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Abstract
Introduction: Longitudinal	 imaging	 of	 neurodegenerative	 disorders	 is	 a	 potentially	
powerful	biomarker	for	use	in	clinical	trials.	In	Alzheimer’s	disease,	studies	have	dem-
onstrated that empirically derived regions of interest (ROIs) can provide more reliable 
measurement of disease progression compared with anatomically defined ROIs.
Methods: We	set	out	to	derive	ROIs	with	optimal	effect	size	for	quantifying	longitudi-
nal	change	 in	a	hypothetical	clinical	 trial	by	comparing	atrophy	rates	 in	44	patients	
with	behavioral	 variant	of	 frontotemporal	 dementia	 (bvFTD),	 30	with	 the	 semantic	
variant	primary	progressive	aphasia	(svPPA),	and	26	with	the	nonfluent	variant	PPA	
(nfvPPA)	to	atrophy	in	97	cognitively	healthy	controls.
Results: The regions identified for each variant were generally what would be ex-
pected	from	prior	studies	of	frontotemporal	lobar	degeneration	(FTLD).	Sample	size	
estimates	for	detecting	a	40%	reduction	in	annual	rate	of	ROI	atrophy	varied	sub-
stantially	 across	 groups,	 being	 103	 per	 arm	 in	 bvFTD,	 31	 in	 nfvPPA,	 and	 10	 in	
svPPA,	but	in	all	groups	were	less	than	those	estimated	for	a	priori	ROIs	and	clinical	
 measures. The variability in location of peak regions of atrophy across individuals 
was	highest	in	bvFTD	and	lowest	in	svPPA,	likely	relating	to	the	differences	in	ef-
fect	size.
Conclusions: These	findings	suggest	that,	while	cross-	validated	maps	of	change	can	
improve	sensitivity	to	change	in	FTLD	compared	with	a	priori	regions,	the	reliability	
of	 these	 maps	 differs	 considerably	 across	 syndromes.	 Future	 studies	 can	 utilize	
these	maps	to	design	clinical	trials,	and	should	try	to	identify	factors	accounting	for	
the	 variability	 in	 patterns	 of	 atrophy	 across	 individuals,	 particularly	 those	 with	
bvFTD.
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1  | INTRODUCTION

Frontotemporal	 lobar	 degeneration	 (FTLD)	 is	 a	 neurodegenerative	
disorder that has a profound effect on the lives of patients and their 
families; one that can be considered more detrimental than the effects 
of	more	typical	degenerative	disease	such	as	Alzheimer’s	disease	(AD)	
because	 it	 is	 associated	with	 an	earlier	 age	of	onset	 (Papageorgiou,	
Kontaxis,	 Bonakis,	 Kalfakis,	 &	Vassilopoulos,	 2009)	 and	 more	 rapid	
rate	of	decline	(Roberson	et	al.,	2005).	Neuroanatomically,	it	manifests	
distinctly	 from	AD	 in	 that	 it	primarily	 involves	 the	 frontal	and	ante-
rior temporal cortex rather than medial temporal and temporoparietal 
regions.	There	 are	 no	 approved	 treatments	 for	 FTLD	 but	 efforts	 to	
develop	them	are	underway	(Boxer	&	Boeve,	2007;	Boxer,	Gold,	et	al.,	
2013;	Boxer,	Knopman,	et	al.,	2013).

Brain imaging is a powerful tool in neurodegenerative disease. 
MRI	and	PET,	the	most	commonly	used	techniques,	can	be	used	to	
support	diagnosis,	and	measures	derived	from	brain	images	correlate	
with	 the	 type	 and	 severity	 of	 symptoms	 in	 each	 patient	 (Tartaglia,	
Rosen,	&	Miller,	2011).	These	observations	have	led	to	studies	exam-
ining the utility of longitudinal brain imaging as an outcome measure 
for	clinical	drug	trials,	which	have	demonstrated	that	MRI	can	track	
change in neurodegenerative disorders more reliably than clinical 
measures	 such	 as	 cognitive	 testing	 (Knopman	 et	al.,	 2009;	Weiner	
et	al.,	2013).

One limitation of brain imaging is that each image produces hun-
dreds or thousands of data points per patient corresponding to spatial 
locations	in	the	brain,	posing	a	significant	hurdle	for	defining	imaging-	
based	biomarkers	(Friston,	Holmes,	Poline,	Price,	&	Frith,	1996).	One	
of the most common approaches to reduce the large- scale data in im-
aging studies is to limit measures of change to aggregated estimates 
over	 regions	 of	 interest	 (ROIs),	which	 tend	 to	 be	 chosen	 based	 on	
prior knowledge about the regions that are most severely affected in 
each	disease.	In	AD,	ROIs	chosen	often	include	the	hippocampus,	en-
torhinal	cortex,	and	temporoparietal	regions	(Dickerson	et	al.,	2011).	
In	FTLD,	the	frontal	and/or	temporal	 lobes	have	been	used	(Gordon	
et	al.,	2010;	Krueger	et	al.,	2010).	However,	the	regions	most	severely	
affected	in	each	disease	tend	to	be	those	affected	earliest	(Jack	et	al.,	
1997;	Seeley	et	al.,	2008).	When	a	disorder	moves	beyond	the	earliest	
stages,	it	is	possible	that	regions	affected	early	begin	to	slow	their	rate	
of	change	while	other	regions,	previously	only	mildly	affected,	begin	
to	accelerate	their	decline	(Brambati	et	al.,	2009;	Rohrer	et	al.,	2012;	
Schuff	et	al.,	2012).	Thus,	ROIs	chosen	based	on	regions	that	are	most	
strongly associated with the disease may not be optimal for deter-
mining treatment effects. Recent studies have shown that empirically 
derived ROIs representing the most reliable voxels associated with 
an effect of interest can be used to improve diagnosis of dementia 
(Avants,	Cook,	Ungar,	Gee,	&	Grossman,	2010;	McMillan	et	al.,	2014)	
and	to	improve	statistical	power	for	longitudinal	analysis	(Chen	et	al.,	
2010;	Hua	et	al.,	2009)	 compared	with	ROIs	chosen	based	on	 their	
general association with the disease. We recently created an empiri-
cally	based	ROI	of	annualized	atrophy	in	a	group	of	FTLD	patients	and	
demonstrated	the	potential	 for	 larger	effect	sizes	 than	a	priori	ROIs	
(Pankov	et	al.,	2016).

