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Background and Aim. Interleukin-6 (IL-6) modulates neurons–glia crosstalk and subsequently triggers hyperalgesia. This study is
aimed at investigating whether the interaction between protein kinase C epsilon (PKCε) and signal transducer and activator of
transcription 3 (STAT3) mediated IL-6-induced hyperalgesia and neurocyte activation. Methods. A rat hyperalgesia model was
induced using an intraplantar injection of Freund’s complete adjuvant (FCA) or an intrathecal injection of IL-6. Mechanical
allodynia was evaluated using von Frey filament tests after intrathecal injections of T-5224 (c-Fos/AP-1 inhibitor), minocycline
(Mino, a specific microglia inhibitor), L-2-aminoadipic acid (LAA, an astroglial toxin), PKCε inhibitor peptide, APTSTAT3-9R
(STAT3 inhibitor), or anti-IL-6 antibody. The c-Fos, GFAP, Iba-1, PKCε, STAT3, pSTAT3Tyr705 and pSTAT3Ser727, and IL-6
expression at the spinal cord level was assessed by Western blot analysis. The interactive effects of PKCε and STAT3 were
determined using immunofluorescence staining and immunoprecipitation in vivo and in vitro. Interleukin-6 promoter activity
was examined using luciferase assays. Results. T-5224, Mino, and LAA attenuated FCA- or IL-6-mediated inflammatory pain,
with a decrease in c-Fos, GFAP, Iba-1, PKCε, and IL-6 expression. PKCε inhibitor peptide and APTSTAT3-9R reversed FCA-
induced nociceptive behavior, while decreasing pSTAT3Ser727, IL-6, c-Fos, GFAP, and Iba-1 expression and PKCε and STAT3
coexpression. Interleukin-6 promoter activity increased in the presence of PKCε and STAT3. The interaction with PKCε
increased on phosphorylating STAT3 at Ser727 but not at Tyr705. Conclusion. STAT3 phosphorylation at Ser 727 and the
interaction with PKCε contribute to hyperalgesia via the IL-6-mediated signaling pathway, thus regulating neuron–glia
crosstalk during inflammatory pain.

1. Introduction

Inflammatory mediators play important roles in pain devel-
opment by interfering with nociceptive cellular signal trans-

duction and transmission. The proinflammatory cytokine
interleukin-6 (IL-6) is secreted by astrocytes and microglia
in the central nervous system [1, 2]. It might play an impor-
tant role in the development and maintenance of
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hyperalgesia in various pain models [3]. The upregulation of
IL-6 in the spinal cord causes mechanical hyperalgesia in
rats and is associated with the nociceptive sensory process
[4–6]. The dysregulation of IL-6 results in the production
and release of several inflammatory mediators that may acti-
vate neurocytes and trigger neuropathic pain [3, 7]. The
blockade of IL-6 signaling leads to substantial clinical
improvement in inflammatory arthritis [8].

Protein kinase C (PKC) is an important family of intra-
cellular signaling enzymes involved in central sensitization
and pain transmission [9]. The PKC epsilon (PKCε) isoform
is associated with the initiation of hyperalgesia by regulating
nociceptor excitability [10, 11]. Signal transducer and activa-
tor of transcription 3 (STAT3) modulates gene expression
involved in promoting inflammatory pain. Notably, PKCε
interacts with STAT3 [12], which targets and activates the
IL-6 gene to increase IL-6 production [13, 14]. However,
whether the interaction between PKCε and STAT3 affects
IL-6-mediated neuron–glia activation and hyperalgesia
remains unknown.

In this study, we sought to explore the interaction
between PKCε, STAT3, and IL-6 during inflammation-
induced hyperalgesia. First, we investigated whether PKCε,
STAT3, and IL-6 directly participated in neurocyte (includ-
ing neurons, astrocytes, and microglia) activation during
inflammatory pain in rats. Then, we aimed to determine
the roles of PKCε and STAT3 in IL-6-induced hyperalgesia
and neuron–glia crosstalk [15, 16] in vitro. Finally, we exam-
ined the interactions between PKCε and STAT3 as well as
their effects on IL-6 promoter activity in vivo and in vitro.

2. Materials and Methods

2.1. Animals. A local experimental animal committee
approved the experimental protocol, which was imple-
mented according to the guidelines of the Institutional
Animal Care and Use Committee (number 2019-004). Adult
(6- to 8-week-old) male Sprague–Dawley rats weighing 200–
220 g (n = 130) were acclimated for 1 week under a 12 h
light/dark cycle at 22°C ± 2°C and 55% ± 5% relative humid-
ity and received food and water ad libitum.

