. Paiva et al. (62) demonstrated that the sequestration 
of iron, present in the host cytoplasm, is most likely involved in 
the parasite burden-reducing effects mediated by antioxidants, 
once the labile iron pool is reduced by the treatment of infected 
cells with antioxidants. Interestingly, these authors observed that 
induction of antioxidant responses reduced the parasite load in 
macrophages, but not in other cell types (62), suggesting that this 
may be a macrophage-specific mechanism. This can be explained 
by the role of macrophages as iron storage in vivo. Intracellularly, 
iron can be used in metabolic pathways in its ferrous form, which 
can also catalyze the formation of free radicals and, therefore, its 
concentration in the cytosol has to be tightly regulated. To this 
end, iron can be stored in the cytosol as ferric iron, a redox-inert 
form, associated with ferritin. Ferrous form can also be exported 
from the cell through ferroportin, a macrophage-specific iron 
exporter (63). The expression of ferroportin and ferritin is 
upregulated by the antioxidant response regulator NRF2 (64, 65), 
which can lead to reduced levels of labile iron pool in the cytosol. 
The mechanism of iron uptake by amastigotes is unknown, but 
the parasite may be dependent on the intracellular labile iron pool 
for growth (Figure 1B). This pathway could be the basis for the 
unexpected effect of antioxidants in reducing T. cruzi infection. 

Contrasting results were, however, observed in other studies, in 
which antioxidants had no impact in T. cruzi CL Brener infection 
(51) or increased the parasite burden in mice infected with strain 
Sylvio X10/4 (66). This latter study did not evaluate macrophage 
parasitism and, therefore, ROS production may be required 
to control parasitism in particular tissues (62). Additionally, 
strain-specific factors, such as level of expression of antioxidant 
enzymes, kinetics of association with the phagolysosome, and 
iron uptake efficiency, may contribute to differential resistance/
susceptibility of distinct T. cruzi strains to the oxidative environ-
ment and outcome of the infection.

PATTeRN-ReCOGNiTiON ReCePTORS 
AND iNNATe iMMUNiTY AGAiNST T. cruzi

Pattern-recognition receptors (PRRs) have been described as one 
of the first line of immune defense against various pathogens, 
including protozoans (67, 68). PPRs are expressed by cells of the 
innate immune system and are responsible for the recognition of 
molecules that are broadly shared by pathogens but distinguish-
able from host molecules, collectively referred to as pathogen-
associated molecular patterns (PAMPs). TLRs are among of the 
best-characterized PPRs and detect PAMPs that are either located 
on the cell surface or in the lumen of intracellular vesicles, such 
as endosomes or lysosomes. These receptors are more abundant 
in antigen-presenting cells, such as macrophages and dendritic 
cells, but have also been described in T cells and some somatic 
cells (68–71). TLR activation leads to the production of proin-
flammatory cytokines and chemokines that in turn lead to the 
recruitment of phagocytic cells to the infected tissue, which are 
important not only for initial infection control but also for mold-
ing the subsequent adaptive immune response (25, 68, 72). A total 
of 12 and 10 TLR family members have been identified in mice 
and humans, respectively. TLRs 1–9 are shared between mice 
and humans, whereas TLR11, TLR12, and TLR13 are restricted 
to mice, and TLR10 is expressed only in humans (73, 74). Some 
TLRs function as homodimers, such as TLR4 and TLR9, whereas 
others are heterodimers, such as TLR2/6. After stimulation, these 
receptors undergo required conformational changes to recruit 
TIR-domain-containing adaptor molecules, which, with the 
exception of TLR3, lead to a MyD88-dependent signaling cascade 
that culminates in the production of proinflammatory cytokines 
(25, 68, 69).

Toll-like receptors have a critical role in host resistance to T. 
cruzi infection, as evinced by a remarkable increase in the suscep-
tibility of MyD88-deficient mice infected with T. cruzi compared 
with that of WT mice. This higher susceptibility is associated with 
the impaired production of IL-12 and IFN-γ proinflammatory 
cytokines, which are important for driving the Th1-directed 
protective immune response (75). T. cruzi has several molecules 
that can strongly stimulate TLRs, such as the surface molecules 
mucin and glycoinositolphospholipid (GIPL), as well as parasite 
DNA and RNA sequences (24, 25, 76–78) (Figure 2).

