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Emotion is the human brain reacting to objective things. In real life, human emotions are

complex and changeable, so research into emotion recognition is of great significance

in real life applications. Recently, many deep learning and machine learning methods

have been widely applied in emotion recognition based on EEG signals. However,

the traditional machine learning method has a major disadvantage in that the feature

extraction process is usually cumbersome, which relies heavily on human experts. Then,

end-to-end deep learning methods emerged as an effective method to address this

disadvantage with the help of raw signal features and time-frequency spectrums. Here,

we investigated the application of several deep learning models to the research field of

EEG-based emotion recognition, including deep neural networks (DNN), convolutional

neural networks (CNN), long short-term memory (LSTM), and a hybrid model of CNN

and LSTM (CNN-LSTM). The experiments were carried on the well-known DEAP dataset.

Experimental results show that the CNN and CNN-LSTM models had high classification

performance in EEG-based emotion recognition, and their accurate extraction rate of

RAW data reached 90.12 and 94.17%, respectively. The performance of the DNN model

was not as accurate as other models, but the training speed was fast. The LSTM model

was not as stable as the CNN and CNN-LSTMmodels. Moreover, with the same number

of parameters, the training speed of the LSTM was much slower and it was difficult to

achieve convergence. Additional parameter comparison experiments with other models,

including epoch, learning rate, and dropout probability, were also conducted in the paper.

Comparison results prove that the DNN model converged to optimal with fewer epochs

and a higher learning rate. In contrast, the CNN model needed more epochs to learn. As

for dropout probability, reducing the parameters by ∼50% each time was appropriate.

Keywords: EEG, emotion recognition, DNN (deep neural network), CNN (convolutional neural network), CNN-LSTM

INTRODUCTION

There are many research methods applied to real-time emotion recognition. For example,
researchers use electroencephalogram (EEG) signals and peripheral physiological such as ECG,
respiration, skin resistance, and blood pressure to carry out emotion recognition research (Horlings
et al., 2008). Among them, the EEG signal in the objective physiological signal is directly generated
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by the central nervous system, which is closely related to human
emotional states (Jiang et al., 2020b).

There are usually two machine learning strategies for
analyzing EEG signals: step-by-step machine learning and end-
to-end deep learning (Yang et al., 2020). Step-by-step machine
learning mainly involves three steps: the first step is to obtain
the digital data by sampling the analog signals, known as signal
preprocessing. The second step is artificial feature extraction,
which is to calculate the features using feature extraction
formulas. Finally, the features are classified using mechine
learning methods to achieve the emotion classification result.
Wavelet transform and entropy measures are widely used in
feature extraction (Zhang et al., 2018). Murugappan et al.
(2010) used the “db4” wavelet function for deriving a set of
conventional and modified energy-based features from EEG
signals for classifying emotions. Paul et al. (2015) used the
multifractral detrended fluctuation analysis (MFDFA) method to
extract features and used a support vector machine (SVM) to
categorize the EEG feature space related to various emotional
states into their respective classes. Jiang et al. (2020a) used
transfer learning to reduce the differences in data distribution
between the training and testing data (Yang et al., 2016; Jiang
et al., 2017). Besides, they proposed a novel negative-transfer-
resistant fuzzy clustering model (Jiang et al., 2015) with a shared
cross-domain transfer latent space (Jiang et al., 2019).

However, it is difficult to cover all the implied features
by manual extraction, and the formulae used to extract time-
domain and frequency-domain features are often very complex.
In addition, EEG signals are susceptible to noises such as
electromyographic artifacts, which create serious interference
in the progressive machine learning approach. In view of the
above situations, some end-to-end deep learning methods are
used to solve these problems. Alhagry et al. (2017) proposed a
long short-term memory (LSTM) model to learn features from
EEG signals. The classification accuracy reached 85.65, 85.45,
and 87.99% for different labels. Schirrmeister et al. (2017) used
convolutional neural networks (CNN) for EEG decoding and
visualization which have shown great potential when applied to
end-to-end emotion recognition based on EEG-signals. Zhang
et al. (2017) improved the entirely automatic feature extraction
of MWL classification which then had effective high performance
compared with traditional machine learning methods.

Since the deep learning models for EEG-based emotion
recognition are still in their infancy, there is still a lot of room
for adjustment in model structure and parameter settings. In this
paper, we investigated the application of existing deep learning
models widely used in this field, and implemented several
popular deep learning models including deep neural networks
(DNN), convolutional neural networks (CNN), long short-term
memory (LSTM), and a hybrid model of convolutional neural
networks and long short-term memory (CNN-LSTM) for EEG
emotion recognition.

