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Abstract

The diagnosis of breast cancer—including determination of prognosis and prediction—has

been traditionally based on clinical and pathological characteristics such as tumor size,

nodal status, and tumor grade. The decision-making process has been expanded by the

recent introduction of molecular signatures. These signatures, however, have not reached

the highest levels of evidence thus far. Yet they have been brought to clinical practice based

on statistical significance in prospective as well as retrospective studies. Intriguingly, it has

also been reported that most random sets of genes are significantly associated with disease

outcome. These facts raise two highly relevant questions: What information gain do these

signatures procure? How can one find a signature that is substantially better than a random

set of genes? Our study addresses these questions. To address the latter question, we

present a hybrid signature that joins the traditional approach with the molecular one by com-

bining the Nottingham Prognostic Index with gene expressions in a data-driven fashion. To

address the issue of information gain, we perform careful statistical analysis and compari-

son of the hybrid signature, gene expression lists of two commercially available tests as well

as signatures selected at random, and introduce the Signature Skill Score—a simple mea-

sure to assess improvement on random signatures. Despite being based on in silico data,

our research is designed to be useful for the decision-making process of oncologists and

strongly supports association of random signatures with outcome. Although our study

shows that none of these signatures can be considered as the main candidate for providing

prognostic information, it also demonstrates that both the hybrid signature and the gene

expression list of the OncotypeDx signature identify patients who may not require adjuvant

chemotherapy. More importantly, we show that combining signatures substantially improves

the identification of patients who do not need adjuvant chemotherapy.
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Introduction

Important questions arise when considering a breast cancer (BC) tumor: What is the survival

probability? How can one assess the usefulness of additional adjuvant measures? BC remains

the most frequent malignancy in women worldwide [1], and to answer these questions clini-

cians can take two major approaches.

Traditionally, prognostication has hinged on clinical and pathological characteristics. The

most prominent example of this approach represents the Nottingham Prognostic Index (NPI)

[2–4], the current version of which includes lymph node involvement, tumor stage and grade,

assembling these in a simple prognostic index formula. The resulting NPI scores are then used

to stratify patients into risk groups.

On the other hand, technological advances have brought remarkable achievements in can-

cer genetics such as rapid sequencing of the entire human genome and cataloging vast

amounts of mutations, gene expressions, protein levels and overall genetic profiles: the Cancer

Genome Atlas being the most promising project in cancer research [5]. This project has led

thousands of researchers to reconsider cancer on the molecular level, envisioning “precision

oncology” as the logical next step in cancer therapy. Precision oncology is based on the idea

that so-called biomarkers or molecular signatures can predict disease phenotype, patient out-

come, and therapy response—independently of tumor histology. However, currently less than

25% of patients with the most frequent cancers benefit from precision oncology [6].

Over 150,000 papers documenting new molecular signatures have been produced in medi-

cine, but only fewer than 100 have been clinically validated [7]. The 2014 European Society of

Medical Oncology clinical practice guidelines for breast, lung, and colon cancer recognized

less than 20 biomarkers with sufficient clinical evidence [8]. Especially in BC, evaluating gene

signatures presents a serious problem of “overtrust” [9], in which the output of a prediction

algorithm is treated as indubitable rather than used as a source of aid.

By now, there are at least six commercially available gene signatures for BC: OncotypeDx,

EndoPredict, MammaPrint, Genomic Grade Index, PAM50, and Breast Cancer Index. Yet, a

low level of agreement (κ = 0.40, 95% CI: 0.30x2013; 0.49) between MammaPrint and Oncoty-

peDx was found in the recent OPTIMA study [10], which impairs their use for routine clinical

practice. Moreover, overlap among the six signatures is almost non-existent: Fig 1 demon-

strates that not a single gene is shared by all of the six signatures. Showing moderate concor-

dance values [11, 12], none if these signatures seems to have reached the highest level of

evidence [13]. Intriguingly, Venet et al. reported that any set of 100 or more randomly selected

genes has a probability of 0.9 to be significantly associated with patient outcome [14].

Thus, a natural question to ask is: Can one combine the clinical and pathological character-

istics with the molecular characterization? If so, can we find an algorithm for selecting genes

that significantly improves prediction compared with random sets as negative controls? For

this purpose, we treated the NPI score as a gene expression and used it along with other gene

expressions for training an algorithm that selected the NPI among other genes.

We call this emerged feature set Hybrid signature. Next, we compared the Hybrid signature

with the two most prominent gene signatures, OncotypeDx and EndoPredict, and randomly

generated signatures.

It is believed that current clinical and pathological assessment gives rise to overtreatment

that is detrimental to the patient [16]. The TAILORx and the MINDACT studies have shown

that OncotypeDx and MammaPrint provide guidance for adjuvant chemotherapy, respectively

[17–19]. We selected patients in silico that were not subjected to chemotherapy.

Multigene expression assays suffer from low interchangeability and comparability [20]. We

approximated OncotypeDx and EndoPredict by using corresponding gene lists to compare the
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inherent power of genes contained in each signature. Specifically, we took expressions of cor-

responding genes as input for our statistical models and did not use the algorithms applied by

OncotypeDx or EndoPredict. We refer to these approximated signatures as OncotypeDxGL

and EndoPredictGL (GL for Gene List).

Materials and methods

The R code to reproduce the numerical results provided in the Results section can be found on

GitHub located at the address: https://github.com/DiTscho/HybridSignature.

Data description

We used gene expression data with annotated clinical data from the METABRIC (MB) cohort.

It contains clinical and pathological information on patients’ long-term survival (up to 30

years) as well as expression measurements of 24,000 genes. Hosted by the European Bioinfor-

matics Institute, all data can be downloaded from the EuropeanGenome-Phenome Archive at

http://www.ebi.ac.uk/ega under accession number EGAS00000000083. The gene expression

values were measured on the Illumina HT-12 v3 platform, already preprocessed and log2-nor-

malized, as described in [21]. The function avereps in the R package limma was used to sum-

marize genes with multiple probes [22]. The R package illuminaHumanv3.db was used to

annotate genes [23]. Genes without annotations were removed. From the initial 2136 samples

we selected 1262 samples of estrogen-receptor positive (ER+), Her2-receptor negative (Her2-)

patients who did not receive cytotoxic chemotherapy, and who either died due to the disease

or are still alive. These data were then randomly divided in training set and test set 1 with 883

(70%) and 379 (30%) samples, respectively. S1 Table summarizes the descriptive statistics for

these datasets.

The second dataset was used as the external test set. It is publicly available in Gene Expres-

sion Omnibus [24] under the access number GSE96058. The expression matrix contains

Fig 1. UpSet diagram for overlapping genes of six commercially available signatures [15]. Horizontal bars

represent the number of genes in signature. Vertical bars indicate the number of overlapping genes. The inset graphic

illustrates the interpretation for 3 sets: Connected dots indicate exclusive overlapping and an unconnected dot

represents exclusive non-overlapping. For example, a single unconnected dot for MammaPrint means that 66 genes

are contained only in this signature and are not shared in any combination with other signatures. Two connected dots

for PAM50 and OncotypeDx denote that 6 genes are exclusively shared between these signatures. As can be seen, the

overlapping is almost non-existing. In this study, we used the gene lists of EndoPredict and OncotypeDx for

comparison, since they are the most prominent signatures.

https://doi.org/10.1371/journal.pone.0261035.g001

PLOS ONE Comparative analysis of molecular signatures reveals a hybrid approach in breast cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0261035 February 10, 2022 3 / 25

https://github.com/DiTscho/HybridSignature
http://www.ebi.ac.uk/ega
https://doi.org/10.1371/journal.pone.0261035.g001
https://doi.org/10.1371/journal.pone.0261035


preprocessed log2-normalized expression values of a prospective population-based series of

3,273 BC patients with a median follow-up of 52 months (Sweden Cancerome Analysis Net-

work—Breast [SCAN-B], ClinicalTrials.gov identifier: NCT02306096), as described in [25].