2.2. Reagents and Administration. Reagents and antibodies
were obtained from the following suppliers: c-Fos/AP-1
inhibitor T-5224, PKCε inhibitor peptide, and STAT3 inhib-
itor APTSTAT3-9R (Apexbio Technology LLC., TX, USA);
specific microglia inhibitor minocycline hydrochloride
(Mino) and astroglial toxin L-2-aminoadipic acid (LAA;
Sigma–Aldrich Corp., MO, USA); and rat IL-6 and anti-IL-
6 antibodies (PeproTech Inc., NJ, USA and Abcam,
Cambridge, UK, respectively). Anti-IL-6 and Mino were
diluted with phosphate-buffered saline (PBS) and saline,
respectively; the other agents were dissolved in 1% dimethyl
sulfoxide (DMSO). The aforementioned chemicals (50μL)
were injected intrathecally via the L5-6 lumbar interspace
identified by the tail flick reflex [17] under 1%–3% isoflurane
(Baxter, IL, USA) anesthesia delivered at an oxygen flow rate
of 1 L/min.

2.3. Inflammatory Pain and IL-6-Induced Hyperalgesia
Model. Freund’s complete adjuvant (FCA; Sigma–Aldrich
Corp.) consisting of heat-killed Mycobacterium tuberculosis
(1mg/mL) in paraffin oil (150μL) was injected into the plan-
tar area of the right hind paws of the rats under 1%–3%
isoflurane anesthesia delivered with oxygen at a flow rate
of 1 L/min. The left hind paw was not injected. Physical signs
(e.g., redness and swelling) and pain behavior were moni-
tored for 24h after FCA injection. A model of hyperalgesia
was established using naïve rats given an intrathecal injec-
tion of IL-6 (20 ng/50μL) through the L5–L6 lumbar inter-
space identified by the tail-flick reflex 10min before drug
administration under isoflurane anesthesia.

2.4. Experiments In Vivo. Figure 1 shows the experimental
protocol in vivo.

2.4.1. Experiment 1. The rats were randomly assigned to the
following groups (n = 6/group): untreated (control naïve
rats), FCA, FCA+T-5224 500μg/50μL (T-5224), FCA
+Mino 100μg/50μL (Mino), FCA+LAA 1mg/50μL
(LAA), and PBS 50μL (vehicle).

2.4.2. Experiment 2. We investigated the roles of PKCε,
STAT3, and IL-6 in the inflammatory process by randomiz-
ing rats to the following groups (n = 6/group): untreated
(control naïve rats), FCA, FCA+PKCε inhibitor peptide
100μg/50μL (PKCε inhibitor), FCA+APTSTAT3-9R
20μg/50μL (APTSTAT3-9R), FCA+anti-IL-6 antibody
100 ng/50μL (anti-IL-6), and 1% DMSO 50μL (vehicle).

2.4.3. Experiment 3. We evaluated the effects of neuron-glial
activity inhibitors on IL-6-induced hyperalgesia by random-
izing rats to the following groups (n = 6/group): untreated
(control naïve rats), IL-6, IL-6 +T-5224 500μg/50μL (T-
5224), IL-6+Mino 100μg/50μL (Mino), IL-6 +LAA 1mg/
50μL (LAA), and 1% DMSO 50μL (vehicle). All inhibitors
were injected intrathecally 10min before IL-6 (20 ng/50μL).

2.4.4. Experiment 4. We assessed the effects of PKCε and
STAT3 on IL-6-induced hyperalgesia by randomizing rats
to the following groups (n = 6/group): untreated (control
naïve rats), IL-6, IL-6 +PKCε inhibitor 100μg/50μL, IL-6
+APTSTAT3-9R 20μg/50μL, IL-6+ anti-IL-6 antibody
100 ng/50μL, and PBS 50μL (vehicle). All drugs were
injected intrathecally 10min before IL-6 (20 ng/50μL).

The paw withdrawal mechanical threshold (PWMT) was
measured daily after the intraplantar injection of FCA
(Figure 1). All agents described earlier were injected intra-
thecally on days 4 and 6 after the intraplantar injection of
FCA. The spinal cords were harvested on day 7. In the IL-
6-induced hyperalgesia model, the pain thresholds after
chemical administration were assessed as the PWMT up to
120min after IL-6 administration.

2.5. Von Frey Filament Tests. We measured PWMT using
von Frey filament tests (Stoelting Co., IL, USA) using the
up-and-down method [18]. The rats were habituated to a
wire mesh platform for at least 1 h/d for 3 days before start-
ing experiments. All groups (n = 6 each) were tested daily
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before drug application to determine baseline levels. Briefly,
the positive and negative data were tabulated as follows: X
= withdrawal and 0 = nowithdrawal. The 50% response
threshold was interpolated using the following formula: 50
%g threshold = ð10ðxf+kδÞÞ/10,000, where xf is the last value
(in log units) of the von Frey filament test, k is the tabular
value for positive/negative responses, and δ is the mean
difference (in log units) between stimuli [18]. The PWMT
was defined as the means of six animals before and after
chemical injections. Areas under receiver operator charac-
teristic curves (AUC) were calculated to determine the
effects of the injected chemicals.

