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1. INTRODUCTION
Although the idea that artificial intelligence (AI) could replace 
the human brain began to appear in the minds of scientists in 
1950s, there was no significant progress in the development of 
AI until 2010s. The tremendous advances in recent development 
of AI were due to the popularity and improvement of graphic 
processing units, which could make parallel computing faster, 

cheaper, and more powerful. Deep learning is developed with 
multilayered artificial neural networks. It achieves the highest 
agreement with the input “answer” by repeatedly modifying the 
weight of each synapse. Among all of the deep learning pro-
grams, convolutional neural networks (CNNs) are commonly 
used for analyzing visual imagery in various field. One of the 
possible AI applications in ophthalmologic field is to provide 
screening and diagnostic aid for patients who live in area which 
is in a lack of ophthalmologists or well-trained optometrists.

Diabetes mellitus (DM) is one of the most prevalent global 
diseases which may comorbid with sight-threatening retin-
opathy. Early detection and intervention are the most effec-
tive ways to prevent blindness caused by diabetic retinopathy. 
Diabetic macular edema (DME) is one of the major comorbid-
ities of diabetic retinopathy which marked impaired patients’ 
sights. Patients with DME may suffered from blurred vision, 
image distortion, or dark areas in the field of view. In recent 
years, the development and evolution of optical coherence 
tomography (OCT) have changed the clinical practice in oph-
thalmology. It is a noninvasive medical imaging diagnostic 
technology which now be used for the diagnosis of DME.1 
Several cross-sectional images of optical anatomy of retina 
could be obtained within seconds. Clinical treatment strategy 
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Abstract
Background: Optical coherence tomography (OCT) is considered as a sensitive and noninvasive tool to evaluate the macular 
lesions. In patients with diabetes mellitus (DM), the existence of diabetic macular edema (DME) can cause significant vision impair-
ment and further intravitreal injection (IVI) of anti–vascular endothelial growth factor (VEGF) is needed. However, the increasing 
number of DM patients makes it a big burden for clinicians to manually determine whether DME exists in the OCT images. The 
artificial intelligence (AI) now enormously applied to many medical territories may help reduce the burden on clinicians.
Methods: We selected DME patients receiving IVI of anti-VEGF or corticosteroid at Taipei Veterans General Hospital in 2017. All 
macular cross-sectional scan OCT images were collected retrospectively from the eyes of these patients from January 2008 to 
July 2018. We further established AI models based on convolutional neural network architecture to determine whether the DM 
patients have DME by OCT images.
Results: Based on the convolutional neural networks, InceptionV3 and VGG16, our AI system achieved a high DME diagnostic 
accuracy of 93.09% and 92.82%, respectively. The sensitivity of the VGG16 and InceptionV3 models was 96.48% and 95.15%., 
respectively. The specificity was corresponding to 86.67% and 89.63% for VGG16 and InceptionV3, respectively. We further devel-
oped an OCT-driven platform based on these AI models.
Conclusion: We successfully set up AI models to provide an accurate diagnosis of DME by OCT images. These models may 
assist clinicians in screening DME in DM patients in the future.
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of DME is usually made based on the interpretation of these 
OCT image. In this study, we are aiming to establish machine 
learning based in training AI systems to identify DME through 
analyzing OCT images, especially for differentiating the 
patients with disease progression with the requirement of fur-
ther anti-VEGF treatment.

2. METHODS
The workflow of our study is shown in Fig. 1. There were three 
major stages: image preprocessing, establishment of AI mod-
els, and verification of AI models. The detailed processes are 
described below.

2.1. Data collection
Patients with DME who received intravitreal injections (IVIs) of 
either anti–vascular endothelial growth factor (VEGF) or cor-
ticosteroid in Taipei Veterans General Hospital during January 
of 2017 to December of 2017 were enrolled in the study. All 
OCT macula cross-section scanning images between January of 
2008 and July of 2018 from both eyes of these patients were ret-
rospectively collected from the Department of Ophthalmology, 
Taipei Veterans General Hospital, Taiwan, with the approval 
from the Institutional Review Board of Taipei Veterans General 
Hospital.

One senior vitreoretinal surgeon and one experienced ophthal-
mologist performed the DME labeling of collected OCT images. 
The OCT definition of DME used in our study is based on inter-
national clinical DME disease severity scale2 and OCT patterns 
of DME,3 as indicated in Fig. 2, including mild DME, moder-
ated DME, severe DME, DME with serous retinal detachment 
(SRD), DME with posterior hyaloid traction (PHT), and DME 
with traction retinal detachment (TRD). OCT images presented 
with above patterns of DME were all labeled as DME, and the 
rest images were labeled as non-DME. The human labeling was 
masked to the AI grading results. In case of discrepancy between 
the labeling, another senior retinal specialist was consulted and 
all three doctors determined the final label together. After human 
labeling, the OCT images have been removed discernible infor-
mation and classified as two types, DME and non-DME.