Firstly, we extracted 63 s of 32-channel EEG data from 40 trials
of 32 subjects. In order to improve the classification efficiency, we
selected 14 channels which were most suitable for EEG emotion
classification. We built two feature datasets, including RAW data
and standard (STD) data. STD data were extracted by calculating

eight eigenvalues including the maximum, standard deviation,
kurtosis, and so on. In order to make efficient use of the data, we
used a 10-fold cross-validation method to build the dataset for
each sample before training the model. We put the pre-processed
feature datasets into four deep learning models, classifying the
emotion in the valence dimension and arousal dimension to four
labels by one-hot encoding. In terms of model design selection,
we adjusted the learning rate, epoch, and dropout probability,
and compared the applicable values of different models. Finally,
we obtained the comparison results of the four models.

The rest of this article is organized as follows:
Data description, data preprocessing, deep learning

models for emotion recognition, experiments, conclusion,
and references.

DATA DESCRIPTION

The experiment was carried out on the DEAP dataset (Koelstra
et al., 2012). The dataset was developed by a team of researchers
at Queen Mary University of London and is a large multimodal
database for the analysis of spontaneous emotions. It contains
EEG, ECG, EMG, and other peripheral physiological signals. To
collect the signals, 32 subjects were asked to watch 40 segments
of 1-min music videos which represented different emotions.
Their corresponding brain signals were collected as they watched
the videos. After watching each video, participants rated their
emotional responses to the 40 music videos on a scale of one to
nine based on excitement, control, and how much they liked and
were familiar with the videos.

The DEAP database includes two parts: online evaluation
and physiological experiment. The online evaluation mainly
contains basic information about the initial stimulus material.
The physiological experiment mainly contains information on
the experiment, including the number of experimental subjects,
the rating values, and the recorded signals. The rating scales
include arousal, valence, dominance, liking, and familiarity. The
rating value from small to large indicates that each index is from
negative to positive, from weak to strong.

The DEAP dataset contains 32 groups of EEG data in total,
corresponding to the experimental data of 32 subjects (s01–s32).
The data of each subject contains two arrays: data and labels.

DATA PREPROCESSING

The Pre-processing of RAW Data
In this paper, the data array we used had already been
preprocessed, in which the EEG data were desampled, the
sampling frequency became 128Hz, and then the signal was
filtered to 4–45Hz through a band-pass filter. Then the EEG
data were averaged to the same reference. We chose 63 s as the
reference length of each trail, of which the first 3 s were the
preparing time, and the other 60 s were collected during the
watching of the video. Therefore, in every separate trail, there
were 63 s∗128Hz= 8,064 sampling points for each channel.

In order to simplify the training difficulty and improve the
accuracy of emotion recognition, we selected 14 corresponding
electrodes of the channels which had the most significant
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TABLE 1 | The selected EEG channels.

Channel no. Channel content

1 Fp1

2 AF3

3 F3

4 F7

7 C3

11 P3

13 PO3

17 Fp2

18 AF4

20 F4

21 F8

25 C4

29 P4

31 PO4

impact on the generation of emotion. Table 1 shows the 14
selected channels and their corresponding electrodes. Figure 1
shows the international 10–20 standard system electrode position
distribution map, in which the 14 selected electrodes were
labeled with different colors to indicate the different influence on
emotion generation.

The total EEG cycles were 40 tests per subject. We set the
data dimension of the dataset to 40 (epochs)∗14 (channels)∗8,064
(time points). In order to distinguish from the feature extraction
data indicated later, we used RAW data to represent this 40× 14
× 8,064 data array.

The Pre-processing of STD Data
Feature extraction is necessary in the construction of a deep
learning neural network for an emotion recognition task. Of all
the domains, we chose the characteristics of time and frequency
as the data features. Taking the time point of the raw data array
processed in the previous section as the raw time domain feature
forms RAW data.

We used eight statistical methods to extract the features of the
time domain. The following mathematical formula shows how
these features were calculated, where E(n) stands for the signal
value of the n time points.