2.6. Western Blot Analysis. The rats were euthanized using
isoflurane anesthesia after the aforementioned tests. The
lumbar segments (L3–L5) of whole spinal cords (n = 6
/group) were homogenized and centrifuged at 16,000 g and
4°C for 15min. Equal amounts of protein (50μg) in superna-
tants were denatured, resolved by sodium dodecyl-sulfate
polyacrylamide gel electrophoresis (SDS-PAGE, 5% stacking
gel, and 10%–12% separating gel), and then electrotrans-
ferred onto polyvinylidene difluoride (PVDF) membranes
(Millipore, Massachusetts, USA). Nonspecific protein bind-
ing on the membranes was blocked with 5% nonfat milk in
tri-buffered saline and Tween 20 (TBST) for 2 h at room

temperature and then incubated with the primary anti-
bodies: rabbit anti-c-Fos, anti-Iba-1, anti-PKCε, anti-
STAT3 (1 : 1000; Affinity Biosciences, OH, USA), anti-IL-6
(1 : 1000; Abcam, MA, USA), anti-GFAP, and anti-GAPDH
(1 : 1000; Cell Signaling Technology, MA, USA). The blots
were washed with TBST and then probed with secondary
HRP goat anti-rabbit IgG (1 : 10,000) in 5% nonfat milk in
TBST for 1 h at room temperature. The proteins of interest
on the blots were visualized using an ECL reagent (Affinity
Biosciences) and photographed using an X-ray film. The
protein band intensity was quantified using the ImageJ soft-
ware (National Institutes of Health, MD, USA).

2.7. Immunofluorescence Staining. After transcardial perfu-
sion 7 days after FCA administration with 4% paraformalde-
hyde, the spinal cords were removed from the rats, postfixed,
and dehydrated. Transverse frozen sections (10μm)
prepared from OCT-embedded tissues were incubated over-
night with rabbit polyclonal anti-PKCε (Abcam) and mouse
monoclonal anti-STAT3 (Cell Signaling Technology). The
proteins in the tissues were visualized using a DMIL LED
scanning microscope (Leica Microsystems GmbH, Wetzlar,
Germany). Primary or secondary antibodies were omitted
to ensure staining specificity. The data from three to four
sections per rat (n = 6/group) were analyzed.
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Figure 1: Schema of the experimental protocol. FCA: Freund complete adjuvant; IF: immunofluorescence; IL-6: interleukin-6; i.pl.:
intraplantar; i.th.: intrathecal; LAA: L-2-aminoadipic acid; Mino: minocycline; PKCε: protein kinase C epsilon.
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2.8. Immunoprecipitation Assays. Naïve rats were euthanized
under isoflurane anesthesia. The lumbar segments L3–L5
from whole spinal cords were ultrasonicated in ice-cold
RIPA buffer (Beyotime, Shanghai, China). The supernatant
after low-speed centrifugation was diluted with lysis buffer
and adjusted to 2mg/mL. The cell suspensions passed
through agarose resin served as controls. The sonicates were
incubated overnight at 4°C with PKCε and IgG primary anti-
body (5μL) to form immune complexes that were captured
with fresh elution buffer and then incubated at 95°C for 6–
8min in RIPA buffer. The mixture was centrifuged, and
then, endogenous PKCε/STAT3 immune complexes in the
supernatant were analyzed by Western blot analysis.

2.9. Cell Culture and Transfection. HEK293 cells (Shanghai
Institutes for Biological Sciences, Shanghai, China) were
cultured in Dulbecco’s modified Eagle’s medium (DMEM)
containing 10% fetal bovine serum and 1% penicillin/strep-
tomycin (Gibco; Thermo Fisher Scientific Inc., Waltham,
MA USA) at 37°C in a 5% CO2 incubator (Thermo Fisher
Scientific Inc.). Various constructs were transfected into
HEK293 cells using Lipofectamine 2000 (Invitrogen; Thermo
Fisher Scientific Inc.) as described by the manufacturer.

Full-length PKCε and STAT3 were, respectively, cloned
into pEGFP-C1 (Clontech Laboratories Inc., Mountain
View, CA, USA) and pECMV-3X Flag-N (Biofeng, Beijing,
China), then transfected into HEK293 cells. Two phosphor-
ylation sites were mutated using point mutation technology
to construct phenylalanine and alanine mutants STAT3Y705F

and STAT3Y727A, respectively, which mimic dephosphory-
lated STAT3. The aspartic acid mutants STAT3Y705D and
STAT3 mimic phosphorylated STAT3.

Extracts of transfected cells were quantified using BCA
assay kits (Beyotime). Supernatants were diluted with lysis
buffer and adjusted to 2mg/mL of protein; then, 500μL
portions were incubated overnight with 20μL of anti-Flag
magnetic beads (Beyotime) at 4°C. Immune complexes with
magnetic beads were washed three times with lysis buffer,
precipitated, then eluted from the beads by boiling with
30μL of SDS-PAGE loading buffer for 6–8min. The eluate
was centrifuged; then, proteins in the supernatant were
analyzed by western blotting.