2.2. Data set augmentation
In this work, the images in training data set have been executed 
the data augmentation in each epoch to overcome the limitation 
of data size and reinforce the performance of the AI model. The 
augmented method was applied only for perturbing the train-
ing data set, but not for validation or verification data set. The 
following augmentation parameters have been applied and the 
detail value of those parameters has been randomized by AI:

1. Random shear: sheared in counter-clockwise direction with 
random angle degrees

2. Random zoom: randomly zoom in and zoom out
3. Random rotation: images have been randomly rotated while 

preserving their shape
4. Random horizontal flip: rotates the image with randomly 

radians

2.3. Establishment and validation of AI Models
VGG16 and InceptionV3 have been chosen as the main archi-
tectures for developing the AI model and the trained AI models 
have been validated with validation data set aimed to evaluate 
whether the models required further modification and retrain-
ing. The AI model executed image classification as binary 
results; thus, the loss function was set as the Sigmoid Cross-
Entropy loss. The Root Mean Square Propogation (RMSprop) 
was selected as the optimizer function in order to speed up the 
network function converge. All of those architectures include 
some hyperparameters that could be adjusted for enhancing the 
recognition accuracy, such as batch size, epoch, learning rate, 
and optimizer. Transfer learning has been applied to decrease 
the study time and achieve the satisfactory results. Moreover, 
the AI models were established using the Google cloud platform 
with two-core vCPU, 7.5GB RAM and an NVIDIA Tesla K80 
GPU card; meanwhile, the software is the CentOS7 with Keras 
2.2.4 and tensorflow-gpu 1.6.0 for training and validation.

2.4. Verification of AI Models and Statistical analysis
Several metrics have been used for image recognition. The confu-
sion matrix was used to present the results of clinical verification 

Fig. 1 A, The workflow of artificial intelligence (AI) development in this study. Optical coherence tomography image collection and labeling were the first step of all 
(Image pre-processing stage). B, During the establishment and validation stage, the image database was augmented by randomly shearing, zooming, rotating, 
or horizontally flipping. An AI program containing the convolution layer, pooling layer, and fully connection (FC) layer, and validation were designed. C, After the 
development of the program, verification and model quality controls were evaluated for the performance of this model. ACC = accuracy; DME = diabetic macular 
edema; ROC = receiver operating characteristic.
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and compare the predictions of the AI models. The confusion 
matrix used predict result (positive, P and negative, N) and 
ground truth (true, T and false, F) to integrate a 2*2 matrix 
which include four categories, true positive (TP), false positive 
(FP), false negative (FN), and true negative (TN). Moreover, for 
biomedical image recognition, sensitivity, specificity, and accu-
racy were standard parameters. We define those parameters as 
the following equations:

Accuracy
TP TN

TP FP TN FN

Specificity
TN

FP TN

Sensitiv

=
+( )

+ + +( )

=
+( )
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TP FN
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3. RESULTS

3.1. Image collection
The OCT images were collected from 173 diabetic patients. 
All images were randomly selected in the database based on 
different patients. A total number of 4932 OCT images were 
collected. Of them, 3495 passed the image quality control and 
were used in this study. Among these, 80% (2768) of images 
were randomly selected (based on different patients) as the 
training data set to establish our AI models, 365 images were 
selected as validation data set, and 362 images were selected 
as verification data set. The images in training data set have 
been executed the data augmentation, which was only applied 
for perturbing the training data set, but not for validation or 
verification data set.

3.2. Establishing AI models
Two CNN architectures (InceptionV3 and VGG16) have been 
applied to establish the AI models. The CNN architecture 
includes three main layers, convolution layer, pooling layer, and 
fully connected layer. The images have been adjusted to the same 
size and the skill of data augmentation has been used to enhance 
the efficiency of our model. The batch size of the training lay-
ers has been set as 16 images per step and used the RMSprop 
optimizer with a learning rate of 1e−4. Each model with 100 
epochs for training, the more iterative the epoch was, and the 
more accurate the AI model was (Fig.  3A). The best models 
with the minimal value of loss were selected for the verifica-
tion. These models’ accuracy for recognizing the validation data 
set was corresponding to 93.15% and 93.42% for VGG16 and 
InceptionV3, respectively (Fig. 3B).

3.3. Verification of the final model
The performance of each AI model (InceptionV3 and VGG16) 
has been verified by the validation data set, which contained 
227 DME and 135 non-DME OCT images. The accuracy of the 
AI model based on VGG16 and InceptionV3 architectures was 
92.82% and 93.09%, respectively. The sensitivity of the VGG16 
and InceptionV3 AI model was 96.48% and 95.15%. The speci-
ficity was corresponding to 86.67% and 89.63% for VGG16 
and InceptionV3, respectively.

