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Abstract
Structural abnormalities of the microvasculature can impair perfusion and function. Conven-

tional histology provides good spatial resolution with which to evaluate the microvascular

structure but affords no 3-dimensional information; this limitation could lead to misinterpreta-

tions of the complex microvessel network in health and disease. The objective of this study

was to develop and evaluate an accurate, fully automated 3D histology reconstruction

method to visualize the arterioles and venules within the mouse hind-limb. Sections of the

tibialis anterior muscle from C57BL/J6 mice (both normal and subjected to femoral artery

excision) were reconstructed using pairwise rigid and affine registrations of 5 µm-thick, par-

affin-embedded serial sections digitized at 0.25 µm/pixel. Low-resolution intensity-based

rigid registration was used to initialize the nucleus landmark-based registration, and con-

ventional high-resolution intensity-based registration method. The affine nucleus landmark-

based registration was developed in this work and was compared to the conventional affine

high-resolution intensity-based registration method. Target registration errors were mea-

sured between adjacent tissue sections (pairwise error), as well as with respect to a 3D ref-

erence reconstruction (accumulated error, to capture propagation of error through the stack

of sections). Accumulated error measures were lower (p<0.01) for the nucleus landmark

technique and superior vasculature continuity was observed. These findings indicate that

registration based on automatic extraction and correspondence of small, homologous land-

marks may support accurate 3D histology reconstruction. This technique avoids the other-

wise problematic “banana-into-cylinder” effect observed using conventional methods that

optimize the pairwise alignment of salient structures, forcing them to be section-orthogonal.

This approach will provide a valuable tool for high-accuracy 3D histology tissue reconstruc-

tions for analysis of diseased microvasculature.

PLOS ONE | DOI:10.1371/journal.pone.0126817 May 29, 2015 1 / 24

OPEN ACCESS

Citation: Xu Y, Pickering JG, Nong Z, Gibson E,
Arpino J-M, Yin H, et al. (2015) A Method for 3D
Histopathology Reconstruction Supporting Mouse
Microvasculature Analysis. PLoS ONE 10(5):
e0126817. doi:10.1371/journal.pone.0126817

Academic Editor: Andrew H. Beck, Harvard Medical
School, UNITED STATES

Received: June 17, 2014

Accepted: April 8, 2015

Published: May 29, 2015

Copyright: © 2015 Xu et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: This work was supported by Natural
Sciences and Engineering Research Council of
Canada, Grant number: 418740-2012 RGPIN, URL:
http://www.nserc-crsng.gc.ca; Cancer Care Ontario,
Grant number: 2011 CCO RGA, URL: http://www.
cancercare.on.ca; Canadian Institutes of Health
Research, Grant number: FRN-11715, http://www.
cihr-irsc.gc.ca; Canadian Cancer Society, Grant
number: #701080, http://www.cancer.ca; Natural
Sciences and Engineering Research Council of
Canada, Grant number: CGS M-427711-2012, URL:

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0126817&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nserc-crsng.gc.ca
http://www.cancercare.on.ca
http://www.cancercare.on.ca
http://www.cihr-irsc.gc.ca
http://www.cihr-irsc.gc.ca
http://www.cancer.ca


Introduction
The microvasculature constitutes the complex distal end of the vascular tree, the structure of
which is vital to ensuring optimal delivery of oxygenated blood throughout the tissue. Micro-
vascular structure is inherently 3D, as the vessels are arranged as a highly branched network
that courses throughout the tissue. Understanding the microvessel network organization, and
its rearrangement during pathology, could thus be critical to dissecting the basis of organ dys-
function during disease. A structural appreciation of the vessel wall components of the micro-
vascular tree is also vital. This is particularly important for assessing arterioles and venules,
vessels that are wrapped to varying extents by vascular smooth muscle cells. The smooth mus-
cle layer of the vessel wall determines vascular tone and thus blood pressure and flow rate.
Thickening of the smooth muscle layer can lead to hypertension [1] and the arrangement of
the smooth muscle layers with respect to vessel density, organization, and circumferential
wrapping are vital to downstream flow in capillary beds. [2]

Conventional 2D histology provides planar information on microvessels and is useful for
identifying components of the vessel wall. However, 3-dimensional architectural information
cannot be ascertained. Moreover, 2D assessment of the microvasculature may lead to misinter-
pretations, particularly in the setting of restructured microvasculature during disease, where
vessel and network morphometry cannot be predicted. In contrast to large and medium-sized
vessels that can be embedded and sectioned in specific directions, the orientation of arterioles
and venules of the microvasculature cannot be determined from standard histologic sections.
Because of this, branching, bifurcations, and tortuosity of microvessels are difficult to interpret
in conventional histology sections and misleading interpretations could arise from the 2D as-
sessment of complex 3D structures. Focal pathology (e.g. occurring at bifurcation points and
subregions of the vessel wall) can be better detected in a 3D volume of reconstructed tissue.
Thus, there is a need for a highly accurate 3D reconstruction [3] to visualize and measure the
microvasculature architecture in normal and diseased conditions.

There are various modalities with which to image the vasculature with 3D spatial informa-
tion; however, most lack the sensitivity to assess fine pathological perturbations. Traditional
light microscopy imaging of histology sections provides detailed information on tissue compo-
nents and structure in 2D at high resolutions, but lacks the 3D context necessary for assessing
structural aspects of pathologies in the vasculature. [4] Micro-CT allows for the spatial visuali-
zation of the lumina of the vessels after injection of a contrast agent. The surrounding soft tis-
sue components, such as the vessel walls and connective tissues, are poorly resolved using this
imaging modality due to lack of soft tissue contrast and retention of the contrast agent within
the lumina. Casting the vasculature provides excellent lumen detail but is limited by the fact
that the casting agent does not always perfuse throughout the microvasculature, and depiction
of the vessel wall and surrounding tissue components is not possible. [5] Confocal fluorescence
microscopy imaging is a powerful tool but has a limited spectrum of molecules which can be vi-
sualized, according to probe availability. This modality is also limited by the field of view and
depth of penetration of the probes into the tissue. [6]

3D histology reconstruction of the microvasculature has been explained in a few contexts
and proven to be useful. Steiniger et al undertook a 3D histology assessment of the spleen vas-
culature to reveal the terminal microvessel nodules. However, the alignment procedure used
was performed manually and was therefore subject to the accompanying labour and operator
variability. [7] 3D confocal microscopy has been used to observe microvascular branching pat-
terns in diabetic models, but the authors noted there was possible bias in the results due to the
limited depth of field. [8] Also using 3D confocal microscopy, capillary vessels in the skeletal
muscle have been evaluated for vessel tortuosity, orientation, and mean capillary length.
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However the authors highlighted that the problem of variable visualization of capillaries “is
even more pronounced [in thick sections], because antibodies and dyes have to travel longer
distance[s] from the boundary of the sample.” They noted that new strategies in microscopy
would be useful. [9] 3D reconstructions of histological tissues may also aid in the validation of
high resolution 3D imaging techniques.

