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Revealing missing charges with generalised
quantum fluctuation relations
J. Mur-Petit 1, A. Relaño2, R.A. Molina3 & D. Jaksch 1,4

The non-equilibrium dynamics of quantum many-body systems is one of the most fascinating

problems in physics. Open questions range from how they relax to equilibrium to how to

extract useful work from them. A critical point lies in assessing whether a system has

conserved quantities (or ‘charges’), as these can drastically influence its dynamics. Here we

propose a general protocol to reveal the existence of charges based on a set of exact relations

between out-of-equilibrium fluctuations and equilibrium properties of a quantum system. We

apply these generalised quantum fluctuation relations to a driven quantum simulator,

demonstrating their relevance to obtain unbiased temperature estimates from non-

equilibrium measurements. Our findings will help guide research on the interplay of quan-

tum and thermal fluctuations in quantum simulation, in studying the transition from integr-

ability to chaos and in the design of new quantum devices.
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Einstein famously vouched for the enduring success of
thermodynamics ‘within the framework of the applicability
of its basic concepts’ stemming from the simplicity of its

premises and breadth of its scope1. From its birth as a practical
science in the cradle of the industrial revolution2 to modelling
thermal fluctuations in biological processes through fluctuation
relations (FRs)3,4, thermodynamics constitutes one of the most
successful theories to understand nature. The increasing degree of
control on meso- and nano-scopic systems has driven interest
into the field of quantum thermodynamics to describe phenom-
ena where both quantum effects and finite-size fluctuations are
apparent5. Important findings so far range from generalised
Carnot bounds on the efficiency of quantum heat engines6–8 to
quantum versions of the classical FRs—i.e., quantum FRs (QFRs)
—for processes starting in a canonical equilibrium state9.
According to the principles of quantum statistical mechanics,
such a state is characterised by a single parameter, the inverse
temperature β, which also plays a special role in the QFRs
(see ref. 10 and references therein).

The dynamics of an important number of quantum systems,
however, eludes this approach. Integrable quantum systems, for
instance, feature a large number of conserved quantities, or
‘charges’, which effectively constrain the phase space that the
system can explore in its dynamic evolution11. Notable models
with charges include the one-dimensional Hubbard model12, the
Dicke model13,14 and the super-symmetric t-J model15, to name a
few. The existence of charges leads sometimes to striking
experimental observations such as the practically dissipationless
dynamics of the quantum Newton’s cradle16, which stems from
the (infinitely many) charges of the Lieb–Liniger model. On other
occasions, however, their existence is far from obvious. For
instance, it is only recently that a whole set of quasi-local charges
in XXZ model were discovered17–19 as result of a discrepancy
observed between numerical simulations of the model and esti-
mates based on the Mazur bound20.

It is a critical task of quantum many-body physics to develop
methods to confidently ascertain whether a quantum system
features such charges, especially when these may be difficult to
measure directly. Unfortunately, the Mazur bound is only sensi-
tive to charges with a non-zero overlap with the current operator,
which implies it cannot serve as a general witness to unveil all
charges in a generic quantum many-body system. It is thus
necessary to develop more general systematic methods to explore
the existence of unknown conserved charges in quantum many-
body systems.

Here we introduce an approach to this problem based on a
statistical analysis of arbitrary non-equilibrium measurements of
the system of interest. In short, we demonstrate that non-
equilibrium measurements on a quantum many-body system are
more sensitive to the existence of charges than equilibrium ones,
and describe a protocol that exploits this sensitivity to reveal the
existence of charges that restrict the dynamics in any degree of
freedom of the system. To this end, we first provide a theory that
completely characterises the non-equilibrium fluctuations of
quantum systems with conserved quantities. Specifically,
we present generalised versions of the Tasaki–Crooks relation
(TCR)21 and the quantum Jarzynski equality (QJE)22–24 suitable
to describe fluctuations in systems with an arbitrary, and possibly
variable, number of charges. Then, we show how these results
open the door to determining from experimental measurements
the existence of hitherto unknown charges. We also discuss how
this can improve the accuracy, e.g., of temperature measurements.
Finally, we illustrate our results with simulations of the Dicke
model13, 14, a well-known many-body model that features a single
charge and which can be realised in current experimental
platforms.