No further filtering was conducted. From the initial 3,273 samples we selected 1381 samples of

estrogen-receptor positive (ER+), Her2-receptor negative (Her2-) patients with overall survival

who did not receive cytotoxic chemotherapy. The overall survival was used, however, unlike in

the METABRIC dataset no information about the cause of death is provided in the GSE96058

dataset. Consequently, we selected samples whose age was under 80 years to maximize the

number of patients who died due to the disease. These data were then randomly downsampled

to the second test set, which we denote as test set 2. We performed downsampling, i.e. a subset

of patients was randomly sampled with the same event-to-patients-at-risk ratio as in the train-

ing set and test set 1. We repeated this procedure 1000 times and the corresponding results can

be seen in S2 Appendix. S2 Table summarizes the descriptive statistics for these datasets.

We used ComBat in the R package sva [26] to adjust data for batch effects prior to analysis.

Study design

Our research question is whether we can construct a signature whose prediction performance

is substantially better than the performance of competing signatures. With this question in

mind, we use the Sure Independence Screening (SIS) [27]: an algorithm that finds most impor-

tant genes with high probability. SIS is employed to rank and select the 15 most important

genes based on gene expressions and survival times in the MB training set. The resulting gene

set is then selected in the test set 1 as well as in the test set 2. Further, we select genes used by

the multigene assays EndoPredict and OncotypeDx, and use the NPI scores provided in the

MB data. We compare and challenge the results not with the null model of absence of any pre-

dictors, but with the results of 15 randomly sampled genes (“Random” in Fig 2). In addition,

we construct a “hybrid random” signature by substituting one gene in the random sample

with the NPI. This signature serves as a comparable negative control to the Hybrid signature

(“NPI + Random” in Fig 2).

Finally, corresponding Cox regressions are estimated. The results are followed by the statis-

tical analysis, along with the stratification of patient outcomes that was assessed by Decision

Trees and survival analysis. The process is shown in Fig 2 and further described in the remain-

der of this section.

Feature selection using SIS

A feature selection method tries to answer the question: Which features are the most impor-

tant to predict the response, i.e. the patient outcome? “Features” are also called predictor vari-

ables or covariates, and “response” is also called the dependent variable. For example, one

might try to find the genes (covariates) whose expressions are the most important to predict

the survival outcome or survival time (responses).

Many methods such as Dantzig Selector, Adaptive Lasso, SCAD, or Bridge selection have

been developed to address this question [27]. However, these methods may be unstable or may

not satisfy the condition of finding the most important covariates [28, 29]. Further, there are

two relevant problems in the context of gene expressions: Some unimportant genes may be

correlated with important genes; and some genes may be not individually but collectively cor-

related with the outcome. To address these problems we used the (iterative) Sure Indepen-

dence Screening [27]. In the context of SIS, the most important variables “survive”, i.e. they

are selected after screening with the probability tending to one as the sample size increases

(Theorem 3 in [27]).
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We performed feature selection using the package SIS in the R software [30, 31]. Thereby,

we performed the aggressive version of variable screening using “cox” as response type, “lasso”

as penalty, and “bic” as tuning option for the regularization parameter.

Gene selection

Please note, we selected gene lists used by EndoPredict and OncotypeDx and did not compute

respective risk and recurrence scores, since they are platform-dependent. We refer to these

gene lists as EndoPredictGL and OncotypeDxGL.

EndoPredictGL. The genes used by the EndoPredict assay [32] were selected. This gene sig-

nature predicts the high- or low-risk of recurrence ER-positive, HER2-negative in breast can-

cer treated with adjuvant endocrine therapy. The corresponding genes are listed in Table 1b.

OncotypeDxGL. The OncotypeDx signature includes 21 genes associated with the out-

come: ESR1 and HER2 along with estrogen-regulated transcripts and proliferation-related

genes [33], whose expression values are then combined into a recurrence score that predicts

distant recurrence in node-negative, tamoxifen-treated BC. We selected the gene expression

list used by this recurrence score. The genes are shown in Table 1c.

Additionally, we included the analysis based on a selection without the housekeeping genes,

which were used by [33] for normalization. We denote this additional selection as Oncoty-

peDxRed. The corresponding results can be seen in S2 Appendix.

Random signatures. For the sake of simplicity, we randomly selected genes the size of the

hybrid signature (15 genes) in the test set 1 as well as in the test set 2. Further, an additional

random hybrid set was constructed by substituting one random gene (CADPS2) with the NPI

Fig 2. Study design. In the METABRIC cohort, we select 1262 estrogen-receptor positive, Her2-receptor negative

patients who did not receive chemotherapy and who either died due to the disease or are still alive. This cohort is

divided into training set and test set 1 with 883 (70%) and 379 (30%) patients, respectively. The training set is used to

train the Sure Independence Screening algorithm (SIS). SIS selects 15 most important genes—including the

Nottingham Prognostic Index (NPI)—that we call Hybrid signature. We select gene lists used by EndoPredict and

OncotypeDx (not the corresponding recurrence or risk scores), and refer to them as EndoPredictGL and

OncotypeDxGL. We also select the NPI scores alone. For comparison, 15 genes are selected at random (Random

signature). To compare the Hybrid signature with a direct negative control, one gene in the Random signature is

substituted with the NPI (NPI+Random). Using the training set, all six signatures are then subjected to Cox

regressions. In the GSE96058 cohort, we select 1381 estrogen-receptor positive, Her2-receptor negative patients with

overall survival who did not receive chemotherapy and who was younger than 80 years. Subsequently, we perform

downsampling to ensure the same event-to-patients-at-risk ratio as in the training set and test set 1. We denote this

downsampled set as test set 2. Predictions are made on the test set 1 and test set 2. Finally, we statistically compare the

predictions and use Decision Trees to assess the survival analysis.

https://doi.org/10.1371/journal.pone.0261035.g002
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Table 1. Cox proportional analysis of competing signatures in the METABRIC training set (n = 883). The 1st col-

umn lists gene names used in each signature. NPI: Nottingham Prognostic Index, HR: Hazard Ratio, CI: Confidence

Interval.

HR 95% CI p-value

(a) Hybrid

CDC20 1.46 1.05, 2.05 0.03

CLSPN 0.76 0.61, 0.95 0.02

SYTL4 0.90 0.76, 1.07 0.24

NUSAP1 1.48 0.96, 2.29 0.08

MELK 1.34 0.94, 1.91 0.10

CEP55 0.53 0.34, 0.83 0.01

CKAP2L 1.26 0.79, 2.02 0.33

PTTG1 1.26 0.86, 1.85 0.24

IRF3 1.66 1.14, 2.41 0.01

PREX1 0.62 0.51, 0.75 <0.001

OR5M11 2.65 1.04, 6.76 0.04

CCNB2 0.60 0.36, 1.00 0.05

NLRP1 0.66 0.48, 0.89 0.01

BUB1 1.27 0.81, 2.01 0.30

NPI 1.54 1.32, 1.80 <0.001

(b) EndoPredictGL

ESR1 0.88 0.76, 1.03 0.10

ERBB2 0.71 0.52, 0.97 0.03

BIRC5 1.61 1.25, 2.08 <0.001

RBBP8 0.77 0.61, 0.96 0.02

UBE2C 1.22 0.93, 1.61 0.16

IL6ST 1.06 0.85, 1.33 0.60

AZGP1 1.00 0.88, 1.13 1.00

DHCR7 0.83 0.67, 1.02 0.07

MGP 0.97 0.88, 1.07 0.59

STC2 0.97 0.89, 1.06 0.51

CALM2 1.10 0.68, 1.77 0.71

PPIA 0.85 0.54, 1.35 0.49

OAZ1 1.43 0.87, 2.35 0.15

RPL37A 0.86 0.58, 1.28 0.47

PAEP 1.03 0.87, 1.21 0.76

(c) OncotypeDxGL

MKI67 1.15 0.89, 1.48 0.30

AURKA 0.95 0.68, 1.31 0.74

BIRC5 1.45 1.10, 1.90 0.01

CCNB1 1.22 0.91, 1.62 0.18

MYBL2 0.90 0.78, 1.03 0.12

ERBB2 0.62 0.41, 0.92 0.02

GRB7 1.29 0.81, 2.06 0.28

ESR1 0.89 0.76, 1.04 0.14

PGR 0.83 0.76, 0.92 <0.001

BCL2 1.04 0.82, 1.32 0.73

SCUBE2 1.09 1.00, 1.20 0.06

CTSV 1.17 0.91, 1.51 0.23

MMP11 1.02 0.90, 1.16 0.71

(Continued)
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to fully compare it with the hybrid selection. We refer to these selections as Random and

NPI+Random signatures, respectively. Both selections can be seen in Table 1d and 1e. Addi-

tionally, we generated 100 random signatures and assessed their performance with the statisti-

cal measures described below. The corresponding results can be found in S1 Appendix.