Accurate 3D visualization of histology could allow for obtaining features of the vessel wall,
the surrounding tissue features, and the inherent spatial configuration of the vasculature. The
lack of 3D spatial context in 2D histology may lead to misinterpretations of several different as-
pects of the vasculature, including vessel angle, vessel size, and vessel wall thickness. 3D recon-
struction of 2D histology sections renders these types of measurements readily available and
unambiguous. In previous work, 3D histology reconstruction has been performed using sec-
tion-by-section pairwise registrations optimizing a feature or image similarity metric for adja-
cent section pairs, assuming that co-registration of similar structures in the 2D space of the
pairwise images yields an accurate reconstruction. [10] This assumption is challenged by the
fact that adjacent sections sample different tissue, and an accurate 3D reconstruction may not
result in the section-to-section alignment of structures having similar appearance, such as two
adjacent cross sections of a blood vessel. This notion is clear when one considers the case of a
blood vessel oriented non-perpendicularly to the tissue section; in a correct 3D reconstruction,
on any adjacent pair of sections, the blood vessel cross sections will not be exactly aligned in
the 2D space of the histology sections to account for the non-perpendicular angular direction
of the vessel in 3D. In general, 3D reconstruction techniques must be designed to avoid forcing
curved or non-section-orthogonal structures to be orthogonal to the tissue sections [3], also
known as the “banana-into-cylinder” problem [11], in order to preserve the original orienta-
tion of the vasculature for accurate assessment.

The objective of this work was to design, implement, and evaluate a method for 3D recon-
struction of 2D histology sections of mouse tissue that is sufficiently accurate to enable interpre-
tation of 3D arteriolar and venular networks. To address the banana-into-cylinder problem, the
reconstruction method uses a section pairwise landmark-based registration, where the land-
marks were homologous nuclei that were bisected by the microtome blade during sectioning.
This choice of landmark type is based on the insight that cell nuclei, approximately 5 μm in di-
ameter [12], are unlikely to appear on more than two adjacent sections. We conjectured that the
use of such landmarks may address the banana-into-cylinder problem due to their appearance
on not more than two consecutive sections, and their lack of orientational bias. This is in contrast
to, for instance, the use of vessel centerlines to define landmarks; vessels will appear on many
consecutive tissue sections and their angles of orientation through multiple tissue sections are co-
herent and smoothly varying. In general, there is a lack of bias in the centroid to centroid vectors
of bisected nuclei across adjacent slides, compared to multi-slice non-section-orthogonal objects
(such as the previously described vessels) that are smoothly varying at the scale of the section
thickness. Also, nuclei are roughly spherically symmetric, so arbitrary cuts through nuclei should
yield section-orthogonal centroid-to-centroid orientations. We compared the reconstruction
error of the proposed nucleus-based registration to that given by more conventional intensity
based registration. The registration algorithms were evaluated based on reference standard ho-
mologous nucleus features on adjacent sections to determine registration accuracy.

Materials and Methods

2.1 Animal model
The experiments were conducted on tissue samples of the upper one third tibialis anterior
(TA) hind limb muscle from 11 wild type C57BL/J6 mice. In 5 of the 11 mice, tissue was
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collected two weeks after induction of hind limb ischemia by femoral artery excision; these
samples were expected to contain regenerated vasculature. This particular muscle segment was
selected because of the consistent development of microvessels of diverse caliber following hin-
dlimb ischemia. The remaining 6 mice were not subjected to hind limb ischemia; these samples
were expected to contain normal vasculature. There were between 9 and 14 serial sections ob-
tained from each sample.

The mice were perfused with saline post-mortem to remove the red blood cells from the ves-
sel lumina and then perfusion-fixed at physiological pressure with 4% paraformaldehyde. The
tissues were processed and paraffin-embedded after harvesting, then cut into 7×5 mm blocks
and sectioned at 5 μm. To visualize the smooth muscle distribution down to the level of the ar-
terioles and venules, sections were immunostained with smooth muscle (SM) α-actin using the
monoclonal antibody (DAKO, M0851), and bound primary antibody detected with horserad-
ish peroxidase (HRP)-conjugated secondary antibody and 3,3'-Diaminobenzidine chromogen
(DAB, Vector Laboratories, SK-4100). This marked the smooth muscle layer of the vasculature
(resulting in the vessel walls being stained with a brown color) which is shown in S1 Fig. The
tissue was then counter stained with hematoxylin, resulting in blue-stained nuclei. The stained
sections were then imaged with a ScanScope CS (Aperio Technologies, Vista, CA, USA) bright
field slide scanner, at 20× objective with the 2× magnification engaged, resulting in a 0.25 μm
isotropic pixel size.

2.1.1 Ethics Statement. All experiments in this study were approved by the Animal Care
and Veterinary Service Committee at The University of Western Ontario (Protocol # 2010–
244) and were carried out in accordance with their requirements. Surgeries were performed
under isoflurane anesthesia.

2.2 Image registration and validation approach
A high level overview of the methods is shown in Fig 1. All processing was performed using
custom software developed in MATLAB 7.13 (The Mathworks Inc., Natick, MA, USA) except
where otherwise indicated. Pairwise non-rigid affine nucleus landmark and intensity based reg-
istration was performed between serial sections of tissue in two dimensions and used to create
a three dimensional volume. Two non-rigid affine registration methods were compared: high-
resolution intensity-based registration using a mean squared error (MSE) image similarity met-
ric, and the affine nucleus landmark-based registration that is the main contribution of this
paper. A non-rigid affine registration involves rotation, translation, scaling and skew for non-
rigid alignment of the moving image to the fixed image. The registrations were initialized with
a rigid registration, which involves only rotation and translation of the moving image. MSE is
the mean of the squared intensity differences between each pair of overlapping pixels in the
fixed and moving comparison images. The ideal value of MSE is zero, and a gradient descent
optimizer was used to find the optimal registration yielding an MSE closest to zero. Both meth-
ods are provided with the same initialization from a coarse, intensity-based rigid registration
performed on low-resolution (downsampled) images using the MSE metric. This coarse 3D re-
construction was first performed via pairwise registration of adjacent tissue sections using an
intensity-based registration, on low-resolution images (with extents of 172 × 264 pixels) ob-
tained by downsampling using bilinear interpolation. This coarse registration yielded an initial
alignment that was provided to both tested registration algorithms. For the landmark-based
registration, nucleus landmarks were automatically extracted based on size and the hematoxy-
lin stain color, and corresponded across adjacent sections according to similarity metric mea-
sures of the surrounding local image neighborhood. After pairwise adjacent section
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registration, the tissues were rendered into a 3D volume by a stacking process to visualize the
histological vasculature.

2.3 Experimental methods
A set of homologous reference nucleus landmarks were located with the segmentation algo-
rithm. The landmarks were manually verified for accuracy, corresponded in pairs on adjacent

Fig 1. Diagram depicting the registration methods. The flow diagram in (A) depicts the overall experimental process, with (B) and (C) giving exploded
views of the intensity-based and nucleus-based registration steps. Both approaches were initialized with a rigid, low-resolution intensity-based registration.
The intensity-based registrations (B) were done using a standard iterative optimization loop. The nucleus-based registration (C) was computed non-
iteratively in closed form based on automatically segmented and corresponded nucleus landmarks. Both methods were executed pairwise on each adjacent
section pair, and as a final step these pairwise registrations were composed to form the final 3D reconstructed volume.

doi:10.1371/journal.pone.0126817.g001
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sections, and used to evaluate the registrations. This set of nucleus landmarks was not used in
registering the images (i.e. the reference landmarks were specifically excluded in the computa-
tions described in the Section 2.5). A reference reconstruction using these reference landmarks
provides a surrogate for an ideal reconstruction (Fig 2(A)) that preserves both topology and ge-
ometry. Topology preservation maintains connectedness of structures and geometry preserva-
tion maintains the original positions and orientations of structures in the reconstruction.