Results
Theoretical framework. The quantum statistical description of
systems with charges can be reliably built on Jaynes’ information
theory formulation of statistical mechanics25. In this approach, a
new statistical ensemble, the generalised Gibbs ensemble (GGE), has
been proposed26 to incorporate the constraints on the known values
of the charges to the equilibrium state via the maximum entropy
principle (see also ref. 27). In the GGE, the equilibrium state of a
system with Hamiltonian Ĥ is given by a density matrix of the form

ρ̂GGE ¼ 1
Z exp �βĤ �

XN
k¼1

βkM̂k

 !
; ð1Þ

where Z � Z ~β; Ĥ; M̂k

� �� �
= Tr exp �βĤ �Pk βkM̂k

� �� 	
is the

partition function, and the operators associated with the
charges, M̂k, satisfy M̂k; Ĥ

� 	 ¼ 0, for k= 1, …, N , with N the
number of charges of the system, see Fig. 1a. (Below, we will
assume the charge operators commute with each other, which
enables measuring them simultaneously.) The generalised

inverse temperatures, ~β ¼ β; βk
� �N

k¼1

� �
, are fixed by requiring

that averages over ρ̂GGE reproduce the known average values of
the energy, Ĥ


 � � Tr Ĥρ̂GGE
� 	 ¼ E, and charges, M̂k


 � ¼ Mk. A
crucial open question springing from Eq. (1) is the identification of
all charges M̂k relevant to the dynamics of the system. The usual
approach consists in the study of equilibrium expectation values of
certain observables. However, this approach suffers from a number
of caveats and difficulties, like the very need of measuring a large
number of observables, or the existence of particular observables
that may not thermalise (see Supplementary Note 1 for more
details). We show below that measurements in non-equilibrium
processes are highly sensitive to the existence of charges, and how
one can use them to reveal the presence of conserved quantities in
the equilibrium state.

Generalised QFRs. We study the energy fluctuations of a system
with charges by considering two processes (forward (FW) and
backward (BW)) that take the system away from initial equili-
brium states (Fig. 1a). Each process is a four-step protocol similar
to the two-projective-measurement (TPM) protocol utilised to
derive the standard QFRs28.

In the FW process, the system is (i) prepared in the equilibrium
state corresponding to Hamiltonian Ĥ. If this Hamiltonian
features a number N of charges, this state can be written in the
form of Eq. (1) with N + 1 parameters ~β= {β, β1, …, βN }.
We build a basis of the Hilbert space with eigenvectors ~i

�� �=
i0; i1; ¼ ; iN ; η
�� �

, where the quantum number i0 identifies the
energy eigenvalue, Ĥ~i

�� � ¼ Ei0
~i
�� �, and ik similarly labels the

eigenvalues of M̂k through M̂k
~i
�� � ¼ Mk;ik

~i
�� � (k= 1, …, N ); η

contains the additional quantum numbers required to fully
determine a basis state. After this preparation stage, (ii) at time
t= 0 one performs simultaneous projective measurements of Ĥ
and M̂k on the system, obtaining definite values for its energy,

E ini ∈ {Ei}, and the other observables, Mk;ini 2 Mk;ik

n o
. (iii) In

the third step, the system is driven out of equilibrium by steering
its Hamiltonian in a time-dependent process, Ĥ 7!ĤðtÞ, for times
0 < t < τ. This defines a unitary time-evolution operator ÛðtÞ as
the solution of i�h∂tÛðtÞ ¼ ĤðtÞÛðtÞ, with Ûð0Þ ¼ I, the identity
operator on the system’s Hilbert space H. Finally, (iv) at time t=
τ, the system is projected on the eigenbasis of the instantaneous
Hamiltonian, Ĥ′ ¼ ĤðτÞ. In general, the operators M̂k will not
commute with ĤðtÞ for t > 0, and we denote the set of charges
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that commute with Ĥ′ as M̂0
l

� �
(l= 1, …, N ′). Assuming that

these operators commute with each other, this second projective

measurement provides the quantities Efin′ and M0
l;fin

n o
, each

belonging to the spectrum of the corresponding operator, in full
analogy to the situation at t= 0. Thus, at the end of a single
realisation of the FW process, one has collected the data set

DFW = E ini; Mk;ini

n o
; E0

fin; M0
l;fin

n on o
associated to the para-

meters ~β of the initial state Eq. (1).
The complementary BW process starts by preparing the system

in an equilibrium state of the Hamiltonian Ĥ′ (Fig. 1a). In
accordance with the preceding discussion, this state will be of the
GGE form with N ′+ 1 parameters, ~β′= β0; β01; ¼ ; β0N ′