Table 1. (Continued)

HR 95% CI p-value

BAG1 0.76 0.57, 1.02 0.07

CD68 0.90 0.69, 1.16 0.40

GSTM1 0.96 0.91, 1.02 0.18

ACTB 1.76 1.17, 2.66 0.01

GUSB 0.83 0.60, 1.14 0.24

GAPDH 1.24 0.86, 1.76 0.25

RPLP0 0.84 0.60, 1.18 0.32

TFRC 0.84 0.67, 1.05 0.13

(d) Random

CADPS2 1.07 0.86, 1.34 0.54

PLAU 1.38 1.15, 1.65 <0.001

ACTR3C 0.92 0.74, 1.16 0.49

PHKG1 0.75 0.52, 1.08 0.13

RSPRY1 1.47 1.00, 2.17 0.05

P2RX6P 0.90 0.77, 1.05 0.18

TIGD6 1.10 0.71, 1.70 0.66

SPON1 0.72 0.61, 0.85 <0.001

PTPN14 1.32 0.96, 1.82 0.09

PDZK1 0.91 0.85, 0.99 0.02

BTBD10 1.64 1.02, 2.62 0.04

SLC9B2 0.74 0.57, 0.95 0.02

TRIM71 0.84 0.45, 1.59 0.60

ADCY6 0.82 0.59, 1.14 0.24

ALOX15B 0.96 0.85, 1.07 0.45

(e) NPI + Random

NPI 1.59 1.37, 1.84 <0.001

PLAU 1.29 1.08, 1.54 <0.001

ACTR3C 0.94 0.75, 1.17 0.57

PHKG1 0.74 0.51, 1.07 0.11

RSPRY1 1.46 0.99, 2.15 0.06

P2RX6P 0.91 0.77, 1.06 0.21

TIGD6 1.15 0.75, 1.76 0.52

SPON1 0.78 0.66, 0.92 <0.001

PTPN14 1.44 1.06, 1.97 0.02

PDZK1 0.94 0.87, 1.02 0.12

BTBD10 1.54 0.97, 2.46 0.07

SLC9B2 0.74 0.57, 0.97 0.03

TRIM71 0.79 0.41, 1.49 0.46

ADCY6 0.87 0.62, 1.21 0.40

ALOX15B 0.94 0.84, 1.06 0.34

(f) NPI

NPI 1.65 1.43, 1.90 <0.001

https://doi.org/10.1371/journal.pone.0261035.t001
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Stratification using decision trees

We used Conditional Inference Decision Trees [34] to find the optimal number of survival

risk groups in each signature. Also known as Unbiased Recursive Partitioning, this algorithm

recursively partitions and selects dependent variables based on statistical significance, as

opposed to the informational gain as is the case by the commonly used decision trees intro-

duced by Breiman et al. [35]. More precisely, variable selection and the exploration of all possi-

ble splits for each variable is based on permutation-based significance tests. Similarly, a

statistical criterion can be used to decide if the recursion needs to stop, so that no tree pruning

is required in contrast to conventional Decision Trees [34].

Concretely, the hazard ratio was considered as the dependent variable in relation to pre-

dicted survival time and status. Subsequently, Decision Trees generated the optimal number of

nodes, i.e. risk groups, by permuting and splitting hazard ratios according to respective p-val-

ues for each signature. The algorithm was implemented using the R package party [36].

Statistical analysis

Different measures can be used to assess the performance of prediction models. However, it is

advisable to report not only the overall performance measures but also measures that evaluate

calibration as well as discrimination abilities of a prediction model [37, 38].

Discrimination describes how well a model splits between risk groups. We compute four

commonly used discrimination measures: the Receiver Operating Characteristic (ROC) curve

and its integrated area (IAUC), the C-index, and the logrank statistic. The latter is the most

popular method for assessing the comparison among risk groups [39].

Calibration describes the extent of bias, i.e. how reliable the predicted survival probabilities

are. For example, if a model predicts for a similar group of patients a 40% risk, then the

observed frequency of dying for this group should be roughly 40%.

The overall performance is assessed by calculating the explained variation. This measure

quantifies the distance between predicted and observed outcomes. Further we introduce the

Signature Skill Score (SSS) as a measure of improvement upon randomly generated signatures.

The SSS utilizes the Brier score that combines both discrimination and calibration into a single

measure.

Discrimination. AUC and IAUC. In the standard ROC curve analysis, event status and

signature value for an individual are assumed to be fixed over time. This assumption, however,

does not reflect the practice, where both the event status and signature values are time-depen-

dent. For example, a disease-free patient may develop the disease later. Thus, the time-depen-

dent approach is more appropriate.

Let Di(t) and Xi denote the binary event status at time t and the outcome of a signature for

patient i, respectively. Then, time-dependent sensitivity and specificity can be defined for a

given threshold value c by

Seðc; tÞ ¼ PðXi > c j DiðtÞ ¼ 1Þ;

Spðc; tÞ ¼ PðXi � c j DiðtÞ ¼ 0Þ:

Accordingly, the time-dependent area under the ROC curve (AUC) is defined by

AUCðtÞ ¼
Z 1

� 1

Seðc; tÞd½1 � Spðc; tÞ�;

which is equal to the probability that a pair of randomly chosen individuals with and without

an event are correctly ranked at time t. Absent of censoring, AUC and c-index are identical.
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For censored data the time-dependent sensitivity and specificity have to be estimated. For the

estimation, we used the method described by Wolf et al. [40]. Additionally, IAUCs were com-

puted and tested for differences with the Wilcoxon rank sum test [41] for dependent samples

using the R package survcomp [42].

Advantage: The ROC curve and AUC can be preferred over the C-index to assess the opti-

mal threshold of sensitivity and specificity for a single model.

Disadvantage: ROC curves and AUC of censored data can be misleading, since some cen-

sored data would have had events if observed for a longer follow-up [37].

C-index. The C-index of a model will be large, if patients with longer survival times are

scored higher than those with shorter survival times. Strictly, the C-index, also known as Har-

rell’s index or c-statistic, is defined as the probability P(xi> xj j yi> yj) of the predicted data x
agreeing with the observed data y [38].

A pair of observations i, j agree if (yi> yj, xi> xj) or (yi< yj, xi< xj). The probability can be

computed as the fraction of agreed (concordant) pairs:

c ¼
1

2

C � D
C þ Dþ Tx

þ 1

� �

;

where C, D, and Tx denote the numbers of the concordant pairs, discordant pairs, and pairs

tied to the prediction x, respectively. Hereby, ties in x score are treated as 1/2 and ties in y are

treated as incomparable.

Advantage: Appropriate for assessing the predictive discrimination of a single model.

Disadvantage: The C-index is insensitive for detecting small differences in discrimination

between two or more models: As exemplified in [38], The pair (0.01, 0), (0.9, 1) is no more

concordant than the pair (0.05, 0), (0.8, 1).

Logrank test. The logrank test is widely used to compare the survival of groups [39]. It’s

null-hypothesis assumes that there is no difference between groups.

Formally, it is a non-parametric hypothesis test with the null-hypothesis that the groups are

sampled from the same population regarding survival experience. Consider m groups, then the

logrank statistic can be calculated with the following expression:

w2ðlogrankÞ ¼
Xm

i¼1

Oi � Ei

Ei
;

where Oi and Ei denote the total number of observed events and the total number of expected

(predicted) events in group i, respectively.

Advantage: No knowledge about the shape of the survival curve or the distribution of sur-

vival times is needed.

Disadvantage: As a test purely of significance it does not provide an estimate of the differ-

ence between the groups.

Calibration. To assess the calibration, we plot the observed fraction of survivors against

the estimated probability of survival using resampling. Implementation of the plot and details

can be found in Frank E Harrell’s R package rms [43].

Advantage: Calibration plot provides a visual inspection of how accurate the predicted risks

are regardless of weather the p-values are significant or not.

Disadvantage: Results may differ if other validation techniques such as cross-validation or

bootstraping are used [44].