Our need for high-accuracy reconstructions requires that we evaluate our method against a
reference standard providing precision of< 10 μm, with accuracy measured throughout all re-
gions of the tissue. These requirements preclude the use of a 3D reference image obtained
using CT or MRI as these imaging modalities do not provide the necessary resolution and/or
soft tissue contrast to resolve the necessary small, homologous point landmarks to measure re-
construction error throughout the spatial extents of the volume. Micro CT of contrast-en-
hanced vasculature could provide sufficient landmarking precision at vessel bifurcation points,
but this would spatially concentrate reconstruction error measurements around these points,
precluding error measurement throughout all other tissue regions.

An ideal reference against which to evaluate our reconstructions would be a set of dense and
evenly distributed landmarks, localizable with the necessary precision and accuracy. As it
would be impractical to introduce a set of extrinsic landmarks meeting these criteria, we turn
to a close intrinsic surrogate: the small, highly localizable cell nuclei distributed throughout the
tissue. Specifically, we manually localized the subset of nuclei that were bisected by the micro-
tome blade; these nuclei appear on homologous points on adjacent tissue sections. By aligning
these bisected nuclei on adjacent sections throughout the volume, we re-established the spatial
tissue homology that was broken during the tissue cutting process, yielding a reference 3D

Fig 2. Comparison of the alignment of bisected nuclei whenmeasuring the accumulated registration error. (A) The ideal error-free reference
reconstruction, with bisected nuclei aligned with minimum residual error (a pairwise target registration error between corresponding halves of bisected nuclei
of zero is depicted). (B) A reconstruction aligning nuclei with spatially unbiased error; but vessel connectedness (topology) and angle (geometry) are mostly
conserved. (C) A reconstruction optimizing pairwise alignment of salient structures (the vessel cross sections in this example) preserves vessel topology but
not geometry. Note that the pairwise target registration errors in (B) and (C) are similar, despite the lack of geometry preservation in C. The accumulated
target registration error does capture the difference between (B) and (C); the plots in the bottom row indicate increasing accumulated error through the stack
of sections.

doi:10.1371/journal.pone.0126817.g002
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reconstruction that depicts the geometric and topological configuration of the tissue before it
was cut.

It is important to note that although the method for constructing the reference reconstruc-
tion and the method for performing automatic reconstruction are both based on nuclei, there
are two important differences that justify the use of this validation approach. First, as is typical
in landmark-based registration evaluation, the landmarks used for the reference reconstruction
are not used by the registration algorithm. Thus, the algorithm is validated using a completely
different set of landmarks than those used to perform the reconstruction. Second, the land-
marks used for the reference reconstruction were all manually verified by an operator for truth
of correspondence and localisation, whereas for the reconstruction process, the landmarks
were fully automatically identified and not checked by an operator.

2.4 Intensity-based registration
The histology images were obtained from the Scanscope CS slide scanner with isotropic
0.25 μm pixels and had extents of 17135 × 26398 pixels. To support faster processing for the in-
tensity-based registration only, these images were downsampled to obtain images with isotro-
pic 4 μm pixels using bilinear interpolation, resulting in an image size of 1071 × 1650 pixels.
These downsampled images were then converted into greyscale images by averaging of the
RGB color channels.

Fig 1(B) describes the intensity-based registration algorithm we tested. The images were reg-
istered using custom C++ software built on the Insight Segmentation and Registration Toolkit
Version 4.4.1 (ITK) [13]. For the low-resolution registration used as initialization, the itk::Reg-
ularStepGradientDescentOptimizer optimizer was tuned for scale differences in transforma-
tion parameters using its SetScales() function; scales were set to be 102 and 10–2 for the
rotational and the translational components of the transformation, respectively. The maximum
(i.e. initial) and minimum (i.e. defining convergence criterion) step sizes were set to 4 and 0.1,
respectively, using the optimizer’s SetMaximumStepLength() and SetMinimumStepLength()
functions. For the high resolution registration, these parameters were adjusted to 0.01 and
0.001, respectively, to refine convergence to the local optimum found by the low-resolution
registration. All Parameters were chosen on experimentation with a sample not included in
this study and not tuned for the samples in the study. In the interests of computational efficien-
cy, we used the MSE image similarity metric because this is a mono-modality image registra-
tion problem and tissue staining is anticipated to be consistent within a set of serial sections.
The space of 2D rigid transformations was searched to minimize MSE using a regular step gra-
dient descent optimizer initialized with zero rotation and translation. Non-rigid affine registra-
tion was applied after the rigid intensity based registration with the optimizer initialized using
the rigid registration parameters. After optimization, MATLAB’s imtransform function was
used to apply the resulting set of 2D affine spatial transformations. This mapped the full resolu-
tion RGB histology image of each section to that of its adjacent section, yielding a 3D recon-
struction from the intensity-based registration.

2.5 Nucleus feature extraction, correspondence, and registration
Fig 1(C) describes our nucleus landmark-based registration algorithm. Cell nuclei were auto-
matically extracted from the images based on combined criteria of color and size. To determine
the color and size criteria to be used for nucleus extraction, we used a separate set of mouse
hind limb tissues that were not used for the experiments reported in this paper. On this sepa-
rate set of tissues, we manually delineated nuclei which were counter stained with hematoxylin
with varying degrees of staining (S2 Fig). Based on these manual delineations, a threshold
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value of< 80% in the green channel of the red-green-blue (RGB) color space and an area range
of 6 μm2–160 μm2 were determined as the criteria for defining nuclei. Both the color and area
criteria needed to be met for detection of each nucleus; samples of extracted nucleus points are
shown in S3 Fig. Debris can occur in the blank/white space of the microscope slide surrounding
the tissue and can have similar color and size criteria as nuclei. This debris was automatically
excluded as nuclei by determining whether the surrounding area had similar appearance to the
measured slide background. The surrounding area is defined by a 5 μm disk-shaped morpho-
logical dilation seen in S3 Fig. The area was compared to a mean green channel of>95%, stan-
dard deviation of<4%, which were chosen according to the typical appearance of the clear
glass slide regions. The centroids of the extracted nuclei were used as the nucleus landmarks
for registration.

Next, we estimated a correspondence between bisected homologous nuclei appearing on ad-
jacent sections, in order to define an affine transformation registering each pair. Our approach
to correspondence establishment is inspired by block matching-based image registration [14],
and is based on the conjecture that for a given nucleus on a section, if a homologous nucleus
exists within a local neighborhood on a neighboring section, it will be surrounded by tissue
having similar appearance. All of the tunable parameters in our method were chosen based on
experimentation with a sample not used in the study. Our approach to estimating correspon-
dence for each detected nucleus involves defining a set of candidate nuclei within a defined
local neighborhood on the adjacent section. An image similarity metric is then evaluated within
a local region surrounding each candidate to find the candidate with the most similar sur-
rounding tissue. A square local region was used to compare the neighborhoods of candidate
nucleus landmark correspondences (Fig 3). The green channel of the square image was used
and the window/level was adjusted (by software, without human interaction) to the window of
14 and level of 235 to enhance tissue-background contrast. The neighborhood image I(p) has a
side length of 250 μm and surrounds each nucleus p on section I. We calculated the mean-
squared error (MSE in the equation below) image similarity metric between I(p) and the local
image neighborhoods J(q) surrounding all candidate nuclei q (within T = 100 μm of p) on adja-
cent section J. We corresponded each nucleus p on each section to the best matching nucleus p’
on the adjacent section, with the best match defined as the one having the smallestMSE as de-
fined above. Precisely,

p0 ¼ arg min
q2fxi

j
;8ijDðp;xi

j
Þ<Tg

MSEðIðpÞ; JðqÞÞ

where xij is defined to be the ith nucleus on image J and D is defined to be the 2D Euclidean dis-
tance function. For each adjacent section pair, we defined a rigid transformation minimizing
the residual error between the corresponding nuclei (i.e. the established p! p’ correspon-
dences) having the best (smallest) 100MSE values found for that section pair. We retain only
the best correspondences to define the registration since there will undoubtedly be many nuclei
that do not have a homologous nucleus on the adjacent section, since not all nuclei are bisected
by the microtome blade. The composition of these transformations, both rigid and affine, for
each section pair yielded the 3D nucleus landmark reconstruction.