Frontotemporal	lobar	degeneration	includes	a	spectrum	of	disor-
ders	with	varying	molecular,	clinical	and	imaging	characteristics	(Bang,	
Spina,	&	Miller,	2015;	Tartaglia	et	al.,	2011).	The	three	canonical	clin-
ical presentations include: (1) the behavioral variant of frontotem-
poral	dementia	 (bvFTD),	 characterized	by	progressive	 impairment	 in	
socioemotional function; (2) the semantic variant of primary progres-
sive	 aphasia	 (svPPA;	 also	 known	 as	 semantic	 dementia),	 character-
ized	by	progressive	loss	of	knowledge	about	words	and	objects,	and	 
(3)	 the	nonfluent	variant	of	PPA	 (nfvPPA),	characterized	by	progres-
sive	 impairment	 of	 articulation	 and	 speech	 (Gorno-	Tempini	 et	al.,	
2011;	Rascovsky	et	al.,	2011).	Each	variant	is	associated	with	distinct	
distributions of cortical atrophy varying particularly in the degree of 
temporal	and	frontal	lobe	involvement.	BvFTD	alone	can	show	highly	
variable	 patterns	 of	 atrophy	 (Whitwell	 et	al.,	 2011).	 Therefore,	 it	 is	
likely	 that	 the	most	 sensitive	ROIs	 for	FTLD	will	 be	derived	empiri-
cally from and specific to each variant. In our previous analysis (Pankov 
et	al.,	 2016),	we	 examined	 annual	 volume	 loss	 in	 a	mixed	 group	 of	
bvFTD	and	svPPA	cases.	The	number	of	subjects	in	that	study	was	too	
small	to	examine	syndrome-	specific	patterns	of	change.	In	this	study,	
we set out to identify the most reliable regions of change separately in 
bvFTD,	svPPA,	and	nfvPPA	and	estimate	sample	sizes	for	theoretical	
clinical trials that might involve each of these groups individually.

2  | METHODS

2.1 | Subjects

Subjects	 in	 this	 retrospective	 study	 included	 any	 subject	 studied	 at	
the	 UCSF	 Memory	 and	 Aging	 Center	 (MAC)	 who	 had	 undergone	
MRI	twice	over	a	period	ranging	between	6	months	and	2	years	with	
a	diagnosis	of	behavioral	 variant	of	bvFTD	 (n	=	44),	 svPPA	 (n	=	30),	
or	nfvPPA	(n	=	26).	All	data	were	annualized	prior	to	analysis.	In	ad-
dition,	 we	 assembled	 a	 group	 of	 healthy	 comparison	 subjects	 (HC)	
with longitudinal imaging with the same age range and sex distribu-
tion	of	 the	FTLD	group	 (HC,	n	=	97,	mean	 age	64.77	±	6/95,	mean	
education	level	17.65	±	6.95).	Patients	included	in	this	study	were	re-
cruited	between	2008	and	2015	through	ongoing	studies	(AG019724,	
AG032306,	AG023501)	at	the	MAC.	Diagnosis	for	these	studies	was	
based	 on	 a	 multidisciplinary	 evaluation	 incorporating	 neurological,	
neuropsychological,	 and	 nursing	 assessment	 (Rosen	 et	al.,	 2002).	
Structural	brain	imaging	was	not	used	to	make	syndromic	diagnosis,	
but	only	to	exclude	other	causes	of	brain	damage,	such	as	strokes	or	
tumors. Disease duration was estimated based on the year of initial 
symptoms provided by the patient or their informant. HC data were 
obtained	from	a	cohort	of	subjects	recruited	at	the	MAC	via	advertise-
ments and community events. HCs underwent the same evaluation as 
patients	and	were	required	to	have	no	clinically	significant	cognitive	
or	behavioral	complaints,	performance	within	one	standard	deviation	
of	normal	on	all	 cognitive	 tasks,	and	 to	have	brought	a	knowledge-
able informant to verify the absence of clinically significant cognitive 
or behavioral problems. HCs were excluded if they had a history of 
significant	mood	disorders,	 clinically	 significant	 alcohol	or	drug	use,	
significant	 vascular	 disease,	 visual	 problems	 that	 would	 impair	 test	
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performance,	other	neurologic	conditions,	and	self-	reported	deficits	
in cognition.

All	subjects	were	required	to	have	had	two	T1-	weighted	MRI	scans	
acquired	with	the	same	scanner	and	pulse	sequence	and	with	a	quality	
suitable	 for	processing.	 Images	were	 inspected	 for	quality,	 including	
ensuring whole- brain coverage and looking for excessive motion arti-
fact.	Assessment	of	CNS	amyloid	burden,	usually	with	PET	amyloid	im-
aging using Pittsburgh B compound was available in 63 of the patients. 
Because the goal of the analysis was to examine the change maps in 
groups	with	specific	clinical	diagnoses,	all	patients	with	available	MRI	
data	were	included,	regardless	of	amyloid	status.	A	sensitivity	analysis	
was	conducted	on	the	subset	of	bvFTD	patients	who	were	known	to	
be amyloid negative to examine whether maps of change differed sub-
stantially	from	the	maps	created	from	the	group	as	a	whole.	Amyloid	
status	was	generally	not	available	in	the	controls.	All	research	was	per-
formed	in	accordance	with	the	Code	of	Ethics	of	the	World	Medical	
Association.	All	subjects	provided	 informed	consent,	and	the	clinical	
and	 imaging	 protocols	 were	 approved	 by	 the	 UCSF	 Committee	 on	
Human Research.

2.2 | Clinical assessment

Patients	 were	 diagnosed	 using	 published	 criteria	 (McKhann	 et	al.,	
1984;	 Neary	 et	al.,	 1998)	 after	 a	 comprehensive	 evaluation	 at	 the	
UCSF	MAC	 including	 neurological	 history	 and	 examination,	 nursing	
assessment,	 laboratory	 evaluation,	 and	 a	 previously	 described	 neu-
ropsychological	assessment	 (Kramer	et	al.,	2003).	The	neuropsycho-
logical	assessment	battery	includes	the	Mini	Mental	State	Examination	
(MMSE)	(Folstein,	Folstein,	&	McHugh,	1975),	and	tests	tapping	into	
functions	relevant	to	FTLD	including	memory,	language	and	frontal/
executive	 functions.	 These	 include	 list-	learning	 (California	 Verbal	
Learning	 Task	 [CVLT];	 Delis,	 Kramer,	 Kaplan,	 &	 Ober,	 2000),	 con-
frontational	naming	 (15	 items	 from	the	Boston	Naming	Test	 [BNT];	
Kaplan,	Goodglass,	&	Wintraub,	1983),	set-	shifting	(modified	version	
of	the	Trails	B	task;	Kramer	et	al.,	2003),	and	tests	of	lexical	fluency	
(words	beginning	with	the	letter	“D”;	Birn	et	al.,	2010),	and	semantic	
fluency	(animals;	Delis,	Kaplan,	&	Kramer,	2001).	Functional	state	was	
quantified	 using	 the	 Clinical	 Dementia	 Rating	 (CDR;	Morris,	 1997),	
which was used here to generate a continuous variable based on the 
sum	of	the	individual	ratings	for	functional	domains,	typically	referred	
to	as	the	sum-	of-	boxes	(CDR-	SB).	Although	an	FTLD-	specific	version	
of	the	CDR	has	been	developed	(Knopman	et	al.,	2008),	many	of	these	
patients	were	assessed	before	our	center	began	using	it,	so	this	analy-
sis was done using only the traditional CDR domains.