Overall performance. Explained variation. For the linear regression, the explained varia-

tion R2 is well defined as the proportion of variance in the dependent variable explained by the

model. This definition, however, cannot be applied to categorical and ordinal numbers.
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Instead, pseudo R2 values are computed. We used Nagelkerke’s pseudo R2 [45], which is

defined as

R2 ¼ 1 � exp �
2

n
lβ̂ � l0
� �

� �

; ð1Þ

where n is sample size, lβ̂ is the maximized log likelihood of the (Cox) model being estimated,

and l0 denotes the log likelihood of null model. In the case of the Cox model, suppose x is the

covariable vector. Then the model being estimated has the linear predictor vector xβ̂, and

2ðlβ̂ � l0Þ is the likelihood ratio statistic for comparing this model with the null model.

Advantage: This measure is consistent with the classical explained variation used in linear

regression.

Disadvantage: In the presence of censoring, Nagelkerke’s R2 is negatively correlated with

the proportion of censored data [46], so that low values can be misleading.

Signature skill score. Here, we introduce a signature skill score. To calculate the SSS, one

needs to compute the Brier score (BS), which combines the calibration and discrimination

into a single value. BS is the average mean-squared error [47]:

BS ¼
Xm

i¼1

Êi � Ôi

Êi

:

Hereby, Ôi and Êi denote the actual outcome (1 or 0 for event or non-event without censor-

ing) and the estimated outcomes (survival probabilities) for patient i, respectively. The number

of patients is denoted by m. For censored data the actual outcomes are treated differently. For

further details and implementation we refer to Graf et al. [44, 48].

In weather forecasting the “so-called” skill score is widely known as the comparison of the

model’s Brier score to a reference Brier score [49]: (BSref − BS)/BSref. Likewise, SSS can be com-

puted as:

SSS ¼
hBSinrandom � BS
hBSinrandom

;

where hBSinrandom denotes the mean Brier score of n randomly generated signatures. The ratio-

nale behind this score is twofold. One should compare the performance of a signature not with

the null model of no predictors but with the average performance of many random signatures.

On the other hand, a skill score is easy to interpret: An SSS of 0 means that the Brier score of a

signature is identical with the Brier score averaged over random signatures and, thus, provides

no improvement on just random selections. An SSS of 0.6 would indicate a 60% improvement

on random signatures.

Advantage: SSS provides an easy to interpret score for comparing the overall performance

of a signature with the perfomance of random signatures.

Disadvantage: The limitations of SSS are related to those of the Brier score, i.e. one should

interpret the scores carefully. Especially without inspection of the calibration plots, one should

ask whether the BS is effected by a small number of high errors or a large number of smaller

errors.

Survival analysis

For the METABRIC data, only patients who either died due to the disease or are still alive were

taken into account. An event was considered if they died of their disease within 10-year sur-

vival time. The time interval between diagnosis and follow-up date was defined as survival
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time. For the GSE96058, the overall survival time and the overall survival were chosen in corre-

spondence with Brueffer et al. [25]. The survival analysis—including the Cox proportional

hazards model, estimations of the survival probability, and Kaplan-Meier plots—was per-

formed in the R package survival [50]. Below, we use a more stringent convention for statistical

significance (p< 0.001 rather than p< 0.05) and refer to this level of significance as “signifi-

cantly” higher or lower.

Limitations of our method

The biological processes captured by the Hybrid signature were not addressed, since we

approached the prognosis from a systematic data-driven perspective, not from the perspective

of systems biology. The use of data from different gene expression microarray platforms might

impair the comparison between the competing signatures (see [51] for an estimation of the

variability between microarray platforms). Finally, gene lists instead of risk or recurrence

scores were taken into account for EndoPredict and OncotypeDx, i.e. expressions of genes that

serve as input for their algorithms were considered. This restricts the direct comparison with

the corresponding commercially available platforms.

Results

Multivariable analysis

Our goal was to compare the inherent prognostic ability of signatures by examining their gene

lists. For this matter, we fit the NPI with the univariable Cox model—a model that includes

just one variable, namely the NPI. The other signatures were fit with a multivariable Cox

model, a model with multiple covariates such as gene expression or prognostic score. The

results are shown in Table 1.

NPI provides more reliable survival probabilities, but their range is limited

The question we first addressed was whether the competing signatures were well calibrated,

i.e. whether they provided reliable survival probabilities. The calibration for each signature is

displayed in Fig 3. Here, the observed proportion of survivors on the y-axis is plotted against

Fig 3. Calibration plots for competing signatures. Observed fraction of survivors (black line) is plotted against the

predicted fraction of survivors (blue line) in the test set 1 (METABRIC, n = 379). A perfectly reliable model would

show both lines lying on the diagonal (gray line). MAE is the mean absolute error. Q(0.9) is the 0.9 quantile of the

MAE, indicating that 90% of errors lie within the interval [0, Q(0.9)].

https://doi.org/10.1371/journal.pone.0261035.g003
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the predicted proportion of survivors on the x-axis. A prediction with 100% reliable probabili-

ties would show the observed proportion (black line) and the predicted proportion (blue line)

lining on the ideal diagonal (gray line). Consequently, the closer the predicted blue line is to

the observed black line, the more reliable are the probabilities predicted by a model. Moreover,

the range of predicted probabilities, i.e. the range of the blue line, is also important, since a

wider range indicates that a model covers a wider range of patients with different prognosis.

For example, the range of probabilities for the NPI shows that the majority of probabilities

were predicted and are limited to the range of ca. 0.5–0.9. This was reflected in the Kaplan-

Meier plots in Fig 5 and in Fig 6.

To quantify the distance between the predicted blue line and the observed black line, the

mean absolute error (MAE) was computed. From the calibration plots we first see that the

other signatures cover a slightly wider range of survival probabilities (ca. 0.4–1.0) than the

NPI. If we neglect the difference in probability ranges, one can see that the NPI provided more

reliable survival probabilities (MAE = 0.0037) than other signatures. However, it is advisable

to compare the MAE only between these signatures. As seen in Fig 3, the MAE was the lowest

for the Hybrid signature (0.035) and NPI+Random signature (0.036), followed by EndoPre-

dictGL (0.038), Random (0.040), and OncotypeDxGL (0.052).

All signatures showed comparable calibrations, overestimating the proportions of patients

with bad prognosis and slightly underestimating the proportions with good prognosis. How-

ever, the rug plot (top marks along the x-axis) of the NPI showed that—in contrast to other sig-

natures—its survival probabilities were not equally distributed along the x-axis but were rather

grouped across four centers, indicating that the NPI provided a rough classification of patients.

This was again reflected in the Kaplan-Meier plots in Fig 5 and in Fig 6.

Considering the calibrations, our results suggest that:

The NPI provides a more reliable prognosis, but their range of reliable prognoses is limited.

For example, no assessment could be done for patients who would definitely die or survive.

Other signatures covered a wider range of prognosis than the NPI, but their reliability was

smaller. They also showed comparable results, even including the Random signature.

None of the competing signatures demonstrate substantially higher IAUCs

To investigate the prognostic ability of each signature in more detail, we depicted the time-

dependence of AUC over observation time in Fig 4. Please remember: the AUC is equal to the

probability that a pair of randomly chosen individuals with and without an event are correctly

ranked at time t. Here, the results for both test sets METABRIC and GSE96058 are shown. As

displayed in the figure, AUC values fluctuated initially for all signatures and for both data sets

in the first 3 years, exhibited slight fluctuations between years 3 and 7.5 for the test set 1 and

between years 3 and 5 for the test set 2, until they equilibrated in the last 1.5 years. These fluc-

tuations may be attributed simply to the fact that for this short period of time (< 3 years) non-

event data were incorrectly classified, since for the longer follow-up they would have had

events. For example, the first time point for the classification was at 0.46 years, i.e. roughly 6

months after surgery. Thus, a patient who died 12 months thereafter was incorrectly classified

as non-event at 0.46 years. Another contributing factor is that the Cox models were fitted

based on endpoints that are longer than 3 years.