2.10. IL-6 Promoter Activity. The IL-6 promoter region
(-1500 to +19) was amplified by PCR and ligated into the
pGL3 Basic vector (Biofeng). Full-length PKCε and STAT3
were cloned into pRL-null cells (Biofeng), then transfected
into cultured HEK293 cells. The pGL3-IL-6 promoter
(0.5μg), pRL-null (Renilla, 0.5μg), pRL-STAT3 (1μg), and
pRL-PKCε (1μg) expression vectors were cotransfected
overnight into HEK293 cells. The transfected cells were
incubated with 1μg/mL lipopolysaccharide (LPS) for 12h,
and then, IL-6 promoter activity was assayed using dual
luciferase kits (Jikai Gene Chemical Technology Co., Ltd.,
Shanghai, China).

2.11. Statistical Analysis. All data were presented as means
± standard deviation (SD) and analyzed by one-way analysis
of variance (ANOVA) followed by the Bonferroni tests using

SPSS 19.0 (IBM Corp., NY, USA). The graphs were con-
structed using the GraphPad Prism 7.0 software (GraphPad
Software Inc., CA, USA). The statistical significance was set
at P < 0:05.

3. Results

3.1. Inhibiting Activated Neurocytes Alleviated Inflammatory
Pain and IL-6-Induced Hyperalgesia. Two injections each of
T-5224, Mino, and LAA, respectively, inhibited the activa-
tion of neurons, astrocytes, and microglia cells and gener-
ated immediate and prolonged anti-FCA-induced
inflammatory pain in the model (Figure 2(a)). The AUC of
T-5224, Mino, and LAA in the ipsilateral side paw of the
FCA-induced inflammatory pain model was, respectively,
0:94 ± 0:02, 0:91 ± 0:03, and 0:94 ± 0:02 (Figure 2(b)). These
agents did not affect the mechanical threshold in the paw
that was not injected (Figure 2(c)).

A single intrathecal injection of IL-6 (20 ng/50μL)
evoked transient, but significant, mechanical allodynia in
the right hind paws of naïve rats. This was similar to the
FCA-induced mechanical hypersensitivity and was reversed
by T-5224, Mino, and LAA (Figure 2(d)). The AUC of T-
5224, Mino, and LAA was 0:87 ± 0:05, 0:87 ± 0:05, and
0:88 ± 0:05, respectively, in the right hind paws of the rats
under IL-6-mediated hyperalgesia (Figure 2(e)). The analge-
sic effects of T-5224, Mino, and LAA were similar in the left
hind paw under IL-6-induced hyperalgesia (Figure 2(f)).

3.2. T-5224, Mino, and LAA Decreased the Expression of c-
Fos, GFAP, Iba-1, PKCε, and IL-6. T-5224, Mino, and LAA
significantly decreased the expression of c-Fos, GFAP, and
Iba-1, which were, respectively, the FCA-induced markers
of neurons, astrocyte, and microglia activation in the spinal
cord (Figures 3(a)–3(d)). The expression of PKCε and IL-6
in the spinal cord was also upregulated in FCA-treated rats
(Figures 3(e) and 3(f)), whereas that of STAT3 did not differ
among the groups (Figure 3(g)), indicating that the effects of
T-5224, Mino, and LAA were exerted through the PKCε and
IL-6 pathways, but not via the STAT3 signaling pathway.

3.3. Roles of PKCε, STAT3, and IL-6 in Inflammatory Pain
and IL-6-Induced Hyperalgesia. We blocked the correspond-
ing cellular signaling pathways using PKCε inhibitor
peptide, APTSTAT3-9R, and anti-IL-6 antibodies to deter-
mine the roles of PKCε, STAT3, and IL-6 in the pain pro-
cess. Anti-IL-6 significantly increased mechanical
threshold inflammatory pain on the ipsilateral, but not
the contralateral, hind paw from the start of drug injection
for up to 7 days, whereas PKCε inhibitor peptide and
APTSTAT3-9R increased mechanical pain threshold from
days 5–7 (Figure 4(a)). The AUC of PKCε inhibitor pep-
tide, APTSTAT3-9R, and anti-IL-6 antibody was 0:73 ±
0:05, 0:66 ± 0:06, and 0:91 ± 0:03 in the ipsilateral side
hind paw of the FCA-induced inflammatory pain model,
respectively (Figure 4(b)). The intrathecal administration
of T-5224, Mino, and LAA did not affect the FCA-
induced mechanical threshold in the contralateral nonin-
flamed paw (Figure 4(c)).