2.3 | Image acquisition

A	3.0T	MRI	was	 acquired	 on	 a	 Siemens	 Tim	Trio	 system	 (Siemens,	
Iselin,	NJ,	USA)	equipped	with	a	12-	channel	receiver	head	coil.	A	volu-
metric	MPRAGE	sequence	was	used	to	acquire	T1-	weighted	images	of	
the entire brain (coronal slice orientation; slice thickness = 1.0 mm; in- 
plane	 resolution	=	1.0	×	1.0	mm;	matrix	=	240	×	256;	TR	=	2,300	ms;	
TE	=	3	ms;	TI	=	900	ms;	flip	angle	=	9°).

2.4 | Image processing

Longitudinal	changes	 in	regional	brain	volume	were	estimated	using	
the	 Pairwise	 Longitudinal	 Registration	 Toolbox	 implemented	 in	
SPM12	 (Ashburner	 &	 Ridgway,	 2012),	 which	 addresses	 concerns	
regarding asymmetric bias in pair- wise longitudinal registration 
(Thomas,	2010;	Yushkevich	et	al.,	2010).	The	process	begins	with	in-
trasubject registration using iterative and interleaved rigid- body align-
ment,	diffeomorphic	warping,	and	correction	for	differential	intensity	
inhomogeneity to generate a within- subject template representing an 
average	of	 the	 subject’s	 two	 scans	with	 respect	 to	 position,	 shape,	
and intensity nonuniformity. Two Jacobian determinant maps are 
then computed; one that encodes the relative difference in volume 
between	 the	 first	 scan	and	 the	within-	subject	average,	and	another	
that describes the relative volume between the second scan and the 
average. Computing the difference between these two Jacobian de-
terminants provides a map of relative change in volume between scan 
one and scan two at each spatial location. The change maps were di-
vided by the interscan interval (in units of years) to become maps of 
annual	rate	of	relative	volume	change.	Each	subject’s	average	image	
was	 bias-	corrected	 and	 the	 brain	was	 partitioned	 into	 gray	matter,	
white	 matter,	 and	 cerebrospinal	 fluid	 (CSF),	 using	 SPM12’s	 unified	
segmentation procedure. The contraction/expansion maps were then 
multiplied with the gray matter probabilistic tissue segmented maps 
on	a	voxel-	by-	voxel	basis,	in	within-	subject	average	space,	to	restrict	
analyses to cortical and subcortical gray matter.

Image segmentation can be affected by several factors that may 
relate	to	disease,	including	histological	abnormalities	that	could	cause	
changes	in	tissue	contrast,	as	well	as	subject	movement,	which	would	
decrease signal- to- noise ratios. To ensure that the analysis would not 
be	excessively	influenced	by	differences	in	the	quality	of	gray	matter	
segmentations	across	groups,	we	reviewed	the	distributions	of	values	
for the whole- brain gray matter probability maps across groups. The 
shapes of these distributions were similar across groups.

To	allow	statistical	analysis	across	subjects,	all	images	were	trans-
formed	to	a	standardized	space.	Mappings	from	the	gray	matter	and	
white matter segments of the within- subject averages (all patients and 
control subjects) to an iteratively evolving study- specific population 
mean	of	these	tissues	were	estimated	using	the	DARTEL	(diffeomor-
phic anatomical registration through an exponentiated lie algebra) 
toolbox	(Ashburner,	2007).	DARTEL	minimizes	the	geodesic	distance	
from	each	patient	to	the	population	mean.	Thus,	between-	population	
asymmetries	in	registration,	which	could	also	lead	to	erroneous	pop-
ulation	 effects,	 were	 addressed.	 An	 affine	 mapping	 between	 the	
population	mean	 and	MNI	 space	 (defined	 by	 SPM12’s	 Prior	 Tissue	
Probability	Map)	was	also	estimated	and	combined	with	each	subject-	
to- population mean mapping for warping average images and volume 
expansion/contraction	rate	maps	to	MNI	space.	The	rate	change	maps	
were	then	warped	to	population-	in-	MNI	space	using	the	abovemen-
tioned	 mapping	 composition,	 and	 resampled	 to	 1.5	mm3 without 
“volume- preserving” modulation. No spatial smoothing was applied. 
Subsequent	analysis	was	done	using	only	the	gray	matter	maps	of	each	
patient.
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2.5 | Generation and evaluation of a data- driven ROI

2.5.1 | Overview

Our data- driven ROI generation procedure follows (in spirit) from prior 
approaches	where	optimal	effect	sizes	were	estimated	from	a	training	
set	and	tested	on	an	independent	test	set	(Chen	et	al.,	2010;	Hua	et	al.,	
2009).	However,	we	use	a	cross-	validation-	type	scheme	rather	than	a	
simple training- test approach in order to maximally use the data avail-
able in generating a “best” consensus ROI; we thereby avoid overfit-
ting	for	our	estimates	of	effect	size	and	sample	size.	For	each	randomly	
partitioned	cross-	validation	training	set,	we	first	generated	a	Student’s	
t	 statistic	 (allowing	unequal	group	variances)	at	each	voxel	 in	stand-
ardized	space.	The	map	of	t	statistics	quantifies	the	difference	in	the	
effect	size	of	contraction	between	each	FTLD	patient	group	and	HCs	
across	the	brain.	A	3D	ROI	is	extracted	by	thresholding	the	map	of	t 
statistics	such	that	the	threshold	used	maximizes	the	effect	size	in	the	
same	training	set.	The	effect	size	for	tissue	contraction	over	1	year	is	
then	estimated	on	the	independent	test	set	partition	of	the	data.	After	
repeating	the	process	multiple	times,	the	effect	size	is	estimated	as	the	
mean	of	the	estimates	across	the	independent	test	sets.	A	consensus-	
weighted ROI was then generated from the cross- validation procedure 
by weighting each voxel based on its reliability in distinguishing con-
traction between patient and HC groups across the random partitions.