� �
. At

time t= 0, the system is projected on the basis ~f ′
��� E of

simultaneous eigenvectors of Ĥ′ and M̂′
l , obtaining the values

E0
ini and M0

l;ini

n o
for the corresponding observables. The system

then evolves under the time-reversed protocol Û�1ðtÞ for 0 < t <
τ, so that at time τ its Hamiltonian is Ĥ. A projective
measurement on the final instantaneous eigenbasis provides

values Efin and Mk;fin

n o
for the energy and other observables. A

single realisation of the BW protocol thus gives a data set DBW =

E0
ini; M0

l;ini

n o
; Efin; Mk;fin

n on o
associated to the parameters ~β′

of the BW initial state.
With the data sets DFW and DBW we build two (dimensionless)

work-like quantities

WFW � β0E0
fin þ

XN ′

l¼1

β0lM0
l;fin � βEini þ

XN
k¼1

βkMk;ini

" #
; ð2Þ

WBW � βEfin þ
XN
k¼1

βkMk;fin � β0E0
ini þ

XN ′

l¼1

β0lM0
l;ini

" #
: ð3Þ

Due to the projective nature of the measurements, both these
quantities are stochastic variables, and their statistics can be
described through probability distribution functions (PDFs), PFW
and PBW, associated respectively to the FW and BW processes.
We find that although the initial states of the two processes are
independent, and may feature different numbers of charges and
generalised inverse temperatures, these PDFs are not indepen-
dent, but obey the following relation (see Methods):

PFWðWÞ
PBWð�WÞ e

�W ¼ Z0

Z ; ð4Þ

where Z′=Z ~β′; Ĥ′; M̂′
l

� �� �
is the equilibrium partition func-

tion of the initial state of the BW process. By introducing
(dimensionless) generalised free energy functions as F =−ln Z
and F ′=−ln Z′, the right-hand side (r.h.s.) of Eq. (4) becomes
exp(W − ΔF ), with ΔF =F ′−F . Equation (4) is the general-
isation of the TCR to systems with arbitrary numbers of charges
associated to each equilibrium state, and to out-of-equilibrium
processes that change the number of charges.

If we multiply both sides of Eq. (4) by PBW(−W) and integrate
over W, we get

e�W
 �
 �
FW�

Z 1

�1
dWPFWðWÞe�W ¼ e�ΔF ; ð5Þ

which is a generalisation of the QJE for systems with charges.
Here we remark a qualitative difference between Eqs. (4) and (5).
While the TCR relates the outcomes of driving processes starting
in two different initial states, the QJE applies to a single system
driven out of an equilibrium characterised by parameters ~β. The
apparent dependence on ~β′ of Eq. (5) in fact shows that this
equation relates an initial equilibrium state to all possible GGE-
like states of the final Hamiltonian: for each possible set of ‘final’
equilibrium parameters~β′, the numerical values on the left-hand
side (l.h.s.) and the r.h.s. of Eq. (5) will differ, but the equality will
hold as long as the initial state is of the GGE form, Eq. (1). In this
sense, the~β′ dependence in Eq. (5) is irrelevant, and one can test

3
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Fig. 1 Sketch of the system and protocol. (a) The dynamics of a generic quantum system with average energy Ĥ
D E

¼ E occurs within a restricted
subspace (light blue area) of its full Hilbert space,H (dark blue). If additional conserved quantities exist, the dynamics is further restricted to a smaller subspace
(yellow). An equilibrium state of such a system with charges is described by a generalised Gibbs ensemble density matrix, Eq. (1). Here, we consider two unitary
processes ÛðtÞ; Û�1ðtÞ that drive the system out of two such equilibrium states corresponding to Hamiltonians Ĥ and Ĥ′, respectively. b Trapped ion setup: N
ions (circles) equally coupled to a phonon mode (black arrows) are illuminated by fields addressing the red and blue sidebands (wide red and blue arrows) with
Rabi frequency Ωrsb[Ωbsb]. c Time dependence of the Dicke model parameters in the forward (FW) protocol, with a variable wait time τ between two quenches

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04407-1 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2006 | DOI: 10.1038/s41467-018-04407-1 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


its validity taking, e.g.,~β′ ¼~β. This agrees with the intuition that
by driving the system out of equilibrium we can obtain
information on its initial equilibrium state (i.e.,~β), but we cannot
give physical meaning to the values of~β′ in Eq. (5). (The physics
of Eqs. (4) and (5) is further discussed in Supplementary Note 2.)

More generally, consider the following scenario in which one of
the constants of motion, say M̂m, commutes with the time-
dependent Hamiltonian and with all the other charges at all
times. Then, the time-dependent Hamiltonian can be set in a
block-diagonal form, with different blocks corresponding to the
different eigenvalues of this operator, and the values of
M̂m measured at the start and end of the TPM protocol must
be identical. In this case, let us introduce a marginal generalised
work Wm by Wm � β′Efin +

P
l≠m β0lM0

l;fin −

βEini þ
P

k≠m βkMk;ini

� �
. The corresponding PDF, PðmÞ

FWðWmÞ,
satisfies a marginal version of the generalised TCR (see Methods):

PðmÞ
FWðWmÞ

PðmÞ
BWð�WmÞ

e�Wm ¼ e�ΔF : ð6Þ

We show below how this result can be used to check whether a
particular observable does or does not change in a non-
equilibrium process without measuring it.