For the test set 1, the Hybrid signature showed the highest AUC values in the last 1.5 years

whereas the Random signature exhibited the lowest values. The other signatures differed only

slightly, which can be inspected in the inset of top Fig 4. The corresponding marginal boxplots

in top Fig 4, nevertheless, indicate that globally the AUCs were distributed across a comparable
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range for all signatures. For the test 2, the NPI showed the highest AUC values in the last 1.5

years whereas the Random signature exhibited again the lowest values. Except the EndoPre-

dictGL signature other signatures differed only slightly, which can be inspected in the inset of

bottom Fig 4. The corresponding marginal boxplots in bottom Fig 4 indicate anew that

Fig 4. Time-dependent area under the curve (AUC) of competing signatures. (top) Time-dependent AUC of competing signatures

for patients in the test set 1 (METABRIC, n = 379). (bottom) Time-dependent AUC of competing signatures for patients in the test set 2

(GSE96058, n = 440). The insets show AUCs within the last 1.5 observation years. In the marginal plots the corresponding boxplots are

shown.

https://doi.org/10.1371/journal.pone.0261035.g004
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globally the AUCs were distributed across a comparable range for all signatures except the

Random signature.

On the basis of AUCs shown in Fig 4 we calculated IAUCs and examined if the differences

between IAUCs were statistically significant by performing the Wilcoxon rank sum test for

dependent samples. Table 2 shows the results. As seen, the Hybrid, OncotypeDxGL, and Ran-

dom signatures demonstrated consistent results in both data sets. Specifically, the Hybrid sig-

nature showed the highest IAUCs that were significant in both data sets. The OncotypeDxGl

signature showed the second highest IAUCs but its p-values were not significant in the test set

2. Moreover, except the NPI+Random and Random signatures all signatures had the same

IAUC of 0.60 which differed in the third decimal place. The Random signature showed the

lowest IAUCs that were statistically non-significant in both data sets.

Considering the AUCs and IAUCs, our results suggest: None of the competing signatures

seems to exhibit superior performance, since the high IAUC of the Hybrid signature in the test

set 1 can be attributed to the fact that this data set is sampled from the same data distribution

as the training data set, on which the Hybrid signature was developed. Only the Random sig-

nature consistently shows the lowest discrimination ability.

None of the competing signatures shows substantially higher

discrimination ability and superior overall performance

Please recall that the IAUC—which is also shown in Table 3 for comparison purposes—reflects

the discrimination ability of a prediction model as a summary index for the binary outcome.

However, the C-index describes the discrimination ability of a prediction model as well by

extending AUC to censored data and R2 quantifies the goodness of fit.

Table 3 illustrates that the Hybrid signature showed the highest values for the C-index and

the Nagelkerke’s R2. In regard of these results, the Hybrid signature seems to demonstrate

higher discrimination ability and higher overall performance. On the other hand, Table 3

shows that the C-Index of the Hybrid signature (0.615) is only slightly higher than the C-index

Table 2. Test of differences between IAUCs calculated on AUCs shown in Fig 4. P-values from the Wilcoxon rank sum test for dependent samples. P-values are com-

puted for the same points in time for the comparison IAUC1> IAUC2, where IAUC1 denotes the IAUC in a row and IAUC2 denotes the IAUC in a column. For both

data sets, rows are sorted w.r.t. the corresponding IAUC values in descending order (For the test set 1: Hybrid> OncotypeDxGL>NPI+Random> . . .).

Test set 1 (METABRIC)

IAUC Hybrid EndoPredictGL OncotypeDxGL NPI NPI + Random Random

Hybrid 0.691 - <0.001 0.037 <0.001 <0.001 <0.001

OncotypeDxGL 0.679 0.969 0.023 - 0.049 0.972 <0.001

NPI + Random 0.664 0.999 <0.001 0.029 <0.001 - <0.001

NPI 0.657 1 0.433 0.951 - 1 <0.001

EndoPredictGL 0.650 1 - 0.977 0.568 1 <0.001

Random 0.640 1 0.999 1 0.999 1 -

Test set 2 (GSE96058)

IAUC Hybrid EndoPredictGL OncotypeDxGL NPI NPI + Random Random

Hybrid 0.608 - 0.042 <0.001 0.027 <0.001 <0.001

OncotypeDxGL 0.604 0.999 0.531 - 0.991 <0.001 <0.001

EndoPredictGL 0.603 0.957 - 0.471 0.869 0.008 <0.001

NPI 0.602 0.974 0.131 0.009 - <0.001 <0.001

NPI + Random 0.541 1 0.993 1 1 - <0.001

Random 0.491 1 1 1 1 1 -

https://doi.org/10.1371/journal.pone.0261035.t002
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of the NPI (0.614) in the test set 2. Moreover, the C-indices were consistent only for the Hybrid

and the Random signatures in both data sets.

To clarify these discrepancies, we computed the signature skill score, which quantified the

improvement of competing signatures on the mean of 100 signatures selected at random.

These 100 random signatures were generated additionally and did not include the Random or

NPI+Random signatures. As demonstrated in Table 3, the NPI showed the highest SSS in the

test set 1 and made 3.7% improvement, whereas other signatures showed no improvement or

even a negative SSS, i.e. a decrease in skill. On the other hand, these results could not be con-

firmed in the test set 2, since only the Hybrid signature showed a positive SSS of 0.009, whereas

other signatures indicated a decrease in skill.

These results showed that: The Hybrid signature indicated a slightly higher discrimination

ability and a higher overall performance than other signatures. Nonetheless, none of the signa-

tures shows a substantially superior performance, which is also supported by results of repeat-

ing the downsampling 1000 times (see S2 Appendix), and none of the signatures shows a

substantial improvement upon random signatures.

Decision Trees suggest that Hybrid and OncotypeDxGL signatures can

better guide decision to omit chemotherapy than competing signatures

In order to stratify patients universally for all signatures, we applied Decision Trees to hazard

ratios of each model. Survival curves of the risk groups resulting from Decision Trees are dis-

played in Figs 5 and 6 for the test set 1 and test set 2, respectively. Notably, the number of risk

groups, i.e. the optimal number of nodes, was computed by Decision Trees. In regards to p-

values, survival curves were significantly different between risk groups for all six signatures.

Table 3. Overall performance of competing signatures. The Signature Skill Score (SSS) was computed using 100 random signatures that were generated additionally and

did not contain Random and NPI+Random signatures.

C-index IAUC SSS Nagelkerke’s R2

Training set (METABRIC)

Hybrid Signature 0.745 0.775 0.132 0.163

EndoPredictGL 0.679 0.691 0.072 0.094

OncotypeDxGL 0.724 0.729 0.084 0.128

NPI 0.678 0.701 0.024 0.057

NPI + Random 0.692 0.697 0.049 0.096

Random 0.631 0.620 0.013 0.053

Test set 1 (METABRIC)

Hybrid Signature 0.690 0.691 0.000 -

EndoPredictGL 0.652 0.679 -0.011 -

OncotypeDxGL 0.652 0.664 -0.011 -

NPI 0.658 0.657 0.037 -

NPI + Random 0.668 0.650 -0.049 -

Random 0.637 0.640 -0.037 -

Test set 2 (GSE96058)

Hybrid Signature 0.615 0.608 0.009 -

EndoPredictGL 0.572 0.604 -0.028 -

OncotypeDxGL 0.592 0.603 -0.028 -

NPI 0.614 0.602 -0.009 -

NPI + Random 0.597 0.541 -0.009 -

Random 0.554 0.491 -0.019 -

https://doi.org/10.1371/journal.pone.0261035.t003

PLOS ONE Comparative analysis of molecular signatures reveals a hybrid approach in breast cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0261035 February 10, 2022 15 / 25

https://doi.org/10.1371/journal.pone.0261035.t003
https://doi.org/10.1371/journal.pone.0261035


Still, to evaluate the Kaplan-Meier curves precisely, we considered the distribution of events

and numbers at risk as well as the number of risk groups for each signature.

In this context, the NPI and the Random signature showed the lowest performances: The

NPI divided patients into only 2 risk groups in both data sets. Although the Random signature

Fig 5. Survival curves of no chemo patients in the test set 1 (METABRIC) with respect to risk classifications for each signature.

Risk groups were identified by Decision Trees. For each signature, the algorithm found different numbers of risk groups indicated by

Node 1, Node 2, etc. P-values were calculated from the two-sided logrank test.

https://doi.org/10.1371/journal.pone.0261035.g005
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divided patients into 3 risk groups, its Node 2 and Node 3 risk groups in the test set 1 as well as

its Node 1 and Node 2 in the test set 2 overlap and could be united to a single risk group,

respectively.