We specifically chose to examine only contracting voxels because 
expanding	 voxels	 would	 often	 represent	 residual	 CSF	 spaces	 that	
were not completely removed by segmentation and masking. If we 
included	expanding	voxels,	we	would	be	making	the	assumption	that	
future studies would encounter similar patterns of expansion in resid-
ual/unmasked	CSF	voxels.	Thus,	 the	generalizability	of	 the	 resultant	
map would be dependent on similarity between our segmentation and 
masking procedures and the segmentation outcomes of future studies. 
Given	that	this	segmentation	accuracy	would	depend	on	many	factors,	
we felt that limiting the ROI to only voxels that would be expected to 
contract	would	be	more	conservative	and	generalizable.

2.5.2 | Procedure

Data- driven ROIs were generated separately for each clinical variant 
of	FTLD	by	comparing	change	maps	in	each	patient	group	to	change	

in the entire control group. The cross- validation algorithm proceeded 
as follows:

1. For	each	patient	group,	 the	combined	set	of	 control	and	patient	
data	 were	 randomly	 divided	 into	 training	 and	 test	 sets,	 with	
16%	 of	 the	 data	 being	 assigned	 to	 the	 test	 set.	 Each	 split	 was	
stratified	 such	 that	 the	 proportion	 of	 FTLD	 to	 normal	 samples	
was	 required	 to	 be	 more	 than	 1/3,	 but	 less	 than	 2/3	 of	 the	
total	 test	 set.	 For	 example,	 in	 the	 case	 of	 bvFTD	 where	 we	
have the N	 of	 97	 for	 controls	 and	 44	 for	 bvFTD,	 the	 size	 of	
the	 test	 set	 would	 be	 (97	+	44)	×	0.16	=	23	 images,	 of	 which	
1/3	 (8)	 to	 2/3	 (15)	 would	 have	 to	 be	 bvFTD.

2. A	series	of	ROIs	was	then	generated	in	each	training	set	by	thresh-
olding the t-maps over a set of levels ranging from 3.5 to the maxi-
mum observed t statistic in increments of 0.01 units.

3. The	effect	size	for	the	mean	difference	in	rate	of	change	between	
each	FTLD	variant	and	controls	was	then	calculated	for	each	ROI	of	
the	training	set	using	Cohen’s	d.	A	plot	is	then	generated	of	effect	
size	versus	each	t statistic cutoff. The plot represents the relation-
ship between the t	statistic	cutoff	and	the	corresponding	effect	size	
for	each	resulting	ROI	(see	below,	Figure	1).

4. The ROI associated with the t statistic cutoff corresponding to the 
maximum	effect	size	is	selected.

5. The	ROI	from	step	4	is	then	used	to	calculate	the	effect	size	in	the	
test	set	to	obtain	an	unbiased	effect	size	estimate	for	the	particular	
partition.

Steps	1–5	were	then	repeated	1,024	times,	reassigning	patients	
into	the	training	and	test	sets	each	time.	At	the	end	of	the	process,	
we have a set of “optimal” ROIs (across training/test set partitions). 
The	 effect	 size	 is	 then	 estimated	 as	 the	mean	 effect	 size	 over	 all	
partitions. To then estimate a consensus ROI from the ensemble of 
cross-	validated	measurements,	we	weighted	the	contribution	of	each	
voxel to the data- driven ROI as the proportion of cross- validation 
partitions	(weighted	by	the	effect	size	for	that	cross-	validation	sam-
ple)	in	which	the	voxel	contributes	to	the	consensus	ROI.	Thus,	the	
resulting map has a stronger representation from voxels consistently 
contributing	to	the	overall	effect	size	across	cross-	validation	samples	
and weaker representation from voxels whose contribution was more 
variable.

F IGURE  1 Plots	of	effect	size	versus	t	score	threshold	cutoff	for	each	clinical	variant,	used	to	identify	t score threshold giving map with 
maximum	effect	size
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It should be noted that at high t- thresholds the maximal empirical 
effect	size	estimate	becomes	highly	variable	over	neighboring	thresh-
olds because only a small number of voxels form a ROI at high thresh-
olds. To mitigate this effect and generate a stable estimate of maximum 
effect	size,	we	smoothed	the	effect	size	curve	plotted	against	thresh-
old.	However,	even	lowess	regression	did	not	sufficiently	downweight	
the influence of high thresholds. We therefore implemented a heuristic 
method	to	 identify	the	maximum	effect	size.	Specifically,	a	 lowess	re-
gression was performed after iteratively excluding a top set of voxels 
(from	0%	to	10%	of	the	highest	voxels	in	increments	corresponding	to	
those associated with the t-	thresholds).	At	each	 iteration,	the	 lowess-	
smoothed	maximum	was	calculated,	and	the	overall	maximum	was	taken	
as the median of all the smoothed maximums. This approach was able 
to identify the location of the maximum in reasonable agreement with 
the choice that one would make visually as being the maximum of the 
relatively	smooth	(and	therefore	reliable)	part	of	the	curve	(see	Figure	1).

In	 order	 to	 estimate	 the	 potential	 impact	 of	 using	 an	 optimized	
data-	driven	ROI	of	change	for	future	clinical	trials,	we	calculated	the	
necessary	sample	size	in	a	hypothetical	clinical	trial	seeking	to	detect	
a	20%	and	40%	reduction	in	the	change	over	1	year	in	volume	loss	in	
each	FTLD	group	 (α	=	0.05,	 power	=	0.8).	We	compared	 the	 sample	
size	from	the	effect	size	estimated	using	the	data-	driven	ROIs	(i.e.,	via	
the	mean	effect	size	over	the	test	set	estimates)	to	the	sample	sizes	
obtained by measuring change within a priori ROIs based on cerebral 
anatomy.	For	this	purpose,	we	used	frontal,	temporal,	combined	fron-
tal	and	temporal,	and	whole	gray	matter	masks	as	regions	of	interest	
(ROIs)	relevant	to	FTLD.	These	ROIs	were	obtained	from	the	AAL	brain	
atlas	 supplied	with	 the	WFU-	PickAtlas	 software	 package	 (Maldjian,	
Laurienti,	Kraft,	&	Burdette,	2003).