2.5.1 Evaluation of registration accuracy. The registration accuracy was measured in
terms of topology (i.e. preservation of structural connectivity) and geometry (i.e. preservation
of distances and angles between structures). Accuracy was measured based on reference recon-
structions of the tissues. For each sample, the reference reconstruction was determined by ref-
erence nucleus landmarks, which formed a separate set of corresponded nuclei not used to
define the automated registration. To ensure the correctness of the reference reconstructions,
every reference landmark correspondence was verified manually and any incorrect
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correspondences were discarded. We measured the pairwise registration error as the post-regis-
tration misalignment of reference nuclei on each section with the homologous corresponding
reference nuclei on the next adjacent section. Thus, the pairwise registration error for a single
nucleus is measured within the 2D spatial context of a section on which it appears. We also
measured the accumulated registration error as the difference between the position of a refer-
ence nucleus given by a registration algorithm and its position within the reference registration.
Thus, the accumulated registration error for a single nucleus is measured within the 3D spatial
context of the reference reconstruction. This captures accumulation of error propagated
through the series of pairwise section registrations. The pairwise error characterizes the perfor-
mance of the reconstruction algorithm for each pairwise registration of adjacent sections inde-
pendently. However, the accumulated error provides information about spatial bias in the
pairwise error that may result in a reconstruction that is more erroneous than the pairwise
error would suggest. This scenario is depicted in Fig 2. Although the scenarios depicted in Fig 2
(B) and 2(C) have the same pairwise registration error and both preserve topology, the recon-
struction Fig in 2(B) better preserves geometry and this is reflected in a lower accumulated reg-
istration error. Errors measured in these two spatial contexts are thus complementary, with the
pairwise registration error capturing errors in topology of the reconstructed vasculature, and
accumulated registration error capturing geometric errors.

Within the different spatial contexts described above, we measured two different types of
registration error: the target registration error (TRE) and fiducial registration error (FRE). The
“targets” and “fiducials” refer to reference points. Both the TRE and FRE are measured as the
post-registration Euclidean distance between homologous fiducial pairs. Since, in an ideal reg-
istration, these homologous fiducial pairs should be perfectly aligned, the ideal value of TRE
and FRE is zero. The difference between the FRE and TRE is in the choice of fiducials used. To
calculate the FRE, the same nucleus landmarks that were used to define the registration are

Fig 3. Nucleus correspondencemethod. An illustration depicting the approach to establishing correspondence of nucleus p in section I with its best
matching nucleus in adjacent section J. In this example, the candidate nuclei on section J are p’, q1, and q2, lying within a dashed circle of radius T centred on
p (only 3 of the 18 candidate nuclei within the circle are illustrated here for simplicity). The candidate nucleus with the most similar surrounding tissue
appearance is selected to correspond to p. Surrounding tissue appearance similarity is measured using theMSE image similarity metric, comparing the local
square region I(p) centered on p with the local square regions J(p’), J(q1), and J(q2) centered on the candidates p’, q1, and q2. In this example, sinceMSE(I(p),
J(p’)) <MSE(I(p), J(q1)) andMSE(I(p), J(p’)) <MSE(I(p), J(q2)), p is corresponded with p’.

doi:10.1371/journal.pone.0126817.g003
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used to calculate the error. To calculate the TRE, the nucleus landmarks that were used to de-
fine the registration are not used to calculate the error; the separate set of reference landmarks,
to which the algorithm is blinded, are used instead. Thus, the FRE provides sense of the best-
case performance of the algorithm since the algorithm optimized the alignment of the same
landmarks used to calculate the error, and the TRE provides a more realistic measure of perfor-
mance. We evaluated the intensity-based and nucleus-based reconstructions separately by cal-
culating the pairwise and accumulated TREs for each algorithm on each of both normal and
regenerated mouse tissues. To determine the appropriate statistical tests for comparing the
TREs generated by the different approaches, Kolmogorov-Smirnov normality tests were per-
formed on the TRE distributions. We tested the null hypothesis that the median pairwise TRE
of the intensity-based registration was the same as the median pairwise TRE of the nucleus-
based registration using the non-parametric Wilcoxon sign rank test. A similar null hypothesis
for the accumulated TRE was also tested.

We undertook several steps to give context to our measured registration errors. As a best-
case estimate of fidelity of the reference reconstruction to a hypothetical ideal reconstruction,
we measured the pairwise FRE of the reference reconstruction based on manually validated nu-
cleus landmark correspondences. This measure reflects the amount of tissue distortion that
was not compensated by our affine transformation model, which gives a sense of the discrepan-
cy between the reference reconstruction and an ideal reconstruction. To provide context for in-
terpretation of the pairwise TREs from the tested algorithms, we also measured the pairwise
TRE using the reference nuclei using leave-one-out cross validation (LOOCV). Using this tech-
nique, one of the reference landmark pairs is removed (“left out”) and the registration is de-
fined based on the remaining pairs. The registration error for the removed pair is calculated.
This is performed N times for each of the N reference fiducial pairs, yielding N distinct TRE
measurements which are averaged. Since the algorithm is only blinded to one reference land-
mark pair at a time, the pairwise TRE measured by LOOCV over the reference nuclei provides
an optimistic measure of registration performance against which to compare the TRE calculat-
ed when the algorithm is blinded to all of the reference nuclei.

2.5.2 Evaluation of image similarity metrics. Any observed differences the in error values
observed between the intensity-based and nucleus-based reconstructions could be attributed to
two main sources. The first is that the transformation yielding the MSE similarity metric opti-
mummay not be coincident with the nucleus landmark-based transformation as defined by

TMSE ¼ arg min
T

MSEðI; JÞ;

where I and J are images of adjacent sections. The second is that the intensity-based registration
optimizer could fail to converge to the desired optimum. If the optimum is not coincident with
the landmark-based transformation, one could assert that the reconstructions given by the nu-
cleus landmark-based approach would be different from those given by the intensity-based ap-
proach. This would be the case even with the use of a hypothetical ideal optimizer. If the
intensity-based registration did not converge to the optimum, one could assert that the intensi-
ty-based approach using the MSE metric could perform equally as well as the nucleus land-
mark-based approach, given improvements to optimization. To gain insight into the reasons
behind any such observed differences in error, we calculated the MSE image similarity metric
in the spatial neighborhood of the transformations yielded by the nucleus-based reconstruc-
tion. This exploration could determine that the MSE optimum and nucleus landmark optimum
are not coincident (i.e. if there exists a transformation with a lower MSE value than that given
by the nucleus landmark transformation); in this case, a hypothetical ideal optimizer would
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not yield a reconstruction based on the MSE metric that would be equivalent to the nucleus-
based reconstruction.

In this experiment, we explored the space of translations along the x and y directions sepa-
rately, within ranges of 20 μm from the nucleus-based optimum, in increments of 0.5 μm. This
experiment was performed on full resolution serial section images. For each of the x and y di-
rections we found the optimal translation yielding the lowest MSE and recorded this value as a
displacement from the nucleus landmark registration (i.e. a displacement of 0 μm reflects an
MSE optimum coincident with a nucleus landmark registration optimum). We calculated the
95% prediction intervals of these displacements and recorded the upper bounds of these inter-
vals to obtain an estimate of the expected translational offset between the nucleus based regis-
trations and the registrations one could obtain via optimization of the MSE image similarity
metric within the local neighborhood of the nucleus based registration. Under some assump-
tions (discussed in the penultimate paragraph of this paper), this allows a comparison between
the nucleus-based reconstructions and reconstructions that could be achieved without the need
for explicit localization and correspondence of nucleus landmarks (e.g. using robust optimiza-
tion of MSE in a multi-resolution framework).