The mean of the original signal:

µE =
1

N

N
∑

n=1

E(n) (1)

The standard deviation of the original signal:

σE =

√

√

√

√

1

N

N
∑

n=1

(E (n) − µE)
2 (2)

The maximum of the original signal:

Emax = maxE (n) (3)

The minimum of the original signal:

Emin = minE (n) (4)

Average absolute value of the first difference:

δE =
1

N − 1

N−1
∑

n=1

|E (n+ 1) − E (n)| (5)

Average absolute value of the second difference:

λE =
1

N − 2

N−2
∑

n=1

∣

∣E (n+ 2) − 2E (n+ 1) + E(n)
∣

∣ (6)

The skewness of the original signal (Mardia, 1970):

Skew =
1

N

N
∑

n=1

[

(
E(n)− µE

σE
)
3
]

(7)

The kurtosis of the original signal (deCarlo, 1997):

Kurtosis =
N(N + 1)

(N − 1)(N − 2)(N − 3)

N
∑

n=1

(
E(n)− µE

σE
)
4

−
3(N − 1)2

(N − 2) (N − 3)
(8)

The combination of the eight statistical features into an
eigenvector to represent the time domain features are known as
the STD data. We divided the 63 s of each trail into 1 s segments,
each segment contained 128 sampling points. Then the STD data
array shape was 40(epoch) ∗ 14 (channel) ∗ 63 (time segment) ∗

128 (sampling point).
To compare the performance of different feature extraction

methods under different deep learning neural networks, we used
RAW and STD as two different features to train the models.

The Description of Data and Label
The labels array was a 40 × 4 two-dimensional array, which
represented the video/trial × label (valence, arousal, dominance,
liking) corresponding to the self-evaluation of each MV. The
valence level (on a scale of 1 to 9) indicated how happy people
felt. People with a happier mood were tested in a higher valence.
The arousal level (on a scale of 1 to 9) represented the activation
of feeling in people. People with a high level of activation
generated a higher arousal rating. In this paper, we considered
valence and arousal as the two dimensions of measurement to
classify the emotions of the subjects.

In order to transform the continuous rating into a discrete
tag form, we used the one-hot encoding form to classify the
four types of emotions, as shown in Figure 2. The emotions of
the subjects were divided into four categories: high arousal/high
valence, high arousal/low valence, low arousal/high valence,
and low arousal/low valence, which were expressed as [0,0,0,1],
[0,1,0,0], [0,0,1,0], and [1,0,0,0]. Thus, the shape of the Labels

array was 40 (epochs)× 4 (label category).
This paper uses RAW data, STD data, and Labels as

inputs for the neural network. The array description is shown
in Table 2.

Frontiers in Neuroscience | www.frontiersin.org 3 December 2020 | Volume 14 | Article 622759

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhang et al. EEG-Based Emotion Recognition

FIGURE 1 | International 10–20 standard system electrode position distribution map (the dark-colored ones are the channels used in this experiment).

DEEP LEARNING MODELS FOR EMOTION
RECOGNITION

In this paper, we investigated widely used deep learning models
for emotion recognition based on EEG signals. We implemented
several popular deep learning models including a DNN, CNN,
and LSTM for RAW data classification, and designed CNN-
LSTMmodels for higher performance.

Deep Neural Network Model
In the traditional sense, the neural network is also called a multi-
layer perceptron. It is composed of an input layer, an output
layer, and a number of hidden layers. Continuous functions
such as Sigmoid or Tanh are used to simulate the response of
neurons to excitation. Themulti-layer perceptron can remove the
constraint of the earlier discrete transmission function. However,

as the number of layers increases, the optimization function is
more and more likely to fall into the local optimal solution.
On the basis of the multi-layer perceptron, the DNN replaces
the Sigmoid function with ReLU, maxout, and other activation
functions, effectively overcoming the gradient disappearance
problem (Hanin, 2019).

In this paper, we mainly used a fully connectedDNNmodel as
the basic model in emotion classification.

Convolutional Neural Network Model
A convolutional neural network (CNN) has been applied
widely in original signal processing and image recognition.
A CNN has three significant characteristics: a local sensing
field, weight sharing, and down sampling, which can decrease
the complexity of the network. The high accuracy of the
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FIGURE 2 | Valence/arousal measurement and one-hot encoding labels.

TABLE 2 | Data description.

Array name Array shape Array contents

RAW data 40 × 14 × 8,064 trial no. × channel data

STD data 40 × 14 × 63 × 128 trial no. × time segment × sampling point

Label 40 × 4 trial no. × label (one-hot encoding)

recognition tasks is mainly because it can learn local non-
linear features by convolution and non-linear activation
functions, and express high-level features as the combination of
low-level features. In addition, many CNNs use a pooling
layer to create a rough representation of intermediate
features, which makes the CNN more translation invariant
(Chen et al., 2019).

For the CNN model, the convolution kernel is the key to
automatic feature extraction (Cheng and Parhi, 2020). Figure 3
shows the 1D-convolution kernel for the automatic feature
extraction of our model.