Mucins are GPI-anchored surface proteins that coat the entire 
surface of the parasite and are enrolled in immune evasion and 
host cell adhesion/infection processes (79, 80). The T. cruzi 
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FiGURe 2 | T. cruzi TLR and NLR activation. T. cruzi possesses several molecules capable of stimulating TLRs. The activation of the heterodimer TLR2/6 by 
parasite GPI-mucins can lead to TNF production in macrophages or to the inhibition of IL-12 in dendritic cells (blue arrows). By contrast, the activation of TLR4 by 
parasite GIPLs (green arrows), TLR9 by parasite CpG DNA motifs (purple arrow) and TLR7 by parasite RNA (pink arrow) all result in the production of 
proinflammatory cytokines, such as IL-12. After the parasite escapes from the phagolysosome, it can activate the cytoplasmic NOD1 receptor. Although this 
receptor is important for controlling the infection, its mechanism of action is still unknown.

January 2016 | Volume 6 | Article 6596

Cardoso et al. Immune Evasion by Trypanosoma cruzi

Frontiers in Immunology | www.frontiersin.org

trypomastigote mucin GPI anchors, especially the unsaturated 
fatty acid at the sn-2 position, are potent stimulators of the 
extracellular heterodimer TLR2/6. In vitro stimulation of TLR2/6 
by T. cruzi GPI-mucins leads to the production of proinflamma-
tory cytokines, such as IL-12 and TNF, as well as nitric oxide, 
which are related to a Th1-focused immune response that is 
important to control parasitemia and tissue parasitism (67, 74, 
81). However, in contrast to in vitro experiments, in vivo assays 
showed that TLR2-deficient mice infected with T. cruzi develop 
a strong proinflammatory immune response with higher IFN-γ 
serum levels than those of WT mice, suggesting an immunoregu-
latory role for TLR2 during T. cruzi infection (74, 75). Recently, 
Gravina and coworkers suggested that TLR2 assumes different 
functions depending on the host cell type, acting as a TNF pro-
ducer in macrophages and as an immunoregulator in dendritic 
cells (78). T. cruzi covers its whole surface with as many as 2 × 106 
mucin molecules (79, 80); the abundance of this molecule may be 
important for stimulating dendritic cells in a TLR2-dependent 
manner during the initial steps of infection, leading to an immu-
noregulatory effect in  vivo, and may contribute to the delayed 
immune response and antibody production against the parasite 
(78, 82).

Glycoinositolphospholipids are free GPI anchors present in 
all T. cruzi life stages (72, 83–85). T. cruzi GIPLs share a core 
conserved structure [Manα(1 → 2) Manα(1 → 2) Manα(1 → 6) 
Manα(1  →  4) GlcNα(1  →  6) myo-inositol 1-PO4-lipid], in all 

parasite stages and among different strains, although consider-
able variability exists in both the lipid and glycan portions of these 
molecules (84, 86). GIPLs from G, Y, and Tulahuén strains contain 
ceramide, whereas those from CL contain alkylacylglycerol and 
dihydroceramide (83, 84, 86, 87). Lipid remodeling has also been 
detected in GPI-anchored proteins and GIPLs in different forms 
of T. cruzi (79, 87–90). This distinct composition confers distinct 
biological functions, as low concentrations of GIPLs containing 
ceramide have been shown to induce apoptosis and regulate the 
activity of macrophages and dendritic cells (91, 92). This differ-
ence is also important in TLR recognition, as GIPLs containing 
ceramide are recognized by the homodimer TLR4, while GIPLs 
containing alkylacylglycerol are agonists of TLR2/6 (74, 76, 93). 
Although TLR2/6 stimulation by GPI-mucin appears to be 100-
fold more efficient in stimulating the immune response in vitro 
(74, 93), this stimulation has also been associated with immu-
noregulation (74, 75, 78), whereas an anti-inflammatory outcome 
with respect to TLR4 stimulation has not yet been described.