2.6 | Change in clinical variables and sample 
size estimates

Changes	in	clinical	variables	were	analyzed	using	linear	mixed	effects	
models with cognitive score as the dependent variable and elapsed 
time	 in	years	as	 the	predictor.	 In	order	 to	compare	 the	sample	 size	
estimates generated for imaging- based measures of change to those 
generated	using	clinical	measures,	we	calculated	sample	size	estimates	
using	annualized	changes	in	score	for	the	MMSE,	selected	measures	
of	 language	and	executive	 functioning,	 and	 for	 the	CDR,	which	has	
been	identified	as	an	attractive	measure	for	tracking	change	in	FTLD	
(Knopman	et	al.,	2008).	We	calculated	the	necessary	sample	size	in	a	
hypothetical	clinical	trial	seeking	to	detect	a	20%	and	40%	reduction	
in	 the	 change	 over	 1	year	 in	 clinical	measures	 in	 each	 FTLD	 group	
(α	=	0.05,	β	=	0.8).	These	analyses	were	carried	out	using	Stata	(ver-
sion	14,	www.stata.com).

3  | RESULTS

3.1 | Group demographics and clinical assessments

Demographic characteristics and cognitive testing performance in the 
patient groups are presented in Table 1. The mean age for the control 
group	was	64.4	(±7).	The	bvFTD	group	was	slightly	younger	than	the	
controls	(−3.69	years,	95%	CI	[−6.23,	−1.14],	p	=	.005)	and	the	nfvPPA	
group	was	 slightly	 older	 (+3.73	years,	 95%	CI	 [0.66,	 6.8],	p	=	.018).	
The differences in mean interscan interval across groups were not 
statistically significant (p	=	.11),	 nor	 were	 differences	 in	 education	
level (p	=	.43)	or	disease	duration	(p	=	.45).	In	terms	of	cognitive	and	

TABLE  1 Baseline and 1- year clinical data in patient groups

bvFTD (n = 44) nfvPPA (n = 26) svPPA (n = 30)

Demographics

Age	at	year	1	(SD) 61.14	(7.36) 71.6 (7.73) 66.7	(6.69)

Sex	(M/F) 25/19 12/14 16/14

Education 15.88	(2.95) 16.58	(2.76) 16.76 (3.21)

Disease duration 5.66	(3.85) 4.81	(2.87) 6.05	(4.2)

Mean	interscan	interval 1.09	(0.31) 1.14	(0.38) 1.07	(0.38)

Measure Baseline Follow- up Baseline Follow- up Baseline Follow- up

Cognitive testing

MMSE 24.57	(4.19) 21.94	(7.09)* 25.32	(4.66) 23.05	(6.85) 25.03	(3.89) 19.96	(7.33)*

CDR-	SB 6.67	(2.9) 8.59	(3.22)* 2.38	(2.14) 4.02	(3.7)* 4.11	(2.28) 5.72	(3.15)*

CVLT-	LDa	(max	=	9) 4.02	(2.8) 3.55	(3.05)* 5.48	(2.92) 5.19	(2.91) 1.38	(2.0) 1.21 (2.25)

BNT (max = 15) 12.11	(3.43) 11.64	(4.49) 12.08	(2.84) 10.48	(4.32)* 4.54	(3.36) 3.11	(3.36)*

Semantic	fluency 10.45	(6.26) 9.66	(7.0)* 10.33 (7.25) 9	(7.05) 6.85	(4.57) 5.5	(5.56)*

Lexical	fluency 7	(4.48) 6.56 (5.56) 6.16	(4.7) 5.27	(5.13)* 7.77	(4.06) 6.73	(4.97)

Trails set- shifting 70.9	(40.43) 76.53	(42.55) 71.88	(35.3) 64.38	(33.93) 49.08	(29.13) 50.01	(29.76)

bvFTD,	behavioral	variant	of	frontotemporal	dementia;	nfvPPA,	nonfluent	variant	of	primary	progressive	aphasia;	svPPA,	semantic	variant	of	primary	pro-
gressive	aphasia;	BNT,	Boston	Naming	Test;	CVLT,	California	Verbal	Learning	Task;	CDR,	Clinical	Dementia	Rating.
aLD	=	long	delay	(10	min).
*p < .05 for change between baseline and follow- up.

http://www.stata.com
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functional	data,	scores	were	generally	what	would	be	expected.	SvPPA	
patients tended to score more poorly on measures of verbal episodic 
memory	and	language	compared	with	the	other	groups.	BvFTD	and	
nfvPPA	 patients	 performed	more	 poorly	 on	measures	 of	 executive	
function	than	svPPA.	BvFTD	showed	the	most	functional	impairment,	
as	measured	by	the	CDR-	SB.	Annualized	changes	over	time	were	sig-
nificant	in	bvFTD	for	MMSE	(−3.25,	95%	CI	[−5.26,	−1.24],	p	=	.001),	
CDR	 (1.73,	 95%	 CI	 0.95,	 2.5],	 p	<	.001),	 CVLT-	long	 delay	 (−0.82,	
95%	CI	−1.35,	−0.3],	p	=	.002),	and	semantic	fluency	(−1.61,	95%	CI	
−2.13,	−0.08],	p	=	.039).	In	svPPA,	changes	were	significant	for	MMSE	
(−4.40,	95%	CI	 [−5.85,	−2.95],	p	<	.001),	CDR	 (1.32,	95%	CI	 [−0.45,	
2.19,	p	=	.003),	BNT	(−1.36,	95%	CI	[−2.05,	−0.67],	p	<	.001),	and	se-
mantic	 fluency	 (−1.62,	 95%	CI	 [−2.31,	 −0.94],	p	<	.001).	 In	 nfvPPA,	
changes	were	significant	for	CDR	(1.61,	95%	CI	[0.7,	2.52],	p	=	.001),	
BNT	(−1.66,	95%	CI	[−3.17,	−0.16],	p	=	.03),	semantic	fluency	(−1.83,	
95%	CI	 [−3.35,	−0.33],	p	=	.017),	and	 lexical	 fluency	 (−1.05,	95%	CI	
[−1.19,	−0.19],	p = .17).

3.2 | Change maps and effect sizes

As	 expected,	 there	was	 a	 clear	 relationship	 between	 the	 t statistic 
threshold	and	the	effect	size	for	the	associated	ROI	in	each	FTLD	vari-
ant.	For	illustrative	purposes,	Figure	1	depicts	this	relationship	in	each	
variant developed from the complete dataset (step 2 of the algorithm; 
no training/test partitioning has been performed in generating the 
plot.	Rather,	the	full	dataset	was	used	 in	order	to	maximally	extract	
information from the data).

Figure	2	 depicts	 the	 range	 of	 effect	 sizes	 obtained	 by	 applying	
the ROIs obtained from training sets to test sets (step 5 of the algo-
rithm)	over	1,024	iterations.	The	mean	effect	sizes	were	−0.98	(95%	
CI	[−0.96,	−0.98])	for	bvFTD,	−1.84	(95%	CI	[−1.78,	−1.9])	for	nfvPPA,	
and	−3.45	(95%	CI	[−3.35,	−3.55])	for	svPPA.