Results

3.1 Vessel reconstruction properties
Images of the 3D reconstructed volumes were rendered using 3D Slicer 4.1.1 (Harvard SPL,
Boston, MA, USA), with a voxel size of 0.25 μm × 0.25 μm × 5 μm.[15] Regions of interest
from whole-slide reconstructions of both normal and regenerated vasculature are shown in
Fig 4, with selected corresponding 2D histological sections; both nucleus landmark-based and
intensity-based reconstructions are shown. In Fig 4(C), a distinct vessel cross section is visible
on one histology section, labeled as a. Fig 4(D) depicts another section taken 60 μm deeper into
the tissue, showing two vessel cross sections, labeled as b and c. If only 2D histology images
were available, one might conclude that these three vessel cross sections correspond to multiple
distinct vessels. However, the 3D reconstruction shown in Fig 4(B) reveals that a, b, and c are
in fact all connected within the same vessel. Fig 4(G) and (H) depict two sections taken 50μm
apart, with seven vessel cross sections indicated with labels d through j. Based on inspection of
only these 2D sections, one might conclude that there were four distinct vessels represented:
one vessel d appearing on only one section, and three more vessels connecting e to h, f to i, and
g to j, respectively. However, the 3D reconstruction of this tissue shown in Fig 4(F) reveals that
in fact the connectivity is d to h, e to i, and an undulating vessel connecting f, j, and g. Thus,
both the number of distinct vessels and their connectivity would be incorrectly estimated based
on 2D sections alone. Additionally, the undulation creates the appearance of incorrectly large
vessel lumina in 2D, which is demonstrated particularly for cross sections labeled f and j, aris-
ing from the fact that the plane of sectioning runs nearly parallel to the direction of the vessel
in these areas. We compared spatially corresponding 2D and 3D manual diameter measure-
ments of a total of 40 randomly chosen vessels from all 11 mouse samples. This yielded 40
paired differences (2D diameter— 3D diameter), the median ± interquartile range of which
was 21.09 ± 27.95 μm. We also calculated the 2D diameter / 3D diameter ratio for each of the
40 vessels and found a median ± interquartile range of 1.6 ± 1.2. For each of the 40 vessels, the
2D diameter was larger than the 3D diameter.

3.1.1 Registration technique comparisons. We observed qualitative differences between
the different reconstruction approaches, with a smoother reconstruction in the nucleus land-
mark registration. Volumes depicting 3D reconstructions of normal and regenerated vascula-
ture are shown in Fig 4. The intensity based reconstruction was generally observed to preserve
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Fig 4. 3D and 2D histology comparisons. 2D histology sections (pixel size 0.25 μm × 0.25 μm) and corresponding 3D reconstruction (voxel size of
0.25 μm × 0.25 μm × 5 μm) of serial histology sections of a normal (A-D) and regenerated mouse (E-H) TA post-femoral artery excision, immunostained for
smooth muscle alpha-actin. A and E are registered using affine intensity based registration. B and F are registered using affine nucleus based registration.
Within each column, the dashed lines indicate correspondence (according to color) between parts of the 2D sections and their locations on the 3D views.
Also within each column, the lower case letter labels indicate correspondence between vessel cross sections on the 2D sections and their homologous
locations within the 3D views. Blue arrows indicate incorrect vessel wall discontinuities arising from reconstruction error. The insets in the red boxes show 2D
and 3D diameter measurements of the same vessel; note that the 2D measurement overestimates the 3D measurement by a factor of >6. Scale bars
100 μm.

doi:10.1371/journal.pone.0126817.g004
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vessel topology/connectedness for larger vessels but more geometric disruptions were qualita-
tively observed, compared to the nucleus-based reconstructions as seen in Fig 4(A) and 4(E)
(intensity-based reconstruction), compared to Fig 4(B) and 4(F) (nucleus-based
reconstruction), respectively.

3.2 Evaluation of registration accuracy
In all of our experiments, the TRE values were found to be non-normally distributed (p<. 01),
therefore non-parametric testing (Wilcoxon sign rank test) of null hypotheses of equivalent
medians was performed, and descriptive statistics were reported as the median ± interquartile
range (IQR). For reference in terms of the best possible performance using non-rigid affine reg-
istration, the measured pairwise FRE and the TRE of the reference reconstruction are shown in
Table 1. Table 2 shows both the pairwise and accumulated TRE values for normal and regener-
ated samples, with 95% confidence intervals on the medians. Intensity-based registration at
low resolution was also reported, which was used to initialize the subsequent high-resolution
intensity- and nucleus landmark-based registrations. Table 2 also shows the pairwise and accu-
mulated TRE values for these subsequent rigid and non-rigid affine registrations for both high
resolution intensity based registration and nucleus landmark registration. The intensity based
registrations were performed on grayscale images; no significant differences were found be-
tween these reported error values and those measured when the registration was performed on
the red, green or blue channels separately. Since the TRE values were found to be non-normally
distributed, these confidence intervals were computed non-parametrically as [L, U], with lower
bound L and upper bound U defined as the TRE values having ranks of n=2� 1:96

ffiffiffi

n
p

=2 and
n=2þ 1:96

ffiffiffi

n
p

=2, respectively, in the sorted list of TREs. [16] There was a statistically signifi-
cant difference in the median pairwise TRE values between the intensity-based and the nucle-
us-based registrations for normal and regenerated mouse tissues (p<. 001). The medians of
the accumulated TRE were also statistically significantly different between the intensity-based
and the nucleus-based registrations for both normal and regenerated tissues (p<. 001). For
both normal and regenerated tissues, we also calculated the maximum post-registration dis-
tance between any pair of homologous nucleus landmarks used for the TRE calculation.
Table 3 reports the mean and standard deviation of these maximum differences.

Box plots of the distributions of the TRE values are shown in Fig 5 for the high resolution af-
fine intensity based registration and the affine nucleus landmark based registration. These
plots provide a more detailed view of the error measurements, and showing the distributions of
pairwise and accumulated TRE values at every section in the reconstruction. For the pairwise
TRE, Fig 5 shows the TRE distributions for each section pair, where the number on the hori-
zontal axis indicates the larger of the two section numbers in the pair (e.g. at horizontal axis
point 2, the pairwise TRE distribution for sections 1 and 2 is shown). For the accumulated

Table 1. Pairwise affine registration errors (μm) of the reference nucleus landmarks.

Normal Median ± IQR CI 95%

FRE 3.42 ± 4.44 [3.32,3.52]

TRE 3.54 ± 4.63 [3.42,3.63]

Regenerated

FRE 2.49 ± 4.44 [2.43,2.57]

TRE 2.57 ± 4.63 [2.50,2.65]

*FRE: fiducial registration error, TRE: target registration error

doi:10.1371/journal.pone.0126817.t001
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TRE, Fig 5 shows the TRE distributions for each section number as indicated on the horizontal
axis. For the pairwise TRE, the horizontal axis value of one clearly has no defined TRE distribu-
tion, and for the accumulated TRE at this point on the horizontal axis all TREs are zero (since
section 1 is an untransformed reference section forming the basis of the reconstruction). It is
for this reason that the horizontal axes begin at section 2 in Fig 5. For the rigid transformation
model, we observed a more pronounced trend toward increasing accumulated TRE values with
increasing section number for the intensity-based reconstruction, as compared with the nucle-
us-based reconstruction. For most sections, concordant with the observations in Tables 2 and
3, we observed larger error magnitude and variability using intensity-based registration. Over-
all, the affine transformation model outperformed the rigid transformational model and suf-
fered fewer effects of accumulation of error.