In contrast to TLR2/6 and TLR4, which are localized on the 
cell surface, TLR7 and TLR9 are expressed in the ER and, upon  
T. cruzi cell invasion, are translocated to endolysosomes, where 
they recognize immunostimulatory motifs derived from parasite 
RNA or DNA, respectively (23–25, 94, 95). As T. cruzi invades the 
host cell and reaches the phagolysosome environment, nucleic 
acid molecules from lysed parasites stimulate TLR7 and 9, leading 
to the production of Th1 proinflammatory cytokines important 
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FiGURe 3 | T. cruzi complement evasion mechanisms. There are three complement pathways: classic, alternative, and lectin. (A) In the classical pathway, 
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spontaneously hydrolyzed C3b or C3b originating from the other complement pathways interacts with factor B, which is cleaved into Bb by factor D, forming the C3 
convertase C3bBb. The C3 convertases from all the complement pathways interact with newly cleaved C3b, forming a C5 convertase that cleaves C5 into C5b.  
(D) C5b interacts with C6–C9 to form the MAC, leading to the pathogen lysis. (e) To avoid lysis, T. cruzi relies on molecules, such as calreticulin and gp58/68 
(Gp58), which block the initial steps of classic/lectin or alternative pathways, respectively, and CRIT, T-DAF, CRP, and host-derived microvesicles that disrupt or 
block C3 convertase assembly. Ag, antigen; Carb, carbohydrate; Calre, calreticulin.
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for controlling the infection (24, 77, 95, 96). The immunostimula-
tory CpG DNA motifs are not randomly distributed in the para-
site genome; instead, they are enriched in genomic regions that 
encode large gene families of surface proteins, such as mucins, 
trans-sialidases, and mucin-associated surface proteins (MASPs) 
(24). As most of the proteins encoded by these genes are involved 
in parasite immune evasion mechanisms or host cell adhesion/
invasion (14, 15, 80), there appears to be a trade-off between the 
need to invade cells and CpG immune stimulation via TLR9. One 
of the mechanisms that may reduce this drawback is the ability of 
T. cruzi to escape from the phagolysosome, reducing the chance of 
lysis and, therefore, minimizing TLR9 activation. Concomitantly, 
the immunoregulatory effect of TLR2 stimulation by GPI-mucin 
in dendritic cells may also balance TLR9 and TLR7 activation by 
parasite DNA and RNA (78), respectively, at least in the initial 
phases of infection.

In addition to TLR, other innate immune receptors impor-
tant in controlling T. cruzi infection are the nucleotide-binding 
oligomerization domain (Nod)-like receptors (NLR). NLRs are 
localized in the cytoplasm or are associated with the plasma 
membrane of mammalian cells. NLRs are related to MAP kinase 
and NF-κB activation (NOD1 and NOD2) or with the production 
of a caspase 1-dependent inflammasome (NLRP3) (97). In vitro 
studies have shown that although macrophages from NOD1−/− 
and NOD2−/− mice infected with T. cruzi failed to produce nitric 
oxide (•NO) when stimulated with IFN-γ, only NOD1−/− mice 

failed to eliminate the intracellular parasites (98). NOD1−/− mice 
infected with T. cruzi showed threefold higher parasitemia than 
WT and NOD2−/− mice, and succumbed 24 days post-infection 
(98). Although NOD1 receptors appear to be important for T. cruzi 
infection control, the mechanisms involved are still unknown, as 
a deficiency in this receptor does not impair cytokine produc-
tion in vivo, and T. cruzi lacks any previously described NOD1 
agonists (98).

COMPLeMeNT evASiON

After the first round of intracellular replication and host cell rup-
ture, T. cruzi reaches the mammalian bloodstream and becomes 
a target of the complement pathways. The complement system 
consists of soluble proteins that interact with pathogen struc-
tures and activate a cascade of proteases that eliminate invading 
microorganisms. There are three complement pathways: classical, 
alternative, and lectin (Figures 3A–C). Although these pathways 
differ in the initial steps of their respective cascades, all three 
converge to produce a C3 convertase and then a C5 convertase, 
leading to the formation of the membrane attack complex (MAC) 
and subsequent pathogen lysis (Figure 3D).