Revealing missing charges. We now discuss how Eqs. (4)–(6)
underlie novel strategies for two applications: (i) to reveal hidden
conserved charges, and (ii) to check whether a particular obser-
vable of difficult experimental access does or does not change
during a quantum non-equilibrium protocol. Next, we will
illustrate this in practice through numerical studies of a trapped-
ion quantum simulator.

The key realisation is that the r.h.s. of Eqs. (4)–(6) is
determined solely by equilibrium properties pertaining to the
initial states of the FW and BW processes, respectively, while the
l.h.s. relates to measurement outcomes of non-equilibrium
processes starting from those initial states, obtained via the
TPM protocol. We can then check the completeness of the set of
known charges by running the TPM protocol with a number,
N prot, of different protocols Û (corresponding, for instance, to
different durations τ). The experimental data corresponding to
the N prot protocols provide different values for the l.h.s. of the
generalised QJE, Eq. (5). As discussed above, these values depend
physically on the N + 1 parameters ~β of the initial GGE state.
The fact that all these expressions must equal the same single
value on the r.h.s. entails a set of N prot (non-linear) equations for

N + 1 unknowns. If we can find values for ~β that satisfy these
equations, then we have accounted for all the charges required to
describe the non-equilibrium dynamics of the system induced by
Û ; on the other hand, failure to find a satisfactory set of
parameters points that more charges need to be included. A
similar argument can be made based on the generalised TCR (4),
to check whether all the charges in both FW and BW initial states
have been accounted for. (Generally, the TCR depends on the N
+N ′+ 2 parameters ~β;~β′

n o
characterising the FW and BW

initial states. In practice, the number of required experiments can
be notably reduced, e.g., by putting the system in contact with the
same bath at the start of both FW and BW processes, so that
~β ¼~β′, in which case only N + 1 unknowns need to be
determined.) We note in addition that these completeness tests
do not require prior knowledge of the inverse temperatures

characterising the initial states; however, if we do have a reliable
preliminary estimate of the inverse temperatures, this test allows
to verify this estimate, or to conclude that the number of known
charges is insufficient as soon as inconsistencies with Eqs. (4) and
(5) emerge.

As a complement, Eq. (6) enables us to assess whether an
operator that is known to commute with a Hamiltonian Ĥ does,
or does not, change in a non-equilibrium procedure without
measuring it, i.e., it enables to determine whether a non-
equilibrium procedure transforms a charge into a dynamical
variable. To see this, let us imagine that we are interested to know
whether a certain observable of difficult experimental access, M̂m,
is or not perturbed by a certain class of non-equilibrium
protocols. To assess this, we perform a set of FW and BW
protocols, excluding M̂m from the TPM measurements, and
calculate the marginal work Wm. With these values, we build the

associated PDFs, PðmÞ
FW and PðmÞ

BW. If we can find values of~β and~β′
without βm such that the r.h.s. of Eq. (6) matches the data on the
l.h.s., then the contributions of M̂m to F and F ′ must cancel one
another in ΔF , i.e., M̂m has remained constant throughout the
process. Otherwise, M̂m cannot have the same value at the start
and end of the protocol, i.e., M̂m is a dynamical variable in the
process.

Application to a trapped-ion quantum simulator. Our gen-
eralised QFRs are valid for arbitrary unitary non-equilibrium
processes, Û , applied to quantum systems with conserved
quantities16,29–31. In the following, we illustrate their implications
in the context of a trapped-ion experiment realisable with current
technology32–35. First, we show that this system can be described
by a Hamiltonian with a single charge. We then report numerical
evidence showing how measurements of its work statistics in
generic non-equilibrium protocols would violate the standard
QJE and TCR—and how they agree with the predictions of our
generalised QFRs. The fact that this model features a single
charge makes it an especially attractive test ground, as this makes
experimental tests of our generalised QFRs far more accessible
than other models that would in principle require measurements
on an infinite number of charges, such as the XXZ model.