4 Mediators of Inflammation



Drug
injection

Drug
injection

Ipsilateral (right)

Post FCA injection (day)

0d 1d 2d 3d 4d
 15

min
30

min
60

min

12
0m

in 5d 6d 7d

Pa
w

 w
ith

dr
aw

 m
ec

ha
ni

ca
l

th
re

sh
ol

d 
(g

)

25

20

15

10

5

0

Control FCA

FCA+LAA
FCA+T–5224 FCA+Mino

FCA+vehicle

D
Drug

(a)

False positive rate (Specificity-ipsilateral side)

Tr
ue

 -p
os

iti
ve

 ra
te

 (S
en

sit
iv

ity
)

100

80

60

40

20

0
100806040200

FCA+LAA (Area = 0.9399)
FCA+Mino (Area = 0.9096)
FCA+T–5224 (Area = 0.9422)

(b)

Drug
injection

Drug
injection

Post FCA injection (day)

0d 1d 2d 3d 4d
 15

min
30

min
60

min

12
0m

in 5d 6d 7d

Pa
w

 w
ith

dr
aw

 m
ec

ha
ni

ca
l

th
re

sh
ol

d 
(g

)

25

20

15

10

5

0

Control FCA

FCA+LAA
FCA+T–5224 FCA+Mino

FCA+vehicle

Contralateral (left)

(c)

IL–6
injection

in naive rats

right

Post IL–6 injection (min)

15
 m

in
0 m

in
30

 m
in

60
 m

in

12
0 m

in

Pa
w

 w
ith

dr
aw

 m
ec

ha
ni

ca
l

th
re

sh
ol

d 
(g

)
25

20

15

10

5

0

Control IL–6

IL–6+LAA
IL–6+T–5224 IL–6+Mino

IL–6+vehicle

IL–6L
jection
aive rats

(d)

Figure 2: Continued.
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When these three conditions were applied to rats with
IL-6-induced hyperalgesia, only anti-IL-6 improved the
hypersensitivity and response to pain in the right paw
(Figure 4(d)). The AUC of the PKCε inhibitor peptide,
APTSTAT3-9R, and anti-IL-6 antibody was 0:64 ± 0:08,
0:64 ± 0:08, and 0:95 ± 0:03 in the right hind paw under
IL-6-mediated hyperalgesia, respectively (Figure 4(e)).
The analgesic effect of anti-IL-6 was similar in the left
hind paw (Figure 4(f)).

3.4. PKCε Inhibitor Peptide, APTSTAT3-9R, and Anti-IL-6
Antibody Decreased the Expression of IL-6, c-Fos, GFAP,
and Iba-1. The PKCε inhibitor peptide reduced PKCε
expression, and APTSTAT3-9R downregulated the spinal
level of STAT3 (Figures 5(a)–5(c)). The PKCε inhibitor pep-
tide, APTSTAT3-9R, and anti-IL-6 antibodies significantly
decreased the spinal levels of phosphorylated STAT3Ser727

but not of STAT3Try705 and IL-6 (Figures 5(d)–5(f)). The
expression of c-Fos, GFAP, and Iba-1 in the spinal cord
was also decreased by the PKCε inhibitor peptide, APT-
STAT3-9R, and anti-IL-6 antibody in rats with FCA-
induced inflammatory pain (Figures 5(g)–5(i)).

3.5. Phosphorylation of STAT3Ser 727 Increased STAT3
Interaction with PKCε. The expression of PKCε/STAT3 in
the dorsal horn of the spinal cord was significant decreased

by PKCε or STAT3 inhibitor but not by anti-IL-6 antibody
compared with that in the control and FCA groups
(Figures 6(a)–6(f)).

Endogenous PKCε/STAT3 immunocomplexes in spinal
cord tissues were assessed (Figure 7(a)). After incubating
HEK293 cells with lipopolysaccharide (LPS), STAT3
increased IL-6 promoter activity, which was also enhanced
in the presence of PKCε (Figure 7(b)). The STAT3Y727D

phosphomimetic mutant had more affinity for PKCε,
whereas the other mutants generated results similar to those
of wild-type STAT3, indicating that the phosphorylation at
Ser727 increased the ability of STAT3 to bind to PKCε
(Figures 7(c) and 7(d)).