Figure	3	depicts	the	consensus	ROIs	created	for	each	variant.	The	
ROI maps are displayed on a scale representing the weighing for each 
voxel.	 In	bvFTD,	the	regions	in	the	optimal	ROI	included	medial	and	
lateral	portions	of	the	frontal	cortex,	the	perisylvian	regions	including	
the	insula,	and	the	striatum,	in	particular	the	caudate	heads,	with	no	
inclusion	of	 the	orbitofrontal	 surface.	 In	 addition,	 the	map	 included	
portions	of	the	temporoparietal	junctions,	medial	parietal	cortex,	and	

mid-	inferolateral	temporal	region.	In	nfvPPA,	the	most	reliable	regions	
of change were identified in the dorsal portions of the medial wall 
of	 the	 frontal	 lobes,	and	on	 the	 lateral	 frontal	 lobes	primarily	 in	 the	
precentral	regions	with	extension	into	the	perisylvian	region,	and	also	
caudate	head	involvement.	In	svPPA,	the	optimal	ROI	included	supe-
rior and ventral anterior temporal cortex (but only partially included 
the temporal polar cortex) and mid- to- posterior inferolateral portions 
of	 the	 temporal	 lobes.	The	ROI	 in	svPPA	was	bilateral	but	more	ex-
tensive on the left. It also extended into the ventromedial frontal and 
caudate regions.

Table	2	compares	the	sample	size	estimates	for	a	hypothetical	1-	
year	1:1	parallel	group	trial	designed	to	detect	a	20%	or	40%	reduction	
in rate of decline obtained using the statistical ROIs (taken as the mean 
of	the	test	effect	sizes	from	the	cross-	validation	procedure)	with	those	
obtained using anatomically based ROIs and clinical data. In every vari-
ant,	the	sample	size	estimated	with	the	statistically	derived	ROI	was	
lower	than	sample	sizes	from	frontal	and/or	temporal,	or	whole	gray	
matter	 ROIs.	 The	 improvements	were	 larger	 for	 nfvPPA	 and	 svPPA	
compared	with	bvFTD.	For	 instance,	 in	nfvPPA,	the	data-	driven	ROI	
resulted	in	a	31%	reduction	in	the	sample	size	required	to	see	a	20%	
reduction in atrophy in a theoretical clinical trial when compared with 
the	best	 a	 priori	 ROI	 (118	patients	 per	 arm	vs.	 170	using	 temporal	
gray	matter).	In	svPPA,	the	sample	size	needed	was	reduced	by	53%	
(34	patients	per	arm	vs.	73	using	temporal	gray	matter).	In	bvFTD,	the	
data-	driven	ROI	improved	the	sample	size	estimate	by	21%	(409	pa-
tients per arm vs. 521 using whole gray matter). These results can be 
compared	with	the	sample	size	estimates	required	to	achieve	a	20%	
or	 40%	 reduction	 in	 rate	 of	 decline	 for	MMSE,	 CDR-	SB,	 and	 other	
cognitive	tasks	(Table	2).	The	sample	sizes	are	substantially	larger	than	
those	required	for	imaging.

3.3 | Change maps in amyloid- negative and nongene 
carrier bvFTD subjects

The prominence of longitudinal atrophy in the parietal regions in 
bvFTD	 raised	 concerns	 that	 the	 change	 maps	 might	 be	 influenced	
by	individuals	diagnosed	with	bvFTD	who	were	amyloid	positive.	Of	
the	44	bvFTD	patients,	20	had	amyloid	imaging	and	one	of	them	was	
amyloid positive. We performed a sensitivity analysis examining rates 

F IGURE  2 Histograms	of	effect	size	calculations	across	cross-	validation	runs	in	each	diagnostic	group
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of	change	in	the	19	known	amyloid-	negative	bvFTD	patients	versus	
controls.	Although	 the	 resulting	change	map	 included	 fewer	voxels,	
likely due to a relatively small number of subjects being used for the 

cross-	validation,	the	resulting	change	map	(Figure	4,	top	row)	included	
a	similar	set	of	regions	as	the	overall	bvFTD	map,	including	temporal	
regions and lateral and medial parietal regions.

F IGURE  3 Maps	of	consensus	regions	of	interest	for	the	three	main	variants

TABLE  2 Sample	size	calculationsa	(per	arm)	for	rate	of	atrophy	in	a	priori	and	data-	driven	regions	of	interest,	and	for	selected	clinical	
measuresb

bvFTD nfvPPA svPPA

Sample size 20% 
reduction

Sample size 40% 
reduction

Sample size 
20% reduction

Sample size 40% 
reduction

Sample size 
20% reduction

Sample size 
40% reduction

Imaging measures

Frontal	lobe 593 149 191 49 346 88

Temporal lobe 564 142 170 44 73 19

Frontal/temporal 755 190 507 128 94 25

Whole gray 521 131 172 44 111 29

Data- driven 409 103 118 31 34 10

Clinical measures

MMSE 2,090 523 3,457 893 546 137

CDR-	SB 592 152 1,522 367 776 194

BNT 3,340 835 4,728 1,182 841 211

Category fluency 1,795 449 1,572 393 426 107

Phonemic fluency 3,650 913 3,290 823 2,256 564

Modified	trails	time 2,132 533 863,592 215,898 1,169 293

bvFTD,	behavioral	variant	of	frontotemporal	dementia;	nfvPPA,	nonfluent	variant	of	primary	progressive	aphasia;	svPPA,	semantic	variant	of	primary	pro-
gressive	aphasia;	BNT,	Boston	Naming	Test;	CDR,	Clinical	Dementia	Rating.
aSample	size	for	placebo-	controlled	trial	with	1:1	treated/placebo	ratio,	standard	deviation	based	on	patient	group	only	(see	Section	2).
bThe	imaging	measure	with	the	highest	effect	size	for	each	diagnostic	group	is	highlighted	(bold)	to	facilitate	comparison.
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Similarly,	previous	reports	have	demonstrated	that	patterns	of	at-
rophy	in	autosomal	dominant	forms	are	different	than	in	sporadic	FTD,	
with	 more	 widespread	 cortical	 involvement,	 including	 the	 parietal	
lobes.	All	of	the	bvFTD	cases	had	genetic	testing	performed	through	
research	 using	 previously	 described	 methods	 (Naasan	 et	al.,	 2016).	
Fourteen	of	 the	44	bvFTD	patients	were	 gene	 carriers.	To	 examine	
whether mutation carriers were having a strong effect of increasing 
the	 likelihood	of	parietal	 changes,	we	performed	another	 sensitivity	
analysis	of	the	group	of	30	bvFTD	subjects	after	removing	 individu-
als	with	mutations.	Again,	the	resulting	change	map	(Figure	4,	bottom	
row)	was	similar	to	the	map	for	the	bvFTD	group	as	a	whole.