The ReLU function is usually used as the activation function
due to its simplicity of implementation. It can speed up
calculation and convergence. The ReLU function has the
following formula:

f (x) = max (0, x) (9)

The pooling layer is a structure for down sampling the features
obtained from the convolutional layers, which can reduce the

amount of computation and the degree of over-fitting of the
network to some extent, thus improving the peKrformance of the
CNN model. The convolution-max-pooling process is shown in
Figure 4.

Our CNN model has four convolution-max-pooling blocks,
then a Flatten layer to expand the convolution results, followed
by two full-connection layers, and a dense softmax layer. This
configuration is the optimal model for the DEAP emotion
classification dataset. Figure 5 shows the structure of our deep
CNNmodel.

Long Short-Term Memory Model
A recurrent neural network (RNN) is a type of recursive neural
network that inputs sequential data and performs recursion
in the evolutionary direction of a sequence, connected by a
chain of all the recurrent units (Graves et al., 2013). An LSTM
network is a variant of the recurrent neural network, which
is mainly used to process sequence information with a long
time difference.

Figure 6 is the schematic diagram of the LSTM unit. The
LSTM unit inputs four variables from one input entry and three
other gates, which is different from the neuron univariate input
of other models. For each neuron in the neural network, the door
is opened or closed by the value of input data and parameter
weight, and these parameters can be obtained by model training.
An LSTM network can solve the problem of gradient vanishing
in back propagation by adding three gates. Many of these units
are linked together in time series and can form an LSTM model,
as the Figure 7 shows.
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FIGURE 3 | The convolution-max process diagram.

FIGURE 4 | The convolution-max process diagram.
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FIGURE 5 | The CNN model structure.

In this paper, we designed a four-layer LSTM network
structure. The model takes RAW data as input, passes through
four layers of the one-way LSTM network, then connects
to a dropout layer, and finally reaches the full connection
classification layer.

CNN-LSTM Model
The CNN is good at extracting the spatial local relevant features
of data, but it struggles to capture the long-term dependence
relationship in sequence data, which can be remedied by the
LSTM. So, a hybrid model of the CNN and LSTM have been
proven to have good performance in natural signal recognition
(Ma and Hovy, 2016; Zhao et al., 2019). Therefore, this paper
proposed a CNN-LSTM hybrid network model of the CNN and
LSTM serial.

In the CNN-LSTM model, the RAW data were taken as
input and used the CNN model for feature extraction before
entering the LSTM. After taking the input from the CNN layer,

the LSTM units connected as a link and passed the result to the
next layer, usually the fully connected dense layer and the softmax
classification layer, see Figure 8.

The LSTM of the first layer contained 64 units and the
second layer contained 32 units. We chose ReLU as the activation
function of the LSTM layer in order to prevent the gradient
vanishing. In addition, since the LSTM model had many more
parameters than the other deep learning models, we added two
dropout layers to prevent over-fitting of the training data. Finally,
the full connection layer and the softmax function were used as
the classification output layer.

EXPERIMENTS

Experimental Setup
In the experiments, we implemented the DNN, CNN, LSTM,
and CNN-LSTM, respectively, adjusted the structural design of
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FIGURE 6 | The schematic diagram of the LSTM unit.

the model, and optimized the parameters. In addition, it was
mentioned that there are two machine learning strategies for
analyzing EEG signals: step-by-step machine learning and end-
to-end deep learning. In order to compare the two feature
extracting methods, we took the RAW data and STD features,
which had been pre-processed, as the input data of the
models, respectively.

In terms of training models, we used the method of 10-fold
cross-validation to train the classifier. The original data were
divided into 10 subsamples, with one subsample retained as the
validation set and the other nine samples used as the training set.
The cross-validation was repeated 10 times to create an average of
the estimation results. This validation method helped us obtain a
more reliable and stable model by using limited label data. We
chose Adam as the optimizer of the models (Shindjalova et al.,
2014).

To evaluate the classification performance of the model, we
used Acc and Loss to represent the accuracy and loss. The
calculation formula of Acc is:

Acc =
CP+ CN

CP+ CN+MN+MP
(10)

In this formula, CP is the number of positive examples
that were correctly classified, CN is the number of
negative examples that were correctly classified, MN is
the number of positive examples that were misclassified,
and MP is the number of negative examples that
were misclassified.

Because the classification options are one-hot encoding multi-
dimensional vectors, we used multi-classification cross-entropy

as the loss function for all the models (de Boer et al., 2005). The
Loss of the model can be calculated by the following formula
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FIGURE 7 | The connection mode and working principle of the LSTM model.