Trypanosoma cruzi initially becomes a target of the host 
alternative and lectin complement pathways. The lectin pathway 
is activated by the binding of mannan-binding lectins (MBLs) or 
ficolins to the mannan or carbohydrates of the parasite surface, 
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respectively (99) (Figure  3B). This pathway is responsible for 
almost 70% of parasite complement-mediated lysis during infec-
tion (20, 99, 100). The alternative pathway is activated either by a 
low rate of spontaneous conversion of C3 to C3b or by C3b gener-
ated from the other complement pathways (100) (Figure 3C). As 
the infection progresses and anti-T. cruzi antibodies are produced, 
antibodies bound to parasite surface molecules interact with 
the complement C1 molecule, activating the classical pathway 
(Figure 3A).

To escape complement-mediated lysis, T. cruzi relies on a large 
set of molecules that act by blocking different steps of the comple-
ment pathways (20, 101) (Figure 3E). T. cruzi impairs the lectin 
pathway via calreticulin, a 45-kDa surface molecule (102) that 
binds to host MBL collagenous tails, preventing their interaction 
with parasite mannan (18), and also interacts with l-ficolin, pre-
venting C4–C4b conversion (103). As anti-T. cruzi antibodies are 
produced, calreticulin also interacts with C1, preventing its inter-
action with C4 and inhibiting the classical complement pathway 
(18, 104, 105). Therefore, calreticulin is able to disrupt the initial 
steps of both the classical and lectin complement pathways, and, 
because it reduces the formation of C3 convertase, calreticulin 
also indirectly inhibits the alternative pathway.

Complement regulatory protein (CRP), also called GP160, 
is a trypomastigote GPI-anchored surface protein that binds 
to C3b and C4b, dissociating the classical and alternative 
complement C3 convertase (17, 106). Beucher and Norris have 
described several CRP paralogs within the T. cruzi genome that 
share sequence similarity with T. cruzi trans-sialidase super-
family members lacking TS activity (107). Nevertheless, the 
involvement of these sequence-related CRP paralogs in blocking 
the activation of the alternative and classical pathways needs 
experimental validation.

Complement C2 receptor inhibition trispanning (CRIT) is 
a T. cruzi transmembrane protein that blocks C2 cleavage into 
C2a, preventing the lectin and classical complement pathway-
mediated formation of C3 convertase (99, 108). Trypomastigote 
decay-accelerating factor (T-DAF) is an 87- to 93-kDa protein 
with similarity to human decay-accelerating factor (DAF), which 
interferes with C3 convertase assembly efficiency, potentially 
affecting the three complement pathways (19, 109). T. cruzi 
gp58/68 also inhibits C3 convertase assembly, but only in the 
complement alternative pathway, by preventing the binding of 
factor B to surface-fixed C3b (110).

Finally, it has recently shown that T. cruzi induces the release 
of plasma membrane-derived vesicles from host cells (111). 
These vesicles are involved in diverse immune evasion processes, 
including binding to and inhibiting the activity of the comple-
ment C3 convertase C4b2a (111), and will be further discussed 
in the microvesicles section of this review.

In summary, T. cruzi complement evasion focuses on diverse 
molecules that disrupt or inhibit C3 convertase formation, a key 
step in all complement pathways, or neutralizes the initial steps of 
the complement cascade (Figure 3). As all complement pathways 
converge with C3 convertase formation, disrupting this key step 
is an efficient way to disturb all complement-mediated responses 
simultaneously. In addition to being important in the comple-
ment cascade, C3b is also an opsonin, which is recognized by 

macrophages and induces phagocytosis (112). Therefore, inhibit-
ing C3b formation may also reduce macrophage-derived parasite 
lysis during infection.