4. Discussion

Our results showed that FCA-induced inflammatory pain
and IL-6-induced hyperalgesia were alleviated by inhibiting
neurocyte activation or by anti-IL-6 therapy, indicating that
IL-6 participated in the maintenance of inflammation-
induced nociception. This study was novel in demonstrating
that T-5224, Mino, and LAA inhibited FCA-induced inflam-
matory pain and IL-6-induced hyperalgesia, despite previous
findings of the therapeutic effects of Mino against chronic
bone cancer pain and chronic pain [19, 20].
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Figure 2: T-5224, Mino, and LAA ameliorated mechanical allodynia, inflammatory pain, and IL-6 induced hyperalgesia in rats. (a) Line
plots indicate the effects of T-5224 (c-Fos/AP-1 inhibitor, 500μg/50μL), minocycline (Mino, 100 μg/50μL), and L-2-aminoadipic acid
(LAA, 1mg/50 μL) on ipsilateral paw withdrawal mechanical thresholds (PWMTs) in FCA-induced inflammatory pain. ∗P < 0:05 versus
control. #P < 0:05 versus FCA; one-way ANOVA with Bonferroni tests. (b) ROC curves and AUC of T-5224, Mino, and LAA on the
ipsilateral side of FCA-treated rats. (c) Intrathecal injection of T-5224, Mino, and LAA did not alter FCA-induced mechanical
nociception on the contralateral noninflamed side (P > 0:05). (d, f) Interleukin-6 (20 ng/50μL) microinjection reversed T-5224-induced
mechanical hyperalgesia (500 μg/50 μL), Mino (100 μg/50 μL), and LAA (1mg/50 μL) in the right and left hind paws of naïve rats; ∗P <
0:05 versus control. #P < 0:05 versus IL-6, one-way ANOVA with Bonferroni tests. (e) ROC curves and AUC for T-5224, Mino, and
LAA in the right hind paws of naïve rats. Data are shown as means ± SD (n = 6). AUC: area under receiver operator characteristic
curves; ROC: receiver operator characteristic curve.
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Figure 3: Continued.
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The present study used an inflammatory pain model cre-
ated by unilateral injections of FCA or intrathecal injections
of IL-6 that induced hyperalgesia in rats. The mechanical
paw withdrawal threshold was significantly reduced for up
to 7 days by FCA and up to 60min by IL-6. An intraplantar
injection of FCA induced central sensitization and increased
the levels of pain mediators, including IL-6, peripherally and
centrally, whereas the intrathecal injection of IL-6 likely
resulted in transient central sensitization due to a local
increase in pain mediators per se [6, 21].

We found that T-5224, Mino, and LAA decreased the
expression levels of c-Fos, GFAP, Iba-1, PKCε, and IL-6
but did not alter STAT3 levels during the FCA-induced
inflammatory process (Figure 3). Our results indicated that

the inhibition of neurocyte activation reduced IL-6-
mediated pain sensitivity, which was in line with previous
findings of the crosstalk between activated neurocytes and
IL-6-induced pain [3, 6, 16, 22, 23]. However, the analgesic
effects of T-5224, Mino, and LAA were associated with other
cytokines such as IL-1β and TNF-α [24], suggesting that
activated neurocytes comprised a control mechanism of
inflammatory pain [25].

We further examined the roles of PKCε, STAT3, and IL-
6 in FCA-induced inflammatory pain and IL-6-induced
hyperalgesia. Anti-IL-6 immediately alleviated inflammatory
pain for an extended period and reversed the hyperalgesic
effects of IL-6 (Figure 4), suggesting that IL-6 was a potent
pain mediator. In contrast, the PKCε inhibitor peptide and
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Figure 3: Western blot analysis of the proteins related to activated neurocytes during inflammatory pain. Examples (a) and mean values (b–
g) of c-Fos, GFAP, Iba-1, PKCε, STAT3, and IL-6 proteins in the spinal cord. Intrathecally injected T-5224 (c-Fos/AP-1 inhibitor, 500 μg/
50μL), minocycline (Mino, 100 μg/50 μL), and L-2-aminoadipic acid (LAA, 1mg/50μL) reduced c-Fos, GFAP, Iba-1, PKCε, and IL-6
protein levels in FCA-treated rats, whereas STAT3 expression did not change between groups (P > 0:05). Data were normalized against
GAPDH and are expressed as ratios (%) of control. Data are shown as means ± SD (n = 4–5). ∗P < 0:05, ∗∗P < 0:01; ∗∗∗P < 0:001, one-
way ANOVA with Bonferroni tests.
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the STAT3 inhibitor did not exert immediate analgesic
effects but elicited a mild, sustained analgesic effect for 5–7
days at the end of the experimental period. This phenome-
non was accompanied by a decrease in the pSTAT3Ser727

level but not in the levels of pSTAT3Tyr705, IL-6, c-Fos,
GFAP, and Iba-1 in the spinal cord, indicating that the
upstream effectors PKCε and STAT3 regulated the forma-
tion of IL-6, thus mediating the activation of neurocytes
(Figures 5 and 8). These findings were comparable with
the association of PKCε and STAT3 levels with the IL-6 level
and neurocytes [26–30]. PKCε and STAT3 regulated the
production of IL-6, and pSTAT3Ser727 formed complexes
with PKCε and enhanced STAT3 localization to the IL-6
promoter, thus increasing IL-6 expression [31]. The decrease
in the levels of pSTAT3 and IL-6 in cells incubated with
APTSTAT3-9R and anti-IL-6 suggested that STAT3 was
involved in a negative feedback loop in the IL-6-induced
signaling pathway per se.