Table 2. Pairwise and accumulated target registration error (TRE) values (μm) of the rigid and affine intensity-based and nucleus-based landmark
registration (best in boldface).

Rigid Registration Affine Registration

Normal Regenerated Normal Regenerated

Pairwise TRE (μm)

Intensity-based (low-res) Median ± IQR 12.90 ± 13.85 10.31 ± 13.03

CI [12.6,13.3] [10.1,10.6]

Intensity-based (high-res) Median ± IQR 9.07 ± 14.96 6.70 ± 7.39 7.70 ± 12.41 4.73 ± 6.33

CI [8.81,9.34] [6.53,6.89] [7.43,7.99] [4.61,4.87]

Nucleus based Median ± IQR 6.54 ± 8.02 5.93 ± 7.68 4.97 ± 5.75 4.54 ±6.67

CI [6.36,6.76] [5.74,6.07] [4.87,5.12] [4.41,4.68]

Accumulated TRE (μm)

Intensity-based (low-res) Median ± IQR 34.43 ± 42.49 31.58 ± 32.70

CI [33.4,35.6] [30.8,32.4]

Intensity-based (high-res) Median ± IQR 33.70 ± 40.48 17.95 ± 23.71 22.49 ± 38.59 13.62 ± 20.19

CI [32.8,34.7] [17.3,18.5] [21.7,23.2] [13.1,14.1]

Nucleus based Median ± IQR 12.67 ± 15.84 12.42 ± 12.91 9.78 ± 17.09 9.81 ± 15.71

CI [12.3,13.1] [12.0,12.7] [9.4,10.2] [9.4,10.1]

doi:10.1371/journal.pone.0126817.t002

Table 3. Mean and SD of maximum pairwise and accumulated target registration error (TRE,) observed on each section for the rigid and affine in-
tensity-based and nucleus-based landmark registration (best results in boldface).

Pairwise (Mean ± SD) Accumulated (Mean ± SD)

Normal Regenerated Normal Regenerated

Rigid Registration TRE (μm)

Intensity-based (low-res) 49.02 ± 32.19 31.73 ± 17.65

Intensity-based (high-res) 47.47 ± 38.51 26.96 ± 19.26 46.47 ± 35.40 24.06 ± 15.34

Nucleus based 38.89 ± 30.68 24.32 ± 15.43 35.87 ± 32.06 24.49 ± 21.67

Affine Registration TRE (μm)

Intensity-based (low-res) 90.22 ± 52.86 66.22 ± 38.74

Intensity-based (high-res) 90.87 ± 79.05 37.14 ± 22.20 78.63 ± 65.44 41.78 ± 25.31

Nucleus based 43.06 ± 34.71 28.47 ± 12.80 30.05 ± 23.52 39.41 ± 48.03

doi:10.1371/journal.pone.0126817.t003
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3.3 Evaluation of image similarity metrics
Table 4 shows the medians and interquartile ranges of the displacements described in the ex-
perimental methods along the x and y directions for normal and regenerated samples, and for

Fig 5. Registration accuracymeasurement values. Box plots of the rigid and affine target registration error (TRE) computed for each adjacent pair of
sections (pairwise) and propagated throughout the 3D reconstruction (accumulated).

doi:10.1371/journal.pone.0126817.g005
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all samples in aggregate. The upper bounds of the associated prediction intervals are also
shown. As these samples were found to be non-normally distributed, a non-parametric ap-
proach to calculating the prediction interval was used, where the maximum TRE value ob-
served in the sample defined the upper bound of the P% prediction interval, where P = (N − 1)
/(N + 1). [17] For all the samples in aggregate, an upper bound of not more than 10 μmwas ob-
served in the 98% prediction interval, suggesting that with robust optimization of the MSE
image similarity metric on full resolution images, the resulting pairwise registrations are un-
likely to be displaced more than 10 μm from those given by the nucleus-based registration.

Discussion
Vascular abnormalities perturb organ perfusion and could lead to damage and tissue dysfunc-
tion. The microvasculature which underlies tissue perfusion is inherently 3D and aspects of the
vascular pathology may be unaccounted for when assessing the vessels in conventional 2D his-
tology. Visualizations in 3D could remove potential ambiguities in the interpretation of the his-
tological samples. This is demonstrated by our results in Fig 4, where several different types of
misinterpretations may potentially occur. The density of vessels in one region could be misin-
terpreted and the branching or structural detail at the bifurcation point is lost. The recon-
structed normal tissue in (B) demonstrates the connectivity of the vessels shown in the cross
sections (C) and (D). Without the 3D image, the interpretation of the connectivity of microvas-
culature can be challenging. Cross sections 50 μm apart in Fig 4(G) and 4(H) demonstrate re-
generated vessels, portions of which (indicated by f and i) run nearly parallel to the section
plane. In this example, the vessels could be misinterpreted to have larger lumina and have a
higher vessel count in plane due to multiple views in cross section of one vessel. For example,
the vessel labeled f in Fig 4(G) is connected to the vessel labeled g on the same figure due to the
tortuosity of the vessel. When quantifying vessel features within 2D sections, this tortuosity
could lead to an erroneously high vessel density count. In the corresponding reconstruction
(F), connectivity, tortuosity and thickness of the vessel are visualized. Errors in 2D measure-
ment of vessel diameter arising from non-orthogonality of vessels to sections can be resolved in
a 3D reconstruction. This is demonstrated with an example in Fig 4, where the measured
lumen diameter in 2D is 93 μm due to the vessel running nearly parallel to the section plane. In
the 3D reconstruction, we are able to measure the diameter of the vessel in a direction perpen-
dicular to the vessel’s 3D centerline, yielding a lumen diameter of 15 μm. Our experiment com-
paring 2D and 3D measurements on 40 different vessels revealed that 2D measurements are
biased to overestimate vessel diameter, with overestimations of 50% or more occurring fre-
quently. These observations are clear in the 3D reconstruction but nearly impossible to make
with only the ambiguous 2D histology.

Previous work on 3D imaging of vessel wall components has been performed using phase-
contrast computed tomography (CT) imaging in order to differentiate the soft tissue layers of

Table 4. The displacement of the optimal mean squared error transformation from the affine nucleus-based registration.

Sample Displacement direction (μm) Median ± IQR Upper bound of non-parametric P% prediction interval (μm) P (%)

Normal X 1.50 ± 2.25 9.58 97

Y 1.00 ± 1.50 5.37 97

Regenerated X 1.50 ± 2.00 6.50 97

Y 1.50 ± 2.00 8.87 97

All Values X 1.50 ± 2.38 10.00 98

Y 1.50 ± 1.50 8.52 98

doi:10.1371/journal.pone.0126817.t004
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the human carotid artery and potentially characterize arterial plaque. [18] The authors showed
that several layers of formalin-fixed carotid artery could be differentiated using a conventional
X-ray tube with 100 μm resolution, using radiation doses much higher than those used for clin-
ical CT imaging. Although 100 μm resolution is insufficient for microvasculature visualization
(where vessel sizes are approximately 10 μm and vessel wall components are even smaller), our
3D histology reconstruction approach could be used to address the authors’ stated difficulty in
obtaining a precise co-registration between their 2D histologic sections (used for CT imaging
validation) and the 3D CT images. Our approach is also complementary in its ability to provide
3D reconstructions of specific structures and proteins revealed by histology stains, comple-
menting the vessel wall layer information provided by phase-contrast CT.