We consider N 43Ca+ ions in an ion trap32,33 (Fig. 1b). Each
ion can be described as a two-level system with internal states
corresponding to two Zeeman levels within the ground 2S1/2
electronic state, whose energy splitting, ħωat, can be controlled by
an external bias magnetic field32,33. The motional state of the ions
in the trap is characterised by N− 1 collective modes in each
direction36. Among these, we focus on the centre-of-mass (COM)
mode, which couples identically to all ions and whose
eigenfrequency, ωCOM, is of the order of the trap’s oscillator
frequency36. Internal and motional states can be coupled by light
fields of frequency ω close to ω±= ωat ± ωCOM, the blue (+) and
red (−) motional sidebands. The Hamiltonian describing the
dynamics of this system can be written in the form (see Methods
and refs.35,37–39)

H=�h ¼ ωCOMb̂
yb̂þ ωat Ĵz

þ 2gffiffiffiffi
N

p ð1� αÞ Ĵþb̂þ Ĵ�b̂
y

� �
þ α Ĵþb̂

y þ Ĵ�b̂
� �h i ð7Þ

where b̂y and b̂ are the operators creating and annihilating
excitations in the COM mode, and Ĵs (s= z, +, −) are Schwinger
spin operators describing the internal state of all the ions, with J
=N/2. In Eq. (7) we have introduced g= (Ωrsb+Ωbsb)/2 and α
=Ωbsb/(Ωrsb+Ωbsb), with Ωbsb(rsb) the Rabi frequency character-
ising the coupling of internal and motional states through the first
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blue (red) motional sideband; these are functions of the light
intensity at frequency ω±, respectively35,36. The Hamiltonian
Eq. (7) is exactly that of the Dicke model13,14. For α= 0, it
reduces to the Tavis–Cummings model, which is integrable and
has an additional conserved quantity, M̂ ¼ Ĵ þ Ĵz þ b̂yb̂ (see
Methods and Supplementary Note 3). Thus, the dynamics of this
system starting from an equilibrium state will be governed by our
generalised QFRs. This can be verified by extending the filtering
method34,40 used to verify the standard QJE34, to account for the
internal structure of the ions in the Dicke model, so as to
determine the initial and final energy values; indeed, as the
spectrum of the Dicke model is non-degenerate, an energy
measurement provides both E and M. Additionally, the PDF of
standard work can be obtained without projective measurements
by utilising an ancilla qubit41–43.

In order to assess the existence of charges, we drive the system
out of equilibrium. For simplicity, we consider a series of sudden
quenches in space {g, α}; experimentally, these quenches
correspond to changes in the intensities of the lasers realising
the sideband couplings on a timescale much shorter than ω�1

COM.
We consider in particular the FW protocol {gini, 0} → {gint, 1/2} →
{gfin, 0}, with the system remaining in the intermediate stage for a
variable time τ (Fig. 1c); this duration plays the role of the
parameter τ characterising the N prot protocols in the procedure
to reveal missing charges described above.

The choice α= 0 at t∈ {0, τ} ensures that M̂ commutes with
both Ĥ and Ĥ′. Hence, the initial equilibrium state of FW and
BW processes will be of the GGE form with specific values for the
inverse temperatures related to Ĥ and M̂, which we label β and
βM (for concreteness, we analyse here the case that ~β′ ¼~β; see
Supplementary Note 2 for a discussion on this choice). However,
in the intermediate stages α= 1/2, which implies that there are no
charges during an important part of the process. We will see that

it is nevertheless possible to determine whether the system had a
conserved quantity at the start of the process. (Additional
simulations in Supplementary Note 4 for a process ending in α=
1/2, i.e., where M̂ and Ĥ′ do not commute, support analogous
conclusions, see Supplementary Fig. 1.)

We show in Fig. 2a the average exponentiated work performed
on the system by a FW process as a function of duration τ. We
compare the results using standard work, exp �βw

� �
 �
 �
FW, to

those with generalised work exp �Wð Þh ih iFW. We see that the
standard work average varies by up to 40% for durations τ≳ 0.1
μs. This τ dependence indicates that the standard work is no
longer the relevant magnitude in non-equilibrium processes:
there is one (or more) missing charge(s) whose fluctuations need
to be taken into account to describe the measurement outcomes.
In contrast to this, the average of generalised work including M̂
remains constant for all τ; it thus follows from Eq. (5) that this
definition of W includes all the relevant charges of the system.

Notably, the two averages agree with each other for short
processes, τ < 0.1 μs. This reflects that, at short times, M̂ remains
approximately constant and a marginal TCR is expected to hold.
Importantly, however, both averages agree with the prediction of
the generalised QFRs, i.e., exp(−ΔF ), while the expectation that
excludes βMM̂ (dashed line) is off by 20%. In practice, this means
that a nave fit of the exp �βw

� �
 �
 �
data to exp (−βΔF) would

yield a biased value for β, i.e., a wrong estimate of the initial
temperature of the system. Generally, use of the standard QFRs
will provide biased estimates if the system has charges. Figure 2b
support analogous conclusions for the case βM < 0.