PKCε and STAT3 interacted under physiological and
pathological conditions [11, 31]. Our immunofluorescence
results also revealed the coexpression of PKCε and STAT3
in cells in the spinal cord (Figure 6), suggesting that PKCε
together with STAT3 contributed to IL-6 production and
the activation of neurons, astrocytes, and microglia during

inflammation. Alone, PKCε did not affect the activity of
the IL-6 promoter; but IL-6 promoter activity was increased
more in the presence of both PKCε and STAT3 than that in
the presence of STAT3 alone under LPS stimulation
(Figure 7), suggesting that PKCε increased the ability of
STAT3 to bind to the IL-6 promoter. The immunoprecipita-
tion results in vitro showed that the pSTAT3Ser727 but not
pSTAT3Tyr705 affected the interactions between PKCε and
STAT3 (Figure 7), suggesting that pSTAT3Ser727 regulated
the formation of PKCε/STAT3 complexes, thus influencing
IL-6-mediated inflammatory pain.

Given the analgesic effect of T-5224, Mino, and LAA,
they may serve as the potential therapeutic agents for
inflammatory pain-related disease. This needs further
discussion to understand the potential pharmacological
characteristics of these compounds. T-5224 was first
designed to inhibit the arthritis upstream of inflammatory
cytokine and matrix metalloproteinase action [32]. It can
be used in human articular chondrocytes, resulting in the
inhibition of transactivation of downstream matrix metallo-
proteinases and inflammatory cytokines (including IL-6, IL-
1β, and TNF-α) and effectively preventing cartilage
destruction and osteophyte formation in an osteoarthritis-
induced mouse model [33]. T-5224 was also found to be
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Figure 4: Evaluation of paw withdrawal mechanical threshold (PWMT) in rats with inflammatory pain and IL-6-induced hyperalgesia after
the administration of PKCε inhibitor peptide, APTSTAT3-9R (STAT3 inhibitor), or anti-IL-6 antibody. (a) Anti-IL-6 antibody (100 ng/
50μL) rapidly attenuated FCA-induced pain for several days on the ipsilateral inflamed side. PKCε inhibitor peptide (100 μg/50μL) and
APTSTAT3-9R (20 μg/50 μL) exerted antinociceptive effects 24 h after drug injection. ∗P < 0:05 versus control. #P < 0:05 versus FCA,
one-way ANOVA followed by Bonferroni tests. (b) ROC curves and AUC of PKCε inhibitor peptide, APTSTAT3-9R, and anti-IL-6 on
the ipsilateral side of FCA-treated rats. (c) None of the PKCε inhibitor peptide, APTSTAT3-9R, and anti-IL-6 affected contralateral
mechanical paw withdrawal thresholds in rats with FCA-induced inflammatory pain. (d, f) Interleukin-6 (20 ng/50μL) microinjected
10min after naïve rats were injected with PKCε inhibitor peptide (100 μg/50 μL) or APTSTAT3-9R (20 μg/50μL) did not affect IL-6-
induced mechanical hyperalgesia, whereas anti-IL-6 antibody (100 ng/50μL) did. ∗P < 0:05 versus control. #P < 0:05 versus IL-6, one-way
ANOVA followed by Bonferroni tests. (e) ROC curves and AUC of PKCε inhibitor peptide, APTSTAT3-9R, and anti-IL-6 in the right
hind paws of naïve rats. Data are shown as means ± SD (n = 6). AUC: area under receiver operating characteristic curve; ROC: receiver
operator characteristics curve.
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Figure 5: Continued.
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used in acute myeloid leukemia [34], mast cell [35], and
triple negative breast cancer [36], which might serve as a
synergistic therapeutic strategy for the clinical diseases;
however, T-5224 is still in the preclinical stage. Hence, the
data related to pharmacokinetics are lacking; more research
and evidence are needed in the future. Mino is a semisyn-
thetic tetracycline antibiotic with anti-inflammatory prop-
erties, which is used to treat multiple inflammatory
diseases and could be safely applied in the clinical setting,
such as Parkinson’s disease [37] and neurodegenerative
and psychiatric diseases [38] as well as the cerebral ische-

mia [39]. It is generally well tolerated, and skin-related
complaints, nausea, and dizziness are the most common
patient-reported side effects [40]. LAA, a selective astrocytic
toxin, has been demonstrated to exert some regulatory
effects on tibia fracture [41], myotubes [42], and retina
[43], thus contributing to the fracture-induced nociceptive,
cell autophagy in myotubes, and retinal vascular responses.
It has not yet been clinically applied due to its unusual astro-
glial toxin, which may trigger locomotor network damage.
How to reduce the toxicity of LAA to central and peripheral
nerves to the minimum is worth exploring [44].