These recent investigations make clear the need for highly accurate, automated, repeatable
3D reconstructions of thin histology sections both as a complement to confocal microscopy
and as an independent means of answering important research questions involving microvas-
culature analysis and quantification. The automatic registration of the serial sections would
speed up the process of manual alignment for volume reconstruction by increasing the sample
size with a minimal corresponding increase in manual labour and time. The smooth muscle
surrounding the vasculature was stained using the smooth muscle α-actin primary antibody in
the samples of this study, but other tissue components could also be stained and incorporated
into the 3D reconstruction. Multiple stains could be applied to the tissue to visualize different
components; e.g., vascular endothelial cells and smooth muscle could be stained to visualise
both components. [19] The reconstruction of histology into the 3D context could also facilitate
co-registration with 3D in vivo imaging (as has been done at the millimeter scale in human im-
aging [20–22]) such as micro-CT, where co-registered 3D histology could provide complemen-
tary information to the vessel lumina visualized using the iodinated CT contrast agent.

In this study, we evaluated intensity-based and nucleus landmark-based 3D reconstruction
methods on TA muscle samples of wild type mice under both normal and hind limb ischemic
conditions. Our hybrid approach uses a coarse initialization from on a low-resolution intensi-
ty-based registration, followed by a refinement using a landmark-based registration defined
using bisected cell nuclei appearing on adjacent tissue sections. Our approach is inspired by
previously published methods that applied intensity-based coarse registration followed by
landmark-based registration refinement, [4] but differs from previous work in two primary re-
spects. First, in contrast to methods relying on the introduction of extrinsic landmarks (e.g.
needles) into the tissue, [23] our approach automatically extracts and corresponds intrinsic cell
nuclei, resulting in a more streamlined workflow and reduced tissue disruption. Second, our
specific choice of landmark type (cell nuclei) differs from landmark types used in previous
work and has demonstrated high accuracy for 3D reconstruction both in terms of pairwise and
accumulated TRE. This is based on the observation that the accuracy of a 3D reconstruction
using landmark-based registration depends on the characteristics of the landmarks used to de-
fine the registration transformation. This issue is especially important in the context of a 3D re-
construction that is defined as a composition of multiple pairwise registrations; any spatial bias
in pairwise landmark correspondence error can propagate through the pairwise registrations
and result in a large accumulated error in the reconstruction. Our choice of small cell nuclei as
landmarks mitigates this issue as nucleus orientation in our specimens would not be expected
to have a spatial bias that would contribute to such error propagation. It is for this reason that
our method can overcome the issue of error propagation and the banana-into-cylinder effect,
as evidenced by our reported accumulated TRE values. Due to the abundance of nuclei in the
tissue, the registration is robust to the accuracy of segmentation of the cell nuclei when the ma-
jority of nuclei present are segmented (as is the case using our algorithm). The number of
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nucleus landmark correspondences obtained by our algorithm far exceeds the number of pairs
necessary for defining an affine or rigid registration.

Our interest in ischemia and reperfusion is due to the critical need to understand the regen-
eration process of the vasculature, as this has important therapeutic potential for patients with
vascular disease. However, this potential has yet to be fully realized and understanding the 3D
relationships amongst the neovasculature and the surrounding ischemic and/or regenerating
tissue will be important in advancing this field. [24] We anticipate that in a larger study of
these mice, renderings of 3D reconstructed histology will clearly show the microvasculature
connectivity at the level of the arterioles and venules, which would not be apparent in conven-
tional 2D histology analysis (Fig 4). We also anticipate that 3D histology reconstructions will
permit more reliable quantifications of important surrounding tissue components that can af-
fect tissue perfusion, such as the volume and surface area of the nearby skeletal muscle fibers.
[25] In addition, vessel surface area cannot be measured in 2D histology, whereas it is straight-
forward to measure in 3D on a segmented vessel network. As another illustration, due to vari-
ability in the angle of sectioning, the medial wall thickness and vessel diameter can be difficult
to interpret. For example, if the tissue was sectioned off-orthogonal to the vessel, the lumen
would likely be measured to have a larger area than the correct area that would be measured if
the tissue were sectioned orthogonal to the vessel direction (Fig 4G). We speculate that vascular
measurements, such as the vessel wall thickness, may be more consistent in 3D, especially
when malformations cause structural changes.

4.1 Evaluation of registration accuracy
It is helpful to the interpretation of registration errors in comparison to the reference recon-
struction to note that the lower bound of an arteriole microvessel diameter in the mouse is ap-
proximately 10 μm. [26] Imaging the tissue prior to sectioning may generate a volume which
does not have resolution high enough to resolve microvascular structures, thus a surrogate ref-
erence was used. The reference reconstruction generated through manually validated, intrinsic
nucleus landmarks provides a surrogate for an ideal 3D reference volume, where the intrinsic
landmarks are not subject to orientation bias. The pairwise and accumulated TREs indicate
that in the normal and regenerated tissue, the 95% confidence intervals on the median TRE
were lower than 5.2 μm for the affine nucleus landmark registration (Table 2), which suggests
accurate reconstruction of both microvessel topology and geometry in these samples. The ref-
erence FRE shown in Table 1 provides a sense of the best-case registration that can be achieved
using an affine transformation of the manually validated reference landmarks; the FRE thus
provides insight into the amount of residual deformation in the tissue.

The intensity-based reconstruction did not provide 95% confidence intervals of less than
10 μm for the accumulated TRE values. This, combined with the observation that the nucleus-
based reconstruction provided lower accumulated TRE for both the normal and the regener-
ated tissues, suggests that this nucleus landmark-based registration is valuable for 3D histology
reconstruction of microvasculature. To place our results within the context of a comparable, re-
cently published method investigating the accuracy of 3D histology reconstructions based on
semi-automatic non-rigid B-spline registration [10], we calculated and compared results analo-
gous to those presented in [10] (Table 3). The authors of [10] demonstrated reconstructions of
metastatic colorectal carcinoma in human liver tissue, cirrhotic human liver tissue infected
with hepatitis C, and a rat glomerulus. Reconstruction error was quantified in terms of Haus-
dorff distance, and reported mean ± SD pairwise Hausdorff distance errors of 49 ± 31 μm and
54 ± 37 μm respectively for two specimens. Corresponding reported mean ± SD accumulated
Hausdorff distance errors (over 10 sections) were 112 ± 71 μm and 120 ± 88 μm, respectively.
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By comparison, for our fully-automatic affine nucleus-based landmark registration, we ob-
served mean ± SD accumulated maximum per-section TREs of 30 ± 24 μm and 39 ± 48 μm for
normal and regenerated tissues respectively (Table 3).