FIGURE 8 | The connection mode and working principle of the CNN-LSTM model.
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TABLE 3 | The Acc result of different models and different features.

Features

Models
DNN CNN LSTM CNN-LSTM

RAW 0.6399 0. 9012 0.6747 0.9417

STD 0.7900 0. 8224 0.7500 0. 8887

TABLE 4 | The Loss result of different models and different features.

Features

Models
DNN CNN LSTM CNN-LSTM

RAW 9.5678 0.4953 3.4232 0.3012

STD 6.8361 0.3476 5.3459 0.4243

FIGURE 9 | Performance comparison histogram between different models. (A) Classfication accuracy of different models. (B) Classification loss of different models.
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TABLE 5 | The influence of different epoch and learning rates for the DNN and

CNN models.

Epoch Learning rate DNN CNN

3 0.001 55.3 26.3

3 0.05 59.2 35.9

3 0.01 62.5 43.2

10 0.001 63.3 58.3

10 0.05 63.4 62.5

10 0.01 63.4 75.4

20 0.001 63.3 80.3

20 0.05 63.4 78.5

20 0.01 63.4 79.2

(Zhang et al., 2021):

Loss = −

T
∑

j=1

yilogPj (11)

where yj is the classification of the j th sample and Pj is the
probability of the j th sample to be recognized as yj .

Accuracy and Comparison Results
The training and test set included 55% positive samples and
45% negative samples, so it can be considered that the number
of positive and negative samples was basically consistent. We
repeated each model testing five times and averaged the results
of those tests. The Tables 3, 4 show the experimental results of
Acc and Loss. Figure 9 shows a bar chart comparison of them.

Additional Analysis and Results
During the training of the model, we compared the
selection of some parameters and fine tuned the models.
For the four architectures described above, we evaluated
several design choices including learning rate, epoch, and
dropout probability.

Epoch and Learning Rate

The epoch is the number of iterations during training. The
learning rate determines the convergence speed and result
accuracy of the model. Taking the CNN and LSTM as examples,
the training results of different epochs and learning rates were
adjusted and shown in Table 5.

It can be seen that the DNN model converged to optimal
with fewer epochs and a higher learning rate. In contrast, the
CNN model needed more epochs to learn. We chose 10 epoches
and 0.01 as the learning rate for the DNN model. For the CNN
model, we set 20 epoches and used the self-regulated learning
rate callback function to autonomously adjust according to the
training condition.

Dropout Probability

Since the dropout setting is very important for the gradient
descent process of the LSTM model, we set the dropout

TABLE 6 | The influence of dropout probability for the LSTM and CNN-LSTM

models.

Dropout probability (%) LSTM CNN-LSTM

20 0.58 0.62

50 0.71 0.89

90 0.51 0.48

probability at 20, 50, and 80%, respectively, and tested the LSTM
model and CNN-LSTMmodel.

It can be seen in Table 6 that reducing the parameters by
∼50% each time was appropriate.

Result Discussion
The experimental results show that the CNN model and
CNN-LSTM had better performance in emotion recognition
classification, and were consistently more stable and had higher
accuracy in RAW data than STD data. This result verified
the advantages of the end-to-end deep learning mode we
mentioned earlier, and proved that the CNN can be regarded
as a feature extractor in end-to-end classification, which can
automatically extract hidden features in EEG signals. It comes to
a conclusion that the CNN feature extracter is more suitable for
emotion recognition than manual feature extraction in emotion
recognition based on EEG signals of the DEAP dataset.

The performance of the DNN model was not as good as the
other complex models, but the training speed was fast. The DNN
model could achieve optimal performance in fewer epochs and at
a faster learning rate. The LSTM model was not as stable as the
CNN and CNN-LSTMmodels. Moreover, with the same number
of parameters, the training speed of the LSTM was much slower
and it struggled to achieve convergence.

In addition, we found that the DNN model only needed
a few training epochs to achieve convergence. The method of
automatically adjusting the learning rate was suitable for the
CNN and CNN-LSTM models. It was better to set the dropout
rate of the LSTM at a medium level.

CONCLUSION

In this paper, several deep learning models for the
classification of emotions were established and their
performance was verified on the DEAP dataset. It was
concluded that the CNN model or CNN-LSTM hybrid
models were more effective in emotional classification than
traditional machine learning methods. In particular, the
automatical feature extraction of EEG signals was proven
to have high performance in end-to-end multi-dimensional
emotion recognition.

In the next step of research, we will try to obtain more
data on EEG signals and implement other EEG-based emotional
recognition models with more variables considered.
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