The remaining candidates for the best performance were the Hybrid, OncotypeDxGL,

EndoPredictGL, and NPI+Random signatures. Hybrid and NPI+Random had 4 risk groups

Fig 6. Survival curves of no chemo patients in the test set 2 (GSE96058) with respect to risk classifications for each signature. Risk

groups were identified by Decision Trees. For each signature, the algorithm found different numbers of risk groups indicated by Node 1,

Node 2, etc. P-values were calculated from the two-sided logrank test.

https://doi.org/10.1371/journal.pone.0261035.g006
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but EndoPredictGL and OncotypeDxGL only 3 groups. However, in Figs 5 and 6 one can see

that the risk groups of these signatures intersected and overlapped in both data sets, indicating

that 3 risk groups would have been more representative. The risk groups of EndoPredictGL

and OncotypeDxGL signatures intersected or overlapped as well, but this was not representa-

tive in both data sets.

In order to guide decisions to omit chemotherapy, however, one has to take the relative sur-

vival probability of the best group and its size into account, since the survival probability of a

group with a very high probability but a small number of patients may not be reliable. The rela-

tive survival probability for each signature can be seen in the inset tables of Fig 7. For the test

set 1, the according values in decreasing order were 0.876, 0.873, 0.863, and 0.838 for the

Hybrid (205 patients), OncotypeDxGL (166 patients), EndoPredictGL (220 patients), and NPI

+Random (214 patients) signatures, respectively. For the test set 2, the according values in

decreasing order were 0.812, 0.795, 0.788, and 0.767 for the OncotypeDxGL (217 patients),

Hybrid (282 patients), EndoPredictGL (285 patients), and NPI+Random (268 patients) signa-

tures, respectively. Consequently, the OncotypeDxGL showed the second highest and the

highest relative survival probability of its best risk group in the test set 1 and test set 2, respec-

tively. However, it also had the lowest number of patients compared to other signatures in

both data sets.

Two conclusions may be drawn from these results. First, the Hybrid, OncotypeDxGL, and

EndoPredictGL signatures showed best and roughly equal risk stratification. Second, the

guidance for chemotherapy is more reliable based on the Hybrid and OncotypeDxGL

signatures.

Taking the results of multiple signatures into account can improve

guidance for chemotherapy omission

We investigated if one can improve guidance for chemotherapy omission by taking the predic-

tions of multiple signatures into account. For this purpose, we selected patients only in the

Node 1 risk group of all signatures, i.e. risk groups with the best prognosis. We then identified

which patients were shared between all possible combinations of these risk groups, and com-

puted the corresponding relative survival probabilities. For example, we identified which

patients were assessed less dangerous in both the Hybrid signature and the NPI, which patients

were assessed less dangerous in the Random and OncotypeDxGL as well as EndoPredictGL

signatures, etc. The results of these identifications can be seen in Fig 7.

The abbreviation HR represents patients with the best prognosis who were shared by the

Hybrid (H) and the Random (R) signatures; and ENS includes those patients who were shared

by the EndoPredictGL (E) signature, the NPI (N), and the NPI+Random (S) signature, and so

on. In this figure, the survival probability is plotted against the number of shared patients. Fur-

ther, we color-coded the number of signatures used to identify shared patients, i.e. the number

of signature “tests”. From this, one can observe that additional tests (from right to left in Fig 7)

continuously increased the survival probability in the test set 2. The survival probability

increased in the test set 1 as well but decreased again after the number of shared patients

reduced to ca. 130, indicating that with less than 130 patients the shared risk groups were not

anymore representative. The inset tables of Fig 7 show the characteristics for selected risk

groups. Here, we also show results for those patients who received the best prognosis in all six

signatures (“All intersecting”) and for patients with the overall highest survival probability

(“Best intersection”). From here and from the marginal boxplots for both data sets, one can

clearly see that taking the results of multiple signatures tended to improve the survival proba-

bility and, thus, better guide the decision to omit chemotherapy.

PLOS ONE Comparative analysis of molecular signatures reveals a hybrid approach in breast cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0261035 February 10, 2022 18 / 25

https://doi.org/10.1371/journal.pone.0261035


The increased survival rates for adding multiple signature tests suggest that the signatures

may misidentify different patients, i.e. they make errors on different—not the same—patients,

since otherwise all signatures would have shown the same predictions and no increase in sur-

vival probability.

Fig 7. Survival probabilities for different combinations of groups with the best prognosis. (top) Test set 1 (METABRIC, n = 379). (bottom) Test set

2 (GSE96058, n = 440). Patients only in the Node 1 risk group shown in Fig 5 and in Fig 6 are selected, i.e. risk groups with the best prognosis. We

identify intersections: those patients who are shared between these Node 1 risk groups, and compute the corresponding survival probabilities. “Number

of signatures in intersection” means the number of signatures sharing this particular intersection. For example, HEO is shared by 3 signatures, namely

by the Hybrid (H), EndoPredictGL (E), and OncotypeDxGL (O) signatures. Survival probabilities are based on the Kaplan-Meier estimates for 10-year

disease-free survival for the test set 1 and for the overall survival (provided in GSE96058) for the test set 2. Please note that each plot has different ranges

of the number of patients on the x-axis.

https://doi.org/10.1371/journal.pone.0261035.g007
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To validate this hypothesis, we selected 100 patients at random for each data set and plotted

in Fig 8 the predicted survival probabilities (y-axis) for each patient (x-axis). Here, we concen-

trated on Hybrid, EndoPredictGL, OncotypeDxGL, and NPI, since the latter 3 signatures are

used in routine clinical practice. If all 4 signatures would agree for all patients, the points

would perfectly overlap. However, we see a wide spread of disagreement for almost every

patient in both data sets. Especially regarding the patients with bad prognosis, the signatures

seem to disagree at most.

Discussion

We aimed to find a signature that substantially improves prediction by introducing a hybrid

approach. In this connection, we did not aim to infer biological meaning from the Hybrid sig-

nature. On the contrary, our study implies that inferring biological interpretation from signifi-

cant associations with survival outcome might be unjustified, since even a pair of random gene

Fig 8. Predicted survival probability for four competing signatures. (top) 100 patients selected at random in the test set 1 (METABRIC). (bottom)

100 patients selected at random in the test set 2 (GSE96058). A gray line represents a single patient on the x-axis. A perfect agreement between the

signatures would show all points completely overlapping. The probabilities are based on the 10-year disease-free survival in the test set 1 and on the

overall survival (provided in GSE96058) for the test set 2.

https://doi.org/10.1371/journal.pone.0261035.g008
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selections can show similar if not identical results. While the gene selection varies dependent

on the patients used in the training set for the Hybrid signature, there is no substitute for the

NPI, i.e. it is always preferred to gene expression data.

Both findings indicate that it is not sufficient to judge a signature based on the statistical sig-

nificance of dependent variables in the Cox model. One should rather introduce a valid base-

line such as a simple comparison with one or more random signatures on the basis of all

measured statistics.

Importantly, the association of Random signatures with outcome does not necessarily

imply that the other signatures are not useful. On the contrary, this indicates that even a model

based on a randomly chosen set of genes contains prognostically relevant information. It

should also be noted that random signatures are predictive, since more than 50% of the breast

cancer transcriptome is correlated with proliferation, which incorporates prognostic informa-

tion, as reported in [14].

Further, our statistical measures demonstrate that even a random set of genes is highly asso-

ciated with BC outcome even if one uses robust measures such as time dependent AUC and

IAUC. This confirms findings of Venet et al. [14].

One can argue that the use of gene lists may not be a valid comparison for the two commer-

cially available signatures, since they contain highly correlated gene expressions due to func-

tional relation. However, our aim was to compare the inherent power of genes contained in

each signature. Nonetheless, we evaluated the presence of multicollinearity by computing the

variance inflation factor (see S3 Appendix): none of these signatures shows a large amount of

multicollinearity. It is noteworthy, however, that the OncotypeDx signature was developed on

and for lymph node negative breast cancers, and thus, may not be favorable for our patients

selection.