THe ROLe OF MiCROveSiCLeS iN  
T. cruzi iNFeCTiON

Microvesicles (MVs) are also known as microparticles, ecto-
somes, exosomes, or plasma membrane-derived vesicles (111, 
113–115). MVs have a complex lipid bilayer structure and carry 
several cell-derived molecules, such as lipids, peptides, proteins, 
and nucleic acids (e.g., miRNAs and mRNAs), which can be 
transferred to and become functional in target cells (116–119). 
The release of plasma membrane-derived vesicles occurs at basal 
levels, but may be greatly increased by extracellular stimuli, such 
as parasitic infection (111, 120).

Recent studies have shown that MVs play an active role in 
intercellular communication inside an organism or between 
different organisms, as occurs during pathogen infections in a 
host (111, 115–118). Furthermore, the involvement of MVs in 
various diseases, such as thrombosis, cancer, pathogen infections, 
autoimmune diseases, and others, has also been observed (120). 
Vesicles may also participate in the delivery of pathogen virulence 
factors, contributing to the spread of the pathogen and successful 
immune evasion (111, 117, 118).

As discussed above, one of the first barriers encountered by 
parasites is the innate immune complement system. Recently, 
Cestari et al. (111) observed that T. cruzi induces the release of 
host plasma membrane-derived vesicles to evade innate immu-
nity, by inhibiting complement-mediated lysis and also facilitating 
host cell invasion. At the beginning of the infection, metacyclic 
trypomastigotes induce MV release from blood cells, such as 
lymphocytes, monocytes, and macrophages, in a Ca2+-dependent 
process (111). The host-derived MVs predominantly inhibit the 
classical and lectin pathways of the complement system, increas-
ing parasite survival. This inhibition is mediated by host MVs that 
bind to the C3 convertase C4b2a on the T. cruzi surface, leading 
to the inhibition of its catalytic activity (111).

Moreover, it has also been shown that lymphocytes- and 
monocytes-derived MVs carry the cytokine TGF-β, enhanc-
ing T. cruzi cell invasion and protecting the parasite from the 
complement-mediated lysis (111). This increase in cell invasion 
has also been demonstrated in vivo; mice infected with T. cruzi 
in the presence of MVs exhibited increased parasitemia (111).

In addition, parasite-shed vesicles may contain important 
virulence factors that contribute to the parasite–host interplay 
and the establishment of infection (117, 119). T. cruzi-derived 
MVs can act as messengers, preparing the cellular environment 
to facilitate infection, and thereby ensuring parasite survival (117, 
121). This process occurs either through the interaction of parasite-
derived MVs with host cell surface components or through the 
internalization of vesicles, which are accumulated in endocytic/
phagocytic pathways (117). Proteomic analysis has revealed that 
the main components of the parasite-derived vesicles are TS/gp85 
superfamily members, α-galactosyl-containing glycoconjugates, 
proteases, MASPs, and cytoskeleton proteins (117).
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Previous inoculation with T. cruzi-derived MVs accelerates 
and enhances the mortality rate of infected mice, which develop 
more severe heart lesions with an increased number of intracellu-
lar amastigote nests (121). Furthermore, parasite vesicles induce 
IL-4 and IL-10 production in the heart and spleen and IL-10 and 
IL-12 production by resident peritoneal cells (121). Changes in 
host cell gene expression were also observed in HeLa cells upon 
the incorporation of parasite-derived extracellular vesicles con-
taining tRNA-derived small RNAs (tsRNAs) from T. cruzi (119). 
The elicited response primarily modified the host cell extracel-
lular matrix, cytoskeleton, and immune response pathways (119).

All together, these data indicate that both host- and parasite-
derived plasma membrane MVs play an important role in the 
establishment and maintenance of parasite infection.