3.4 | Variability in locations of peak change across 
individuals

The	 variability	 in	 effect	 size	 across	 clinical	 syndromes	was	 striking.	
One possible explanation is that mean rates of change were slower 
for	bvFTD	than	for	other	groups;	however,	this	would	be	 inconsist-
ent with prior studies indicating that rates of decline in clinical meas-
ures	and	brain	volume	in	bvFTD	are	similar	to	rates	of	decline	in	other	
variants	(Krueger	et	al.,	2010;	Rascovsky	et	al.,	2001;	Roberson	et	al.,	
2005).	Given	 that	 the	algorithm	 is	designed	 to	quantify	 the	 reliabil-
ity	of	 change	 in	each	voxel	 across	 individuals,	 another	possibility	 is	
that the patterns of change might vary across individuals differently in 
each	of	the	groups.	To	examine	this,	we	plotted	the	locations	of	peak	
voxels	(i.e.,	those	with	the	highest	rate	of	change)	for	all	individuals,	

and	displayed	these	locations	in	MNI	space	for	each	diagnostic	group	
(Figure	5).	As	would	be	predicted	from	the	effect	size	estimates,	peak	
regions of change were highly clustered across individuals in the 
svPPA	 group,	 but	 with	 greater	 spatial	 variation	 in	 the	 locations	 of	
peaks	in	nfvPPA,	and	perhaps	the	most	heterogeneous	spatial	distri-
bution	was	seen	in	bvFTD.

4  | DISCUSSION

The aim of this analysis was to create ROIs that would generate maxi-
mal	effect	sizes	for	measuring	change	in	cortical	volume	in	three	major	
variants	of	FTLD.	As	would	be	expected,	the	maps	varied	considerably	
across	the	three	major	variants.	 In	bvFTD,	they	 included	the	medial	
and	lateral	portions	of	the	frontal	lobes,	the	insula,	the	striatum,	and	
the	 temporoparietal	 regions	 bilaterally.	 In	 svPPA,	 the	most	 reliable	
change	occurred	primarily	in	ventral	and	lateral	temporal,	and	medial	
frontal	regions,	and	in	nfvPPA,	the	changes	occurred	in	the	medial	and	
lateral portions of the frontal lobes with predominant involvement of 
the	precentral	and	perisylvian	regions.	Estimated	effect	sizes	within	
these	optimal	ROIs	varied	considerably,	being	highest	 in	svPPA	and	
lowest	 in	 bvFTD.	 The	main	 factor	 likely	 contributing	 to	 the	 differ-
ences	 in	effect	size	appeared	to	be	 the	 level	of	spatial	variability	 in	
atrophy	locations	across	individuals,	with	bvFTD	and	nfvPPA	showing	
the	most	widely	 distributed	 patterns	 of	 change.	 In	 all	 analyses,	 the	
sample	size	estimates	for	a	theoretical	clinical	trial	obtained	using	the	

F IGURE  4 Maps	of	consensus	
regions of interest for behavioral variant 
of frontotemporal dementia sensitivity 
analysis using amyloid- negative and gene- 
negative subgroups

F IGURE  5 Maps	of	peak	regions	of	
longitudinal atrophy across patients in each 
of the three major variants
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statistical ROI approach were smaller than the estimates obtained 
with a priori lobar ROIs.

The specific regions identified in the change maps were generally 
what would be expected from prior cross- sectional and longitudi-
nal	studies	of	FTLD,	with	some	notable	exceptions.	 In	bvFTD,	 there	
was	surprisingly	little	involvement	of	the	orbitofrontal	regions,	while	
there was change detectable in the posterior temporoparietal regions. 
Current	models	propose	that	the	pattern	of	change	in	structural	MRI	
in	neurodegenerative	diseases	follows	a	nonlinear	pattern,	with	accel-
eration	of	change	somewhere	near	the	point	of	symptom	onset,	and	
deceleration	of	change	in	the	later	phases	of	illness	(Jack	et	al.,	2013).	
Given	 that	 atrophy	 in	 bvFTD	 occurs	 earliest	 in	 the	 insula	 and	ven-
tromedial	 frontal	 regions	 (Kril	&	Halliday,	2004;	Seeley	et	al.,	2008),	
these regions may reach a point where additional volume loss does 
not	occur,	while	at	the	same	time	regions	that	are	not	involved	early	
in	bvFTD,	such	as	the	parietal	lobes,	may	just	be	entering	the	phase	of	
rapid decline when patients typically present for evaluation. The same 
phenomenon may explain the relative sparing of the temporal poles in 
the	change	maps	for	svPPA,	which	has	been	observed	in	prior	stud-
ies	and	attributed	to	floor	effects	(Brambati	et	al.,	2009;	Rohrer	et	al.,	
2008).	These	findings	highlight	the	value	of	empirically	defined	ROIs	
in tracking change as opposed to using ROIs defined according to prior 
knowledge about the regions that are most severely affected in each 
disease. These ROIs are affected by regional patterns of acceleration 
and	deceleration	that	are	likely	stage	specific,	and	thus	would	need	to	
be recreated for use in patient groups substantially earlier or later in 
the disease course than those studied here.

Perhaps,	more	striking	than	the	regions	identified	were	the	differ-
ences	 in	 sample	size	estimates	across	 syndromes.	Our	data	 indicate	
that	the	sample	sizes	that	would	be	required	to	detect	changes	in	the	
rate	of	atrophy	in	bvFTD	are	larger	than	in	nfvPPA	and	even	more	so	
when	compared	with	svPPA.	The	fact	 that	estimates	obtained	using	
the statistically driven approach were only slightly better than those 
obtained with whole gray matter supports the idea that the variability 
in	regions	of	change	in	bvFTD	makes	it	difficult	to	find	focal,	reliable	
regions	for	bvFTD	as	a	whole.	In	contrast,	in	nfvPPA	and	particularly	
svPPA,	the	stronger	overlap	in	regions	of	peak	atrophy	between	indi-
viduals means that very reliable change can be measured in a relatively 
circumscribed	region,	such	that	techniques	designed	to	find	these	re-
gions,	 like	the	one	used	in	this	analysis,	yield	significant	benefits	for	
clinical trials.