The relevance of charge fluctuations in the non-equilibrium
dynamics becomes apparent in Fig. 2c–f, which portray the
statistics of standard and generalised work under driving
protocols with τ= 1 μs. In Fig. 2c, d we observe that scaling the
PDF of standard work for the BW process by exp[β(w− ΔF)]

1.4

a Standard vs. generalised QJE
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(diamonds) does not agree with the PDF of the FW process
(bars), in contrast to the prediction of the standard TCR. Such a
disagreement is a strong indication of the existence of charges in a
system. On the other hand, the prediction of the generalised TCR,
Eq. (4), is satisfied with great accuracy for both βM > 0 [Fig. 2e]
and βM < 0 (Fig. 2f). In other words, the TCR equality is only
fulfilled when all relevant charges are included in the calculations
of W and ΔF , and a discrepancy between the measurable
quantities PFW(W) and PBW(W) exp(W − ΔF ) points to the
existence of hidden charges that need to be included.

Discussion
Our findings extend the foundations of quantum thermo-
dynamics with charges44–48 to non-equilibrium processes with
various (generalised) baths and/or that break one or more
conservation laws, while they revert to the standard QFRs in the
case that the Hamiltonian is the only conserved quantity (N =
N ′= 0) and both processes start at the same inverse tem-
perature, β′= β. In this case, WBW =−WFW =−βw and Eq.
(4) becomes the standard TCR21 with the standard free energy
F=−β−1 ln Z. In the same conditions, Eq. (5) recovers the
standard QJE22–24. In addition, if N =N ′ and ~β ¼~β′, Eq. (4)
reduces to the version of the TCR for GGEs derived in ref. 44

under the assumption of continuity of the charges during the
driving protocols.

Our numerical results in Fig. 2a–d highlight the limitations
of the standard QFRs in dealing with systems with charges,
in particular in order to extract equilibrium properties by
means of non-equilibrium measurements41–43,49,50. Our gen-
eralised QFRs, Eqs. (4) and (5), provide the robust theoretical
basis necessary to do that, as evidenced by the exquisite
agreement of our numerical simulations with their predictions
(Fig. 2a, b, e, f).

The framework informed by the approach based on our QFRs
is of general applicability to quantum many-body systems. In
particular, our protocol to reveal the existence of charges enables
one to uncover more general charges than those related to
transport properties and governed by the Mazur bound17–20,51, as
illustrated by our analysis of the Dicke model. Ongoing devel-
opments in several physical platforms—e.g., trapped ions32–35

and superconducting circuits52,53—readily enable precise experi-
mental investigations of this model, which will further inform the
development of tools to study non-equilibrium quantum
dynamics, and its exploitation in practical tasks54,55. We remark
as well the possibility of simultaneously revealing new charges
and determining the associated (equilibrium) inverse tempera-
tures borne in our protocol.

An important question that remains open is how to determine
the exact form of the charge operators. Indeed, their intimate
dependence on the associated Hamiltonian makes it hard to give
a general prescription. Still, we conjecture that a strategy based on
analysing the behaviour of different candidate operators under
various driving protocols by means of the marginal TCR, Eq. (6),
will illuminate the exact form of the charges. This possibility,
which lies beyond the scope of this work, will be explored in the
future.

These findings will be relevant to fundamental studies on
relaxation and thermalisation of quantum systems56–58, and to
the advance of quantum simulation and quantum probing pro-
tocols that exploit QFRs41–43,49,50. Our results extend the foun-
dations of quantum thermodynamics with charges44–48 to non-
equilibrium processes with various (generalised) baths and/or
that break one or more conservation laws, while they revert to the
standard QFRs in the case that the Hamiltonian is the only
conserved quantity (N =N ′= 0) and both processes start at the

same inverse temperature, β′= β. In this case, WBW =−WFW =
−βw and Eq. (4) becomes the standard TCR21 with the standard
free energy F=−β−1 ln Z. In the same conditions, Eq. (5)
recovers the standard QJE22–24. In addition, if N =N ′ and
~β ¼~β′, Eq. (4) reduces to the version of the TCR for GGEs
derived in ref. 44 under the assumption of continuity of the
charges during the driving protocols.

We further remark that our QFRs do not assume any particular
relationship between the sets of observables that commute with Ĥ
and Ĥ′; in particular, we do not assume continuity between these
sets44; this is important, as frequently even a small perturbation of
a Hamiltonian transforms its charges into dynamical quantities.
Thus, our generalised QFRs enable us to study a larger class of
non-equilibrium processes, such as cyclic processes that include
an intermediate thermalisation step where the system remains
isolated and thus equilibrates to a GGE whose generalised tem-
peratures are not fixed beforehand (see Supplementary Note 2 for
more details). This opens the door to studying the thermalisation
of an integrable system when perturbed away from
integrability16,30,59. We thus expect our work will contribute to
illuminate open fundamental questions on thermalisation, loca-
lisation and ergodicity, especially in the presence of integrals of
motion60–64. Besides, due to the enhanced role of fluctuations in
small systems, we expect our work will contribute to a better
understanding and improved design of new micro- and
nanometre-sized devices where the interplay of thermal and
quantum effects is paramount54,65,66, and thus to address ques-
tions related to cyclic protocols and the efficiency of quantum
heat engines54,55, thermometry of strongly correlated systems at
ultra-low temperatures49,67 and novel quantum sensing applica-
tions based on quantum information theory and quantum
thermodynamics50,68,69.