DeLAYeD DeveLOPMeNT OF A 
PROTeCTive iMMUNe ReSPONSe: 
POLYCLONAL B CeLL ACTivATiON, 
SMOKe SCReeNS, AND 
iMMUNODOMiNANCe

In contrast to other infectious pathogens that induce rapid 
changes in the gene expression of infected host cells (122), T. cruzi 
only exerts significant gene expression changes in human fibro-
blasts 24 h after infection (122). This delayed host transcriptional 
response coincides with the parasite escape from the phago-
lysosome to the cytoplasm and differentiation into the replicative 
amastigote forms. This sequence of events suggests that during the 
initial phase of a primary T. cruzi infection, the parasite does not 
trigger host PRRs, leading to silent entry (82, 122, 123). Besides the 
delayed changes in the gene expression of infected cells, T. cruzi 
immune activation coincides with the release of trypomastigotes 
from infected cells 4–5 days post-infection, suggesting that the 
parasite relies on mechanisms to avoid PAMP-derived immune 
stimulation during the first cycle of replication (28, 82). Three 
aspects may contribute to this silent entry: (i) the relatively slow 
kinetics of T. cruzi intracellular cycle, (ii) parasite escape from the 
phagolysosome, and (iii) immunoregulatory response meditated 
by TLR2/6 activation in dendritic cells. T. cruzi growth rate is sig-
nificantly slower than virus and bacteria, taking longer to achieve 
a threshold necessary to mount a robust immune response, which 
is delayed to at least the end of the first round of intracellular 
replication (28). Also, parasite escape from the phagolysosome 
reduces its mortality, thus, reducing the amount of DNA and 
RNA immunostimulatory sequences available for TLR9 and 
TLR7 activation in this cellular compartment. Finally, the TLR2/6 
immunoregulatory stimulation of dendritic cells by GPI-mucins 
could counteract other immune activation processes and could 
also delay the development of adaptive immune response (78). 
Another possibility for the immunologically silent entry is that 
T. cruzi PAMPs may not trigger an immunostimulatory response 
as effective as those of bacteria, since transgenic expression of 
bacterial PAMPs in T. cruzi enhanced the anti-parasite response 
leading to pathogen control and clearance (124).

After several rounds of infection/proliferation, a robust anti-
T. cruzi immune response is developed, which is able to greatly 

reduce parasitemia and tissue parasitism. However, this immune 
response is unable to provide parasite clearance, as polymerase 
chain reaction (PCR) and immunocytochemistry assays have 
shown the presence of parasites in infected tissues in patients 
with cardiac (125–127) and digestive (128) manifestations. The 
delayed immune response and the inability to clear the parasite 
may be related to the large repertoire of highly polymorphic and 
immunogenic surface proteins that are coexpressed by the para-
site (82, 123, 129, 130). This antigen arsenal may provide means 
of evading immune response that are distinct from the classic 
antigenic variation employed by parasites such as Trypanosoma 
brucei and Giardia lamblia (131–136).

Classic antigenic variation is achieved by the expression of 
identical antigenic variants on the surface of the majority of 
the cells in a parasite population while a small subset expresses 
different variants (131, 137–139). The immune response targets 
the parasites expressing the common variant while failing to 
identify those expressing rare variants (137). Long-term infec-
tion is achieved by varying the expressed antigens, leading to 
successive waves of parasitemia and clearance as novel antigenic 
determinants spread in the parasite population (133, 138, 139). 
There is no evidence that T. cruzi adopts this type of antigenic 
variation. Instead, the entire T. cruzi population simultaneously 
exposes a variety of antigenic surface proteins, such as mucins, 
trans-sialidase, and MASPs, encoded by highly polymorphic 
multigene families (22, 80, 82, 129, 130). The coexpression of 
this diverse antigenic repertoire drives the immune system into 
a series of spurious and non-neutralizing antibody responses, a 
mechanism known as a smoke screen, which delays the produc-
tion of high-affinity anti-T. cruzi antibodies and the priming 
of effective T-CD8+ cells (22, 82, 140). The presence of a broad 
range of antigenic motifs may also be a mechanism to drive the 
antibody response away from catalytic sites of key parasite surface 
proteins. In fact, a strong humoral response against the trans-
sialidases C-terminal repetitive motif shed acute phase antigen 
(SAPA) has been observed, followed by a weak antibody response 
against several epitopes at the N-terminal catalytic region in a 
later stage that was unable to inhibit the enzyme activity (141).