In regards to calibration, AUCs and IAUCs, C-Indices, and survival curves, no clear conclu-

sion can be drawn whether the Hybrid signature performs substantially better than other sig-

natures. All presented signatures seem to fluctuate around the AUC of 0.66 got the test set 1

and around 0.60 for the test set 2, and the Signature Skill Scores of all signatures seem to add

0% improvement. We only see a slight improvement for the Hybrid signature in terms of dis-

crimination and benefit from chemotherapy, which stresses not so much this particular signa-

ture selection but rather the benefits of a general hybrid approach. Generally, this strongly

indicates that combining clinical and pathological characteristics with molecular data in a

data-driven approach presents a valuable method to improve patient prognosis. As can be seen

in S4 Appendix, this conclusion is further supported if we combine the NPI score with the sig-

nature score in a bivariable model, since these bivariable models show slightly better results

than the corresponding Hybrid and NPI+Random signatures.

Further, adding random genes to the NPI in the NPI+Random signature facilitated a split-

ting of a risk group with bad prognosis that could not be found using the NPI alone, as we saw

it in the survival curves for both test datasets. This points to an interesting direction that need

to be further investigated. This also substantiates that the NPI remains a powerful prognostic

score and can be supported by means of molecular approaches.

As indicated in later sections of our study, conducting multiple signature tests can improve

prediction for chemotherapy benefit. The authors of [52] showed that combining gene signa-

tures improves prediction of breast cancer survival by using the principal component analysis

to derive covariables for the Cox model. To the best of our knowledge, however, it is the first

time that a combining of the best groups from multiple signature tests has been done. Our

rationale is simple: if two or more signatures identify same patients, there would be no

improvement. Thus, if combining of multiple signatures shows an improvement of prediction,

than the signatures will misidentify different patients, which we showed in Fig 8.
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Conclusions

The great promise of precision oncology is to predict patient outcome and identify therapy tar-

gets—relying on genetic databases such as the Cancer Genome Atlas or METABRIC, indepen-

dently of tumor histology. Although our study shows the usefulness of analyzing such

databases, it also points at limitations of a molecular approach: rather than excluding tumor

histology or more generally clinical and pathological characteristics, precision oncology should

take such characteristics into account.

Moreover, our results support the idea that there is no universal signature. To put this idea

in perspective: If we aim to select 15 genes from 24,368 genes in the MB dataset, then there are

24, 368!/(24, 353!15!) = 4.82977571049206953 possible combinations, which is comparable

with the lower bound of the possibly infinite diameter of the universe measured in meters

[53].

The large variation of genes used in different signatures points at several problems of

molecular characterization. The first problem is the loss of spatial information critical to

understand cell interactions, which is also tightly related to the problem of the host-tumor

interaction. For example, gene signatures are generally derived from whole tissue excluding

samples with low tumor cell content. As a result, interactions with components of tumor

micro-environment such as tumor-associated stromal cells and infiltrating immune cells are

often insufficiently considered.

Signatures based on genes involved in tumor- and immune interactions may provide more

accurate results. For instance, Teschendorff et al. reported a signature related to immune

response and significantly associated with the risk of distant metastasis in ER negative patients

[54].

Together, our findings underline that breast cancer manifests itself in many dimensions of

interactions such as cell-cell, spatial, host-tumor interactions, which in turn are highly complex

in themselves.

In this light, we would like to convey to the medical community the importance of a hybrid

approach where clinicians do not rely on a single signature, but consider both the clinical and

pathological characteristics as well as molecular signatures.

Supporting information

S1 Appendix. Additional random signatures.

(PDF)

S2 Appendix. Downsampling.

(PDF)

S3 Appendix. Multicollinearity [55].

(PDF)

S4 Appendix. Bivariable models.

(PDF)

S1 Table. Descriptive statistics of selected METABRIC data.

(PDF)

S2 Table. Descriptive statistics of selected GSE data.

(PDF)

PLOS ONE Comparative analysis of molecular signatures reveals a hybrid approach in breast cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0261035 February 10, 2022 22 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0261035.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0261035.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0261035.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0261035.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0261035.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0261035.s006
https://doi.org/10.1371/journal.pone.0261035


Acknowledgments

We thank Cary Tutmarc and Senol Dogan for helpful feedback.

Author Contributions

Conceptualization: Dimitrij Tschodu, Bernhard Ulm, Klaus Bendrat, Jürgen Lippoldt, Pablo

Gottheil.

Data curation: Dimitrij Tschodu, Bernhard Ulm, Klaus Bendrat.

Formal analysis: Dimitrij Tschodu, Bernhard Ulm, Klaus Bendrat, Jürgen Lippoldt, Pablo

Gottheil.

Methodology: Dimitrij Tschodu, Bernhard Ulm, Josef A. Käs, Axel Niendorf.

Project administration: Josef A. Käs, Axel Niendorf.

Supervision: Josef A. Käs, Axel Niendorf.

Writing – original draft: Dimitrij Tschodu.

Writing – review & editing: Jürgen Lippoldt, Pablo Gottheil, Josef A. Käs, Axel Niendorf.

References
1. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and

survivorship statistics, 2019. CA: a cancer journal for clinicians. 2019; 69(5):363–385. PMID: 31184787

2. Galea MH, Blamey RW, Elston CE, Ellis IO. The Nottingham Prognostic Index in primary breast cancer.

Breast cancer research and treatment. 1992; 22(3):207–219. https://doi.org/10.1007/BF01840834

PMID: 1391987

3. Balslev I, Axelsson CK, Zedeler K, Rasmussen BB, Carstensen B, Mouridsen HT. The Nottingham

prognostic index applied to 9,149 patients from the studies of the Danish Breast Cancer Cooperative

Group (DBCG). Breast cancer research and treatment. 1994; 32(3):281–290. https://doi.org/10.1007/

BF00666005 PMID: 7865856

4. D’Eredita G, Giardina C, Martellotta M, Natale T, Ferrarese F. Prognostic factors in breast cancer: the

predictive value of the Nottingham Prognostic Index in patients with a long-term follow-up that were

treated in a single institution. European Journal of Cancer. 2001; 37(5):591–596. https://doi.org/10.

1016/S0959-8049(00)00435-4 PMID: 11290434

5. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable

source of knowledge. Contemporary oncology. 2015; 19(1A):A68. https://doi.org/10.5114/wo.2014.

47136 PMID: 25691825

6. Boehm JS, Garnett MJ, Adams DJ, Francies HE, Golub TR, Hahn WC, et al. Cancer research needs a

better map; 2021.

7. Poste G. Bring on the biomarkers. Nature. 2011; 469(7329):156–157. https://doi.org/10.1038/469156a

PMID: 21228852

8. Schneider D, Bianchini G, Horgan D, Michiels S, Witjes W, Hills R, et al. Establishing the evidence bar

for molecular diagnostics in personalised cancer care. Public health genomics. 2015; 18(6):349–358.

https://doi.org/10.1159/000441556 PMID: 26571110

9. Spiegelhalter D. Should we trust algorithms? Harvard Data Science Review. 2020; 2(1).

10. Bartlett J, Bayani J, Marshall A, Dunn JA, Campbell A, Cunningham C, et al. Comparing breast cancer

multiparameter tests in the OPTIMA prelim trial: no test is more equal than the others. JNCI: Journal of

the National Cancer Institute. 2016; 108(9). https://doi.org/10.1093/jnci/djw050 PMID: 27130929

11. Dowsett M, Sestak I, Lopez-Knowles E, Sidhu K, Dunbier AK, Cowens JW, et al. Comparison of

PAM50 risk of recurrence score with onco type DX and IHC4 for predicting risk of distant recurrence

after endocrine therapy. Journal of Clinical Oncology. 2013; 31(22):2783–2790. https://doi.org/10.1200/

JCO.2012.46.1558 PMID: 23816962

12. Koscielny S. Why most gene expression signatures of tumors have not been useful in the clinic. Science

translational medicine. 2010; 2(14):14ps2–14ps2. https://doi.org/10.1126/scitranslmed.3000313 PMID:

20371465

PLOS ONE Comparative analysis of molecular signatures reveals a hybrid approach in breast cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0261035 February 10, 2022 23 / 25

http://www.ncbi.nlm.nih.gov/pubmed/31184787
https://doi.org/10.1007/BF01840834
http://www.ncbi.nlm.nih.gov/pubmed/1391987
https://doi.org/10.1007/BF00666005
https://doi.org/10.1007/BF00666005
http://www.ncbi.nlm.nih.gov/pubmed/7865856
https://doi.org/10.1016/S0959-8049(00)00435-4
https://doi.org/10.1016/S0959-8049(00)00435-4
http://www.ncbi.nlm.nih.gov/pubmed/11290434
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.5114/wo.2014.47136
http://www.ncbi.nlm.nih.gov/pubmed/25691825
https://doi.org/10.1038/469156a
http://www.ncbi.nlm.nih.gov/pubmed/21228852
https://doi.org/10.1159/000441556
http://www.ncbi.nlm.nih.gov/pubmed/26571110
https://doi.org/10.1093/jnci/djw050
http://www.ncbi.nlm.nih.gov/pubmed/27130929
https://doi.org/10.1200/JCO.2012.46.1558
https://doi.org/10.1200/JCO.2012.46.1558
http://www.ncbi.nlm.nih.gov/pubmed/23816962
https://doi.org/10.1126/scitranslmed.3000313
http://www.ncbi.nlm.nih.gov/pubmed/20371465
https://doi.org/10.1371/journal.pone.0261035


13. Azim H Jr, Michiels S, Zagouri F, Delaloge S, Filipits M, Namer M, et al. Utility of prognostic genomic

tests in breast cancer practice: The IMPAKT 2012 Working Group Consensus Statement. Annals of

oncology. 2013; 24(3):647–654. https://doi.org/10.1093/annonc/mds645

14. Venet D, Dumont JE, Detours V. Most random gene expression signatures are significantly associated

with breast cancer outcome. PLoS Comput Biol. 2011; 7(10):e1002240. https://doi.org/10.1371/journal.

pcbi.1002240 PMID: 22028643

15. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization of intersecting sets. IEEE

transactions on visualization and computer graphics. 2014; 20(12):1983–1992. https://doi.org/10.1109/

TVCG.2014.2346248 PMID: 26356912

16. Gnant M, Steger GG. Fighting overtreatment in adjuvant breast cancer therapy. The Lancet. 2009;

374(9707):2029–2030. https://doi.org/10.1016/S0140-6736(09)62097-3 PMID: 20004965

17. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Adjuvant chemotherapy

guided by a 21-gene expression assay in breast cancer. New England Journal of Medicine. 2018; 379

(2):111–121. https://doi.org/10.1056/NEJMoa1804710 PMID: 29860917

18. Calonge N, Klein RD, Berg JS, Campos-Outcalt D, Djulbegovic B, Ganiats TG, et al. Recommendations

from the EGAPP Working Group: does the use of Oncotype DX tumor gene expression profiling to

guide treatment decisions improve outcomes in patients with breast cancer? GENETICS IN MEDICINE.

2016; 18(8):770–779. https://doi.org/10.1038/gim.2015.173

19. Cardoso F, van’t Veer L, Poncet C, Lopes Cardozo J, Delaloge S, Pierga JY, et al. MINDACT: Long-

term results of the large prospective trial testing the 70-gene signature MammaPrint as guidance for

adjuvant chemotherapy in breast cancer patients.; 2020.
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RNA sequencing–based classifiers for prediction of the five conventional breast cancer biomarkers: a

report from the population-based multicenter sweden cancerome analysis network—breast initiative.

JCO Precision Oncology. 2018; 2:1–18. https://doi.org/10.1200/PO.17.00135 PMID: 32913985

26. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects

and other unwanted variation in high-throughput experiments. Bioinformatics. 2012; 28(6):882–883.

https://doi.org/10.1093/bioinformatics/bts034 PMID: 22257669

27. Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature space. Journal of the Royal

Statistical Society: Series B (Statistical Methodology). 2008; 70(5):849–911. https://doi.org/10.1111/j.

1467-9868.2008.00674.x

28. Michiels S, Koscielny S, Hill C. Prediction of cancer outcome with microarrays: a multiple random valida-

tion strategy. The Lancet. 2005; 365(9458):488–492. https://doi.org/10.1016/S0140-6736(05)17866-0

PMID: 15705458

29. Fan J, Samworth R, Wu Y. Ultrahigh dimensional feature selection: beyond the linear model. The Jour-

nal of Machine Learning Research. 2009; 10:2013–2038. PMID: 21603590

30. R Core Team. R: A Language and Environment for Statistical Computing; 2020. Available from: https://

www.R-project.org/.

31. Saldana DF, Feng Y. SIS: an R package for sure independence screening in ultrahigh dimensional sta-

tistical models. Journal of Statistical Software. 2018; 83(2):1–25. https://doi.org/10.18637/jss.v083.i02

32. Filipits M, Rudas M, Jakesz R, Dubsky P, Fitzal F, Singer CF, et al. A new molecular predictor of distant

recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional

clinical risk factors. Clinical Cancer Research. 2011; 17(18):6012–6020. https://doi.org/10.1158/1078-

0432.CCR-11-0926 PMID: 21807638

33. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of

tamoxifen-treated, node-negative breast cancer. New England Journal of Medicine. 2004; 351

(27):2817–2826. https://doi.org/10.1056/NEJMoa041588 PMID: 15591335

PLOS ONE Comparative analysis of molecular signatures reveals a hybrid approach in breast cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0261035 February 10, 2022 24 / 25

https://doi.org/10.1093/annonc/mds645
https://doi.org/10.1371/journal.pcbi.1002240
https://doi.org/10.1371/journal.pcbi.1002240
http://www.ncbi.nlm.nih.gov/pubmed/22028643
https://doi.org/10.1109/TVCG.2014.2346248
https://doi.org/10.1109/TVCG.2014.2346248
http://www.ncbi.nlm.nih.gov/pubmed/26356912
https://doi.org/10.1016/S0140-6736(09)62097-3
http://www.ncbi.nlm.nih.gov/pubmed/20004965
https://doi.org/10.1056/NEJMoa1804710
http://www.ncbi.nlm.nih.gov/pubmed/29860917
https://doi.org/10.1038/gim.2015.173
https://doi.org/10.1371/journal.pone.0183458
http://www.ncbi.nlm.nih.gov/pubmed/28850621
https://doi.org/10.1038/nature10983
http://www.ncbi.nlm.nih.gov/pubmed/22522925
https://doi.org/10.1200/PO.17.00135
http://www.ncbi.nlm.nih.gov/pubmed/32913985
https://doi.org/10.1093/bioinformatics/bts034
http://www.ncbi.nlm.nih.gov/pubmed/22257669
https://doi.org/10.1111/j.1467-9868.2008.00674.x
https://doi.org/10.1111/j.1467-9868.2008.00674.x
https://doi.org/10.1016/S0140-6736(05)17866-0
http://www.ncbi.nlm.nih.gov/pubmed/15705458
http://www.ncbi.nlm.nih.gov/pubmed/21603590
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.18637/jss.v083.i02
https://doi.org/10.1158/1078-0432.CCR-11-0926
https://doi.org/10.1158/1078-0432.CCR-11-0926
http://www.ncbi.nlm.nih.gov/pubmed/21807638
https://doi.org/10.1056/NEJMoa041588
http://www.ncbi.nlm.nih.gov/pubmed/15591335
https://doi.org/10.1371/journal.pone.0261035


34. Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: A conditional inference framework.

Journal of Computational and Graphical statistics. 2006; 15(3):651–674. https://doi.org/10.1198/

106186006X133933

35. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees. CRC press; 1984.

36. Hothorn T, Hornik K, Strobl C, Zeileis A, Hothorn MT. Package ‘party’. Package Reference Manual for

Party Version 09-998. 2015; 16:37.

37. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the perfor-

mance of prediction models: a framework for some traditional and novel measures. Epidemiology

(Cambridge, Mass). 2010; 21(1):128. https://doi.org/10.1097/EDE.0b013e3181c30fb2 PMID:

20010215

38. Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluat-

ing assumptions and adequacy, and measuring and reducing errors. Statistics in medicine. 1996; 15

(4):361–387. https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4%3C361::AID-SIM168%3E3.0.

CO;2-4

39. Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Can-

cer Chemother Rep. 1966; 50:163–170. PMID: 5910392

40. Wolf P, Schmidt G, Ulm K. The use of ROC for defining the validity of the prognostic index in censored

data. Statistics & probability letters. 2011; 81(7):783–791. https://doi.org/10.1016/j.spl.2011.02.021

41. Wilcoxon F. Individual comparisons by ranking methods. In: Breakthroughs in statistics. Springer;

1992. p. 196–202.
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