4. DISCUSSION
Recently, there were enormous AI model architectures have 
been applied to execute the classification task, such as VGG, 
Inception, and ResNet. In 2014, the Inception applied the 
batch normalization skill to accelerate the training task and the 
Inception architecture won the champion.4,5 At the same time, 
VGGNet built more layers of models, reaching 16 hidden lay-
ers (VGG16), which was the runner-up in 2014 ImageNet’s 

Fig. 2 Optical coherence tomography (OCT) definitions of diabetic macular edema (DME). The definition of DME was based on international clinical 
DME disease severity scale and OCT patterns of DME. A, Mild DME, identified by retinal thickening or hard exudates in the posterior pole but distant 
from the center of the macula. B, Moderate DME, characterized by retinal thickening or hard exudates approaching the center of the macula, but not 
affecting the center. C, Severe DME, characterized by retinal thickening or hard exudates affecting the center of the macula. D, DME with serous retinal 
detachment (SRD), identified by the presence of subretinal fluid with DME. E, DME with posterior hyaloidal traction (PHT), characterized by DME with 
preretinal membrane attached to vitreous. F, DME with traction retinal detachment (TDR), identified by DME with the presence of preretinal traction and 
subretinal fluid.
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annual competition (ILSVRC).6,7 Moreover, the VGG16 and 
InceptionV3 have been enormously applied to assist medical 
image identification, such as taxonomy of the CT image with 
lung cancer to classify the pathological types,8 to identify the 
endoscopy images with different lesions,9 and assisted ophthal-
mologist to analyze the variation of the OCT images.10,11

DME is a type of diabetic retinopathy, caused by metabolic 
effects of hyperglycemia, which results in retinal vascular 
changes and subsequent retinal inflammation and ischemia. 
Since the macula is located at the center of the retina and 
plays the most important role in fine vision, once the micro-
vascular leakage or the exudation increases, the central vision 
of the macula decreases significantly. DME may present at 
any stage of diabetic retinopathy and should be diagnosed 
and treated as early as possible. However, the early symptoms 
are difficult to detect, and patients may not be aware of them, 
resulting in irreversible visual defects by the time of medical 
remedy.

Currently, there are several approaches to diagnose the DME, 
which include indirect ophthalmoscopy, color retinal photog-
raphy, fluorescein angiography (FAG), and OCT. Among them, 
indirect ophthalmoscopy and color retinal photography are the 
primary exams, which can provide good screen for diabetic retin-
opathy, such as retinal hemorrhage, exudates, and cotton-wool 
spots. However, for detection of early or mild DME, especially 
central thickness <300 μm, even experienced retinal specialists 
could find some difficulties in making a diagnosis with indirect 
ophthalmoscopy or color retinal photograph alone. Under the 
suspicion of advanced diabetic retinopathy and DME, FAG 
is often indicated to further determine the area of vascular 
changes, the degree of macular edema, and the distribution of 
ischemic areas. However, FAG is an invasive diagnostic method 
that carries the risk of a severe allergic reaction.12 Nowadays, 
OCT, a noninvasive, safe, quick, and reliable medical imaging 
diagnostic technology, has been developed and widely applied 
to diagnose DME.

The global DM prevalence in 2019 is estimated to be 9.3%, 
rising to 10.2% by 2030 and 10.9% by 2045. This means that 
by 2045, there will be approximately 700 million diabetic 
patients, and in 2019, there were only 463 million diabetic 
patients.13 However, patients with DME often need regular 
OCT examinations to determine whether DME exists. The 
increasing number of DM patients makes it a big burden for 
clinicians to manually determine whether DME exists in the 

OCT images. An AI that can help to screen may decrease the 
loading for the ophthalmologists. Moreover, Funakoshi et 
al14 found the odds of having diabetic retinopathy are higher 
among those who have lower educational levels, receiving 
public assistance, with irregular or no employment. Patients in 
remote islands or mountains require far-reaching traffic to seek 
medical examination because not all places have ophthalmolo-
gists. The transportation cost may be a great burden for these 
patients. A simple OCT device in the local area and passing 
the image to the AI with high accuracy in determining macula 
conditions can be of great help. In this study, we have demon-
strated our OCT-based AI screening platform for DME. The 
high diagnostic accuracy of our AI models based on VGG16 
and InceptionV3 architectures for detecting DME is 92.82% 
and 93.09%, respectively. Although our AI model has high 
accuracy in determining DME, it is worth noting that for other 
retinal diseases that can cause macular edema, such as Irvine 
Gass syndromes (cystoid macular edema after cataract sur-
gery), our AI system might make the wrong diagnosis. Hence, 
our AI system should be used in patients currently receiving 
treatment for DME. For those patients without past history of 
DME, they still need to attend ophthalmology to seeking medi-
cal exams and remedies.

In conclusion, we build our OCT-based AI system with 
the commonly used CNN architectures such as VGG16 and 
Inception V3 and obtain a good diagnosis rate of DME. This 
system can reduce the burden of clinical ophthalmologists and 
even can be used in remote areas in the future. However, when 
using it, we must pay attention to the choice of the patients so 
that we can avoid misdiagnosis.
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Fig. 3 A, Validation curves for each convolutional neural network (CNN)-based artificial intelligence (AI) models. Our trained models have been re-examined 
(VGG16 and InceptionV3) for each CNN-based AI model ensured that the training process did not overfit. As the training epoch increased, the accuracy 
increased. B, The final model has been trained by RMSprop optimizer with a learning rate set as 1e−4, batch size with 16 and the total epoch number was 100. 
The accuracy of the validation data set of the final model of VGG16 and InceptionV3 was 93.15% and 93.42%, respectively.
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