300

200

100

0

 IO
D

 o
f p

ST
A

T3
 (S

er
72

7,
 %

)

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎

⁎

Control
FCA

APTSTAT3-9R
Anti-IL-6
VehiclePKCε inhibitor

(e)

300

200

100

0

IO
D

 o
f I

L-
6 

( %
)

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

Control
FCA

APTSTAT3-9R
Anti-IL-6
VehiclePKCε inhibitor

(f)

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

300

200

100

0

IO
D

 o
f c

-F
os

 (%
)

(g)

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎

⁎

⁎

⁎

300

200

100

0

IO
D

 o
f G

FA
P 

(%
)

(h)

⁎⁎⁎

⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

300

200

100

0

IO
D

 o
f I

ba
-1

 (%
)

(i)

Figure 5: Expression of proteins related to activated neurocytes detected by Western blot analysis. (a–i) Protein expression of pSTAT3
(Ser727), IL-6, c-Fos, GFAP, and Iba-1 in the spinal cords of FCA-treated rats significant decreased (P < 0:05) after intrathecal injections
of PKCε inhibitor peptide (100 μg/50μL), APTSTAT3-9R (20 μg/50μL), and anti-IL-6 antibody (100 ng/50 μL). Values were normalized
against GAPDH and are expressed as ratios (%) of control values. Data are shown as means ± SD (n = 4–5). ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P
< 0:001; one-way ANOVA followed by Bonferroni tests.
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Figure 6: Detection of PKCε and STAT3 coexpression in vivo and their immune complexes in vitro. (a–f) Immunofluorescence staining for
PKCε (red) and STAT3 (green) coexpression (yellow) and DAPI (blue in merged image) in spinal cord sections (a–e). Ratios of cells with
immunoreactive PKCε-/STAT3 among total cells. (f) Inhibitors of PKCε and STAT3 significantly decreased the coexpression of PKCε/
STAT3 after APTSTAT3-9R administration. Bar = 40 μm. Data are shown as means ± SD (n = 6). ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001;
one-way ANOVA followed by Bonferroni tests.
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This study had some limitations. It focused only on
IL-6-induced pain, and thus, its clinical relevance is debat-
able. However, early and delayed IL-6 elevation is associ-
ated with chronic neuropathic pain [45]. Interleukin-6
plays a key role in the chronic inflammation associated
with rheumatoid arthritis (RA), and blocking IL-6 signal-
ing is an important strategy in treating RA-associated dis-

eases clinically [46]. Moreover, targeting IL-6 might be
an option for treating other chronic inflammatory dis-
eases [47]. Therefore, an in-depth understanding of
how IL-6 induces cellular signaling that causes pain, and
the development of new analgesic strategies associated with
IL-6, have theoretical and clinical significance for pain
management.
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Figure 7: Ser727 of STAT3 increased its interaction with PKCε. (a) Endogenous PKCε was immunoprecipitated from cell lysates, and
immune complexes and total cell lysates were analyzed by Western blot analysis with PKCε and STAT3 antibodies. Endogenous immune
PKCε/STAT3 complexes were detected in the rat spinal cord tissues. (b) IL-6 promoter-firefly luciferase reporter plasmid (0.5 μg), PKCε
(1 μg), and STAT3 (1 μg) were cotransfected overnight into HEK293 cells. The transfected cells were incubated with 1 μg/mL
lipopolysaccharide (LPS) for 12 h. Interleukin-6 promoter activity increased by STAT3 was further enhanced by PKCε and STAT3,
indicating that PKCε improved the ability of STAT3 to bind to IL-6 promoter. Data are shown as means ± SD (n = 6). ∗P < 0:05, ∗∗P <
0:01, ∗∗∗P < 0:001; one-way ANOVA followed by Bonferroni tests. (c, d) HKE293 cells were transfected with GFP, GFP-PKCε, Flag,
Flag-STAT3, and phosphomimetic and dephosphomimetic mutants of STAT3, and then, immunoprecipitants were assayed. Protein
complexes were detected using an anti-GFP antibody (c), and then, relative PKCε binding to STAT3 was quantified (d). Data are
presented as means ± SD (n = 3). ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001; one-way ANOVA followed by Bonferroni tests.
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In this study, we found that the phosphorylation at
Ser727 increased STAT3 interaction with PKCε. This
increased IL-6 promoter activity and upregulated IL-6
expression, thus enhancing neuron–glia activation during
the development of inflammatory pain. In addition, the
PKCε inhibitor peptide and STAT3 inhibitor (APTSTAT3-
9R) attenuated FCA-induced nociceptive behavior via IL-6
downregulation (Figure 8).

5. Conclusions

In summary, pSTAT3Ser727 interaction with PKCε contrib-
utes to FCA-induced inflammatory pain and IL-6-
mediated hyperalgesia via IL-6-modulating crosstalk
among neurons, astrocytes, and microglia and their activa-
tion. The translational value of our findings warrants fur-
ther investigation.
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