In addition to the high variability of parasite surface antigens, 
the presence of parasite-derived B cell mitogens also causes poly-
clonal B cell activation and hypergammaglobulinemia, resulting 
in a delayed parasite-specific antibody response (21, 22, 142, 143). 
This unfocused response is important for parasite survival, as most 
of the antibodies produced by splenic cells during the initial acute 
phase do not target the parasite, and specific anti-T. cruzi antibodies 
are only produced later (22). Interestingly, although the humoral 
response in the chronic stage shows a preferential IgG2a pattern, 
the acute infection comprises a broader range of immunoglobulin 
isotypes: IgM, IgG1, IgG2a, IgG2b, and IgG3 (22, 144). In addition 
to B cell mitogens, another driving factor of this polyclonal activa-
tion may be the coexpression and shedding of a large repertoire of 
immunogenic surface proteins, delaying the immune response to 
immunodominant epitopes. In fact, trans-sialidases and their ter-
minal long tandem repeats have been shown to be T-independent 
polyclonal activators of mouse B cells (143, 145, 146). Even though 
polyclonal B-cell activation is transient and its role as a parasite 
escape mechanism needs further in vivo experimental validation, 
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this may be a strategy that could contribute for parasite survival 
during the initial stage of infection, when parasitemia is low and 
the parasite has not yet reached the sites where it persists, such as 
muscle, adipose tissue, and nervous system.

In contrast to previous studies, Bryan and coworkers have 
shown that C57BL/6 mice infected with T. cruzi Y strain pre-
sented lower polyclonal B cell activation than BALB/c mice, 
suggesting that polyclonal activation is not a generalized response 
in T. cruzi infection and is highly dependent on the host strain 
(147). The authors associated this difference with the protective 
Th1-focused C57BL/6 immune response, in contrast to the sus-
ceptible Th2-focused response developed by BALB/c mice (147). 
Distinct parasite strains also show different degrees of B-cell 
polyclonal activation. Parasites from TcVI DTU such as CL (144) 
and Tulahuén (22) strains and the clone CL Brener (145) induced 
polyclonal B-cell activation in BALB/c and C3H/Hej mice, while 
polyclonal activation induced by Y strain was restricted to BALB/c 
(147). The TcVI DTU was originated by a hybridization event 
between TcII and TcIII strains (148), which result in an increased 
repertoire of multigene families encoding surface proteins when 
compared to Sylvio X10 (TcI) (149). As these surface proteins 
are highly immunogenic, this larger repertoire of antigens could 
contribute to B-cell polyclonal activation observed in infections 
by TcVI strains.

Trypanosoma cruzi antigens released in the intracellular host 
cell environment, either from live parasites shedding or parasite 
lysis, become available for presentation by the class I major compat-
ibility complex (MHC) through the endogenous pathway (25, 26). 
This presentation promotes the priming of a strong but delayed 
CD8+ T immune response that is highly effective for controlling 
parasite levels, but only becomes evident 5–6 days post-infection, 
coinciding with the first round of intracellular replication (82, 
150–153). The delayed anti-T. cruzi immune response may be due 
to the need for a sufficient number of antigen-producing amastig-
otes accumulating in the cytosol, and/or by the large number of 
different polymorphic antigens that are simultaneously expressed 
by the parasite. These antigens may compete for presentation 
through host cell MHC class I molecules, delaying a fast and 
focused immune response (82, 123, 152, 153). This immunologi-
cally silent initial phase of infection may allow the parasite to reach 
a critical level before activating the host immune system (82, 123, 
154). As the infection advances, pathogen-specific T cells appear 
to preferentially recognize a small number of epitopes in a hierar-
chical manner, a process called immunodominance (26, 27, 152, 
155). Immunodominant antigens can be selected based on several 
factors, such as the abundance of the parasite epitope and its affin-
ity to MHC and T-cell receptors (26, 156–158). Trans-sialidases 
are among the major known CD8+ T immunodominant targets 
in T. cruzi infection, due to high expression in the infective forms 
and repetitive/antigenic content; as such, these enzymes have 
also been proposed as vaccine targets (27, 74, 152, 159–162). As 
previously stated, trans-sialidase is a highly polymorphic, multi-
copy gene family in T. cruzi, with several potential immunogenic 
candidates that can generate an unfocused immune response. 
To overcome this, the anti-trans-sialidase immune response is 
focused on a relatively small number of epitopes encoded by mul-
tiple genes (82, 152). Trans-sialidase immunodominant antigens 