The reason for the low level of predictability in regions of change 
across	 individuals	with	bvFTD	 is	not	 readily	apparent.	Based	on	our	
analysis,	the	presence	of	amyloid-	positive	cases	or	mutation	carriers	
were not likely explanations because the maps generated using only 
known amyloid- negative and known gene- negative cases were similar 
to	those	obtained	in	bvFTD	as	a	whole,	including	the	presence	of	at-
rophy	in	the	parietal	lobes.	Of	course,	we	may	still	have	included	some	
cases	 due	 to	 mutations	 not	 yet	 discovered.	Variability	 in	 the	 caus-
ative proteinopathy across individuals may be another explanation. 
Although	svPPA	is	almost	uniformly	associated	with	Tar-	DNA-	binding	
protein	type	C	 (TDP-	C)	protein	pathology,	bvFTD	can	be	associated	
with a variety of proteinopathies including various forms of TDP as 

well as various forms of tau pathology including progressive supra-
nuclear	 palsy,	 corticobasal	 degeneration,	 Pick’s	 disease,	 and	 other	
variants	 (Bang	 et	al.,	 2015).	 Differences	 between	 proteinopathies	
in patterns of imaging abnormalities have been established cross- 
sectionally	(Whitwell	et	al.,	2011).	Patterns	of	decline	across	different	
proteinopathies can also be examined as cohorts of autopsied cases 
with	 longitudinal	 imaging	 data	 grow,	 and	 techniques	 for	 identifying	
specific	 proteinopathies	 in	 vivo	 improve.	 In	 addition,	 current	 theo-
ries suggest that proteins causing neurodegenerative disease spread 
within	neuroanatomically	defined	networks	(Seeley,	Crawford,	Zhou,	
Miller,	 &	 Greicius,	 2009).	 It	 is	 possible	 that	 the	 particular	 network	
involved	 in	a	disorder,	and/or	variability	 in	strengths	of	connectivity	
within and between networks across individuals may also mediate 
patterns	of	spread.	Verification	that	any	of	these,	or	other	factors,	can	
predict individual patterns of change would have obvious benefit for 
future	 clinical	 trials.	 It	 is	 also	 possible	 that	 other	 imaging	methods,	
such	as	diffusion	tensor	imaging,	may	provide	more	reliable	methods	
of	tracking	change	over	time	(Mahoney	et	al.,	2015).

One potential benefit from the use of imaging as a marker of lon-
gitudinal decline is that increased precision could result in improved 
effect	sizes	when	compared	with	clinical	measures	of	change	(Weiner	
et	al.,	2013).	This	was	generally	confirmed	in	our	analysis.	For	instance,	
we	found	that	a	placebo-	controlled	trial	would	require	592	subjects	
per	arm	using	the	CDR-	SB	to	detect	a	20%	reduction	in	rate	of	change	
in	 bvFTD	 (Table	2).	 This	 estimate	 is	 roughly	 consistent	with	 a	 prior	
study	that	estimated	a	sample	size	of	582	(Gordon	et	al.,	2010)	to	de-
tect	 a	 25%	 effect	 of	 a	 drug.	 In	 contrast,	 our	 analysis	 indicates	 that	
a study measuring rates of atrophy using a statistically derived ROI 
in	T1-	weighted	images	would	require	409	people	to	detect	the	same	
effect.	That	said,	other	groups	have	published	methods	for	identifying	
optimal clinical measures for tracking change using methods that are 
similar	 in	 principle	 to	 the	 approach	used	here	 for	 brain	voxels	 (Ard,	
Raghavan,	&	Edland,	2015).	These	have	yet	to	be	examined	in	FTLD.	
While it is currently unlikely that volumetric change would be accept-
able	as	a	primary	endpoint	in	clinical	trials,	this	might	become	possible	
if reliable links between volumetric changes and clinical changes can 
be	established.	 In	addition,	 imaging	could	be	used	as	evidence	for	a	
disease	modifying	effect	of	a	proposed	treatment,	or	in	early	clinical	
development	 (e.g.,	phase	2	studies)	 to	establish	proof	of	concept	 to	
support advancement of a potential treatment to a phase 3 trial.

Our results confirm that data- driven ROIs of change identify ex-
pected	patterns	of	atrophy,	based	on	the	known	patterns	of	disease	
in	FTLD	and	 the	 limited	prior	data	on	 longitudinal	 change,	and	 im-
prove the reliability of change measurements compared with a priori 
ROIs and compared with clinical measures. The method is most bene-
ficial in situations where regions of maximal change are least variable 
across	individuals.	Future	studies	can	try	to	improve	the	reliability	of	
tracking	change	in	bvFTD	by	attempting	to	identify	factors	that	pre-
dict the regions most likely to change. The approach used here is one 
of	many	data-	driven	methods	used	to	optimize	voxel-	wise	analyses	
in	both	cross-	sectional	and	longitudinal	studies	(Avants	et	al.,	2010;	
Chen	 et	al.,	 2010;	Hua	 et	al.,	 2009;	McMillan	 et	al.,	 2014;	Reddan,	
Lindquist,	&	Wager,	2017;	Vounou	et	al.,	2012).	Our	method	is	similar	
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to	prior	 studies	 that	used	 training	and	 test	 sets	 (Chen	et	al.,	 2010;	
Hua	 et	al.,	 2009)	 but	 instead	 of	 a	 single	 training-	test	 partition,	we	
use cross- validation through repeated resampling of the data. The 
estimate	of	the	effect	size	we	generated	from	this	procedure	should	
be	a	conservative	estimate	of	the	effect	size	achievable	with	the	op-
timized	ROI	we	 created	 because	 it	was	 generated	 based	 on	multi-
ple partitions of the data that always used a smaller sample than the 
total (the training partition) to generate a ROI that was then tested 
in the test partition for each cross- validation run. It will be import-
ant	to	test	the	effect	size	of	the	final	consensus	ROI	in	independent	
datasets	from	different	cohorts,	ideally	collected	at	other	centers.	In	
addition,	our	analysis	compared	the	rates	of	change	in	cerebral	cor-
tex to change in a limited number of cognitive and functional vari-
ables.	Future	studies	should	compare	rates	of	change	in	imaging	with	
a larger number of clinical variables to better evaluate the relative 
utility	of	imaging.	Lastly,	while	all	the	cases	analyzed	were	recruited	
for	longitudinal	follow-	up,	the	studies	did	not	employ	true	clinical	trial	
methodology	with	systematic	follow-	up	of	every	case.	Thus,	clinical	
features that influence enrollment criteria or dropout might differ in 
clinical	 trials	 and	 thus	 be	 associated	with	 different	 effect	 sizes	 for	
longitudinal change.
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