In summary, we have derived a set of generalised QFRs
relevant to unitary non-equilibrium processes starting from
states of the GGE, which correspond to equilibrium states of
quantum system with charges. Based on these generalised
QFRs, we have proposed a general method to address the
question of identifying all charges relevant to the non-
equilibrium dynamics of a quantum system17–19,51. We pro-
vided robust numerical evidence of the measurable impact that
these theoretical findings can have in current studies with
quantum simulators; in particular, we highlighted the impor-
tance of identifying all conserved charges to obtain unbiased
estimates of their equilibrium properties, such as the tem-
perature, through non-equilibrium measurements41–43,49. In
addition, we put forward a scheme to determine whether an
integral of motion is affected by a class of non-equilibrium
processes, without measuring it.

Methods
Derivation of the generalised QFRs. To derive the TCR (4), let us introduce the
shorthand notations A~i ¼ βEi0 þ

P
k βkMk;ik

and A′
~f
¼ β′E′

f0
þPl β

0
lM

0
l;fl
, with

~i
�� �= i0; ¼ ; iN ; η

�� �
and ~f ′

��� E= f0; ¼ ; iN ′; η′
�� �

. Then, the probability that a rea-

lisation of the protocol requires an amount W of generalised work (2) reads

PFWðWÞ �
X

~i;~f
p~iπ~i!~f ðÛÞδ W � A′�Að Þ½ �; ð8Þ

Here p~i ¼ exp �A~i

� �
=Z, Z ¼P~i exp �A~i

� �
, is the probability to find the system

in state ~i
�� � in the first projective measurement at t= 0, and π~i!~f Û

� � ¼
~f ′
D ���Û~i

�� ���� ���2 is the probability that the system initially in state ~i
�� � is found in state

~f ′
��� E after the protocol Û ; finally, δ(0)= 1 and otherwise δ(x)= 0. The PDF (8)
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can be rewritten as

PFWðWÞ ¼
¼P~i;~f

exp �A~ið Þ
Z

~f ′
D ���U~i

�� ���� ���2δ W � A′
~f
�A~i

� �h i

¼P~i;~f

exp W�A′
~f

� �
Z

~f ′
D ���U~i

�� ���� ���2δ W � A′
~f
�A~i

� �h i

¼ Z′
Z
P

~i;~f

exp W�A′
~f

� �
Z′

~i

 ��U�1 ~f ′

��� E��� ���2δ W þ A~i �A′
~f

� �h i
� Z′

Z eWPBWð�WÞ:

ð9Þ

In the first step we substituted p~i and π~i!~f , in the third step we applied that Û is

unitary and in the last step we identified the PDF corresponding to the time-
reversed process. This completes the proof of Eq. (4), from which the generalised
QJE (5) follows as discussed in the main text. The PDFs of standard (dimensionful)
work, w ¼ E′

fin � Eini , shown in Fig. 2, are defined analogously, e.g., PFWðwÞ=P
~i;~f p~iπ~i!~f δ w� E′

fin � Eini

� �� 	
, which follows from the standard situation with

the same equilibrium conditions at the start of FW and BW processes, β′= β.
Finally, the marginal TCR (6) is derived in a manner analogous to (9) by defining

the PDF of marginal work as PðmÞ
FW Wm ¼ xð Þ≡P~i;~f p~iπ~i!~f δ x � A′ðmÞ

f �AðmÞ
~i

� �h i
with AðmÞ

~i
= βE ini þ

PN
k≠m βkMk;ini and A′ðmÞ

~f
= β′E′

fin þ
PN ′

l≠m β′lM
′
l;fin.

We remark that the fundamental assumptions underlying our generalised QFRs
are (i) that the state of the system at the start of both FW and BW processes is of
the GGE form, and (ii) the the corresponding driving protocols are time-reversed
of each other.

Dicke model with trapped ions. Consider N ions in an ion trap36. Each ion can be
described as a two-level system (qubit) with internal states "j i; #j if g corresponding
to two Zeeman levels within the ground 2S1/2 electronic state. Their energy splitting
can be controlled by an external magnetic field, B, as ħωat= ΔμB, where Δμ is the
difference in magnetic moments of the two internal states32, 33. The motional state
of the ions in the trap is characterised by N− 1 collective modes in each direc-
tion36. Among these, the COM mode, with eigenfrequency ωCOM, is characterised
by coupling identically to all ions. Internal and motional states can be coupled by
radiation of frequency ω close to ωat ± ωCOM, the blue (red) motional sideband36.