can account for more than 30% of the entire CD8+ response in 
mice (152) and a significant proportion in humans (153). The 
presence of subdominant/cryptic antigens was demonstrated 
after the tolerization of the major immunodominant epitopes 
of T. cruzi during infection in BALB/c and C57BL/6 mice (27). 
These mice exhibited an immune response against novel antigens 
and a transient increase in parasite load but were ultimately able 
to control the acute infection, suggesting that a focused immune 
response per se, but not the presence of these immunodominant 
antigens, is required to control the infection (27, 82). This result 
is not surprising, as the trans-sialidase gene family varies in 
sequence and expression among T. cruzi strains (148, 149, 163), 
and immunodominance also depends on interaction between 
the antigen and host receptors, which vary among host species. 
Although immunodominance is a well-described phenomenon in 
T. cruzi, its direct implications for parasite clearance are still under 
debate. While some authors state that specific T cells for a single 
epitope can hinder the development of immunity to several other 
epitopes, allowing a small set of variant parasites to escape from the 
immune system (26, 164), others argue that immunodominance 
is probably not the major factor governing T. cruzi escape from 
sterile immunity (27). The second group argued that vaccination 
to boost specific immunodominant epitopes enhanced mice 
protection, instead of being deleterious to the hosts by strongly 
focusing the immune response on the immunodominant epitope 
(161, 165), and the tolerization of immunodominant epitopes did 
not lead to higher parasite clearance (27).

CONCLUSiON

Trypanosoma cruzi has been interacting and coevolving with 
humans for 6,000–9,000  years (5, 10, 166), and infecting wild 
mammals even longer (6–8, 167). Because of this extensive inter-
action with mammalian hosts and its obligatory parasitic lifestyle, 
this protozoan has developed several mechanisms to evade the 
host immune system (Figure 4), and simultaneously reduce host 
damage while maintaining its transmissibility to insect vectors 
(168). It is not surprising that as the disease reaches its chronic 
stage, only 30% of the patients progress to cardiac or digestive 
manifestations, whereas 70% show no clinical symptoms but are 
still able to infect triatomine insect vectors (168). However, when 
this equilibrium is lost and symptoms do occur, the disease causes 
great morbidity, resulting in a loss of 662,000 disability-adjusted 
life years (1–3) (WHO) (see text footnote 1). Among the trypano-
somatids whose genomes have already been sequenced, T. cruzi 
exhibits the largest expansion of the multigene families that 
encode surface proteins, many of which are antigenic (130, 148, 
163). A driving force for the expansion of these polymorphic sur-
face proteins may be their involvement in the parasite’s ability to 
invade any mammalian nucleated cell, which is a critical strategy 
that allows the parasite to spread in different host tissues during 
the initial infection. In addition, this impressive surface protein 
polymorphism also contributes to antigenic variability, leading 
to the coexpression of several polymorphic antigens that delay 
the development of an effective immune response. The delayed 
immune activation in host cell newly infected with T. cruzi, the 
polyclonal B cell activation, and T. cruzi intra- and inter-strain 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


FiGURe 4 | Major mechanisms involved in T. cruzi survival and control during the initial phase of infection. This figure summarizes the major interaction 
mechanisms between T. cruzi and several host components addressed in this review. Mechanisms associated with the control of parasite load are highlighted in 
green, whereas those involved with parasite modulation of the host immune system and/or with increased parasite load are highlighted in red.

January 2016 | Volume 6 | Article 65911

Cardoso et al. Immune Evasion by Trypanosoma cruzi

Frontiers in Immunology | www.frontiersin.org

surface antigenic variability makes prophylactic vaccine target 
identification nearly impossible (82). An effective pan-T. cruzi 
vaccine would have to include immunodominant and cryptic 
antigens from a broad variety of parasite isolates.
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