The complete Hamiltonian describing the dynamics of the system reads H=

H0+HJC+HaJC with H0= �hωCOM b̂yb̂þ 1=2
� �

+
PN

l¼1 �hωatσ
ðlÞ
z , where b̂y and b̂

are the operators creating and annihilating excitations (phonons) in the COM

mode and σðlÞz = "j iðlÞ "h j � #j iðlÞ #h j is the Pauli z operator for ion l= 1, …, N. The
coupling between the ions’ internal state and the COM mode mediated by radiation
is given by the Jaynes–Cummings (JC) and anti-JC Hamiltonians, HJC=PN

l¼1 b̂σðlÞþ þ b̂yσðlÞ�
� �

�hΩrsb=2 and HaJC=
PN

l¼1 b̂yσðlÞþ þ b̂σðlÞ�
� �

�hΩbsb=2, with the

raising (lowering) operators σðlÞþ ¼ "j iðlÞ #h j and σðlÞ� ¼ σðlÞþ
h iy

. Ωbsb(rsb) is the Rabi

frequency of the blue (red) motional sideband36.
The internal quantum state of a single ion can be mapped onto an effective

spin-1/2 system. The full quantum state of the ions in the trap can then be
expressed in the basis J; Jz ; nj i= J; Jzj i � nj i, where nj i is the Fock state with n= 0,
1, 2,… excitations in the COM mode, and J; Jzj i is an eigenstate of the collective

Schwinger pseudo-spins Ĵs ¼
PN

l¼1 σ
ðlÞ
s (s= z, +, −), with J=N/2 and Jz=−J, −J

+ 1, …, J. Using the collective pseudo-spins and dropping constant terms, the
Hamiltonian H can be conveniently rewritten as Eq. (7), with the coupling
parameters given in terms of the Rabi frequencies within HJC and HaJC by g= (Ωrsb

+Ωbsb)/2 and α=Ωbsb/(Ωrsb+Ωbsb).

Numerical calculations. We solve the time evolution of the system with N= 7
ions by exact propagation with the full interacting Hamiltonian expressed in the
basis of eigenstates J; Jz ; nj i with J= 7/2, Jz=−7/2, …, 7/2, and n= 0, 1, …, nmax.
We have verified that a maximum phonon occupation nmax= 800 is sufficient to
faithfully simulate the evolution for the timescales of interest. To simulate the TPM
protocol, we proceed in the following way. We start the process in a given
eigenstate of the system, with definite eigenvalues of the Hamiltonian, Ĥ, and the
conserved charge, M̂, En;Mmj i. Then, we perform a sudden quench to the inter-
mediate stage and, then, another quench to the final Hamiltonian. We calculate the

probability of each transition En;Mmj i → E′
p;M

′
r

��� E
, involving a work w ¼ E′

p � En
and a change in the conserved charge, wM ¼ M′

r �Mm ; this probability is

P w;wMð Þ= E′
p;M

′
r jEn;Mm

D E��� ���2. From this result, we obtain the marginal prob-

abilities for the work, w, and the change in the charge, wM; both values provide us
the generalised work required by the transition, Eqs. (2) and (3)44–46. We repeat
the same calculations for every eigenstate of the initial system, obtaining the cor-
responding marginal probability distributions. The final results follow by averaging
the different initial states with the probability distribution given by the GGE, with

the corresponding temperatures β and βM. Note that this procedure is totally
equivalent to averaging over a large number of realisations consisting in: first
selecting randomly an initial eigenstate En;Mmj i, with the probability distribution
given by the GGE (simulating the first projective measurement); and second,
selecting randomly the final state as an eigenstate of the final Hamiltonian, with a

probability distribution given by E′
p;M

′
r jEn;Mm

D E��� ���2 (simulating the second pro-

jective measurement). Moreover, this numerical procedure is in direct analogy with
the implementation of the filtering method in ref. 34 to project the initial state onto
a given eigenstate of the system.

In all the simulations shown, we use g(t < 0)= 2ε0, g(0 < t < τ)= 3ε0 and g(τ)
= ε0. This choice entails that the coupling constant in the intermediate stage is
above the critical coupling, gcr=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωCOMωat

p
=2 � 2:74ε0, for the transition from

normal to super-radiant behaviour of the Dicke model (see Supplementary
Note 3). Indeed, we have checked that the majority of the populated levels at the
end of the protocol lays in the chaotic regime. Thus, we expect an effective
breakdown of the conservation of M̂ , and a complete thermalisation for
sufficiently large τ70.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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