The authors of [6, 27] proposed an intensity-based registration approach for 3D histology
reconstruction of tumor microvasculature using iterative optimization of an image similarity
metric to align a series of adjacent section pairs; our tested intensity-based method is similar in
these respects. The accuracy of the registrations in [6, 27] was evaluated by the authors using
qualitative inspection of the reconstructed volumes; our work extends this work by quantita-
tively measuring the registration error using intensity-based registration. The method de-
scribed in [28] intended for alignment of individual cells used a multi-resolution intensity-
based registration. On their data sets consisting of serial sections, the majority of registration
errors were between 10 and 30 μm; this is concordant with our mean intensity-based registra-
tion errors (Table 2). The method described in [29] is intended for human liver tissue recon-
struction used a block-matching intensity-based registration approach to align sections with
the same type of stain. Their results presented Hausdorff distance errors most frequently lying
between 50 and 150 μm on a single specimen, which is concordant with our maximum ob-
served intensity-based registration errors (Table 3). Although the work presented in [30] was
not intended for microvasculature reconstruction, it has similarities to our work in that struc-
tures of interest are segmented and used to refine an initial intensity-based registration for re-
construction of mammary gland tissue. Reconstruction accuracy on real image data in [30] was
assessed by qualitative inspection of the 3D volumes. Similarly, the accuracies of the feature-
based reconstruction methods proposed in [4, 7, 31] were not measured quantitatively on real
image data, challenging the assessment of their utility for microvasculature reconstruction and
analysis where the requirements for accuracy are stringent. A block matching method pro-
posed in [14] reported a pairwise root mean square error (RMS) of 23.25 μm, which is larger
than our pairwise nucleus landmark-based registration RMS TRE values of 14.25 μm. Our
work extends these investigations by providing a rigorous quantitative assessment of recon-
struction error for a feature-based registration approach in the context of microvasculature as-
sessment in the mouse.

As intensity-based registration is driven by optimization of an image-similarity metric com-
puted over the entire image domain, misalignment of large, salient structures produces a larger
penalty to the optimizer and thus the tendency is to provide a registration aligning such struc-
tures from one section to the next. Registration of salient structures may propagate pairwise
error through the reconstructed volume, and this pairwise error may appear negligible unless
the salient structures have spatial bias. One example could be due to a large blood vessel orient-
ed non-orthogonally to the section. The result can be a non-negligible accumulation of error
throughout the reconstructed volume. This accumulation of registration error across multiple
sections has been previously observed in other intensity based pairwise registration methods.
[4, 10, 29] Knowledge of accurate structural orientation can be vital to differentiation between
pathological models. These geometric measurements could be perturbed by pairwise registra-
tion of salient features, which may force non-orthogonal features to be straight and section-or-
thogonal. In the hind limb skeletal muscle tissues, the vasculature flows parallel to muscle
fibers,[32] and the tissue sections were taken in the transverse plane. In this case, forcing the sa-
lient muscle fibres to align pairwise and run orthogonal to the plane of sectioning may have
been expected to result accurate 3D reconstructions. However, the accumulated TRE values
(Table 2) and the reconstructed volumes (Fig 4) for the intensity-based registration indicate
otherwise. This accumulation of error may pose an even greater problem in tissues with salient
features which are not orthogonal to the plane of sectioning, such as muscle fibers in the heart
which have a helical configuration. Our results suggest that landmark-based registration of
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small features such as cell nuclei may aid in the alignment of tissues where geometry preserva-
tion is a priority.

The non-negligible accumulation of error in the reconstructed volumes could lead to vessel
structure misinterpretations. As seen in Fig 4, although the differences in intensity-based and
landmark-based registration of the adjacent sections are not visually salient, the impact of
these differences is clear in the 3D reconstructions of the normal and regenerated mice. The
bias in the intensity based registration to align large, salient features on the adjacent sections is
disruptive to the preservation of microvasculature continuity.

4.2 Evaluation of image similarity metrics
Based on the upper bound of the 95% prediction interval across all three samples, global MSE
optimization would transform the moving image to be not more than 10 μm—100% of the typ-
ical diameter of a microvessel—from the transformed moving image given by nucleus-based
registration. It could therefore be expected that such differences could be disruptive to useful
3D histology reconstructions for microvasculature analysis. This suggests that this image simi-
larity metric may not be suitable for this problem. In our informal initial experiments, we did
not observe reduced error using the normalized cross correlation or mutual information image
similarity metrics, so we opted to test the MSE metric in the interests of computational efficien-
cy for this mono-modality registration problem. The use of MSE seems particularly appropri-
ate given that each of our samples was processed in one preparation to mitigate any potential
effects of staining variability, with variables such as the concentration of the solutions and the
incubation time controlled.

4.3 Limitations
The scope of this study was to perform a technical evaluation of intensity-based and nucleus
landmark-based registration algorithms on the two types of mice: those with normal vascula-
ture, and those with post-ischemic regenerated vasculature. The differences observed between
the nucleus landmark and intensity based registrations were consistent with both the normal
and regenerated vasculature, with consistently higher accuracy using the nucleus landmark
registration technique. Comparison of vessel structure in the two types of mice is of interest
and the subject of future work; the work presented in this paper is a critical first step toward
this future aim.

The results of this study need to be considered in the context of its strengths and limitations.
Although two distinct tissue types were studied, the sample size is small and thus new insights
may be expected to arise with additional samples. Moreover, the approach can be adapted for
variation in anatomy, pathology or stain. The key observation was the use of small structures
not spanning more than two adjacent sections could reduce the banana-into-cylinder problem
without the use of costly equipment. Serial sections cut by the microtome can be technically
challenging, but in the case of missed sections, a fine scale alignment of the tissue conserving
structural context can be used for exploration of the overall tissue. The local neighbourhood
size T = 100 μm was chosen (based on experimentation with a sample not included in this
study) to encompass the observed pairwise TREs from the intensity-based registration, in an ef-
fort to ensure that corresponding nuclei lay within this neighbourhood. However, this parame-
ter represents a brittle aspect of our algorithm; if a correctly corresponding nucleus is outside
of this range, correct correspondence cannot occur. Our informal experimentation suggests
that the algorithm is not particularly sensitive to this neighbourhood size, but nevertheless this
is an important parameter that may need to be modified when adapting this algorithm to other
contexts, according to the observed error in the intensity-based registration. Finally, our
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conclusions regarding the performance of intensity-based registration for this task must take
into account the limitations of our experimental design; we tested only the MSE image similari-
ty metric and used gradient descent optimization. Although our results demonstrated that
ideal optimization of the MSE metric would yield reconstructions different from those given by
our nucleus landmark-based approach, we cannot conclude from this that a more suitable
image similarity metric (e.g. an approach based on M-estimators [14]) could not be devised
that would be suitable for this problem, and this would be a useful avenue of future work in
this area.

Conclusions
We have demonstrated that accurate 3D reconstructions of serial histology sections of mouse
hindlimb tissue can avoid potential misinterpretations of the vasculature arising from assess-
ment of 2D histology sections without 3D context. Such misinterpretations may relate to vessel
size, tortuosity, connectivity, and bifurcation, all of which are important to understand pathol-
ogies of the vascular network at the arteriolar and venular levels. Our results demonstrated that
a 3D reconstruction algorithm based on section pairwise registrations using small, homologous
landmarks spanning not more than two tissue sections may support 3D reconstruction of digi-
tal histology images with sufficient accuracy to provide acceptable registration for the arterioles
and venules. This technique avoids the otherwise problematic “banana-into-cylinder” effect
where conventional intensity-based registration methods optimize the pairwise alignment of
large, salient structures, forcing them to be section-orthogonal. Our results demonstrated that
3D digital histology reconstruction of mouse hind-limb tissue stained for vascular smooth
muscle cells and hematoxylin could be performed accurately and fully automatically via a cas-
caded approach beginning with pairwise low-resolution intensity based registration of adjacent
tissue sections, and refined by a landmark-based registration using corresponding nuclei that
were bisected by the microtome blade during sectioning. Intensity-based reconstructions driv-
en by larger, more salient features appear to preserve vascular topology but not geometry; the
use of nuclei for refinement of the reconstruction achieves both ends. With our ongoing valida-
tion and refinement of this system on a larger data set, we aim to provide a valuable tool for sci-
entists conducting studies requiring high-throughput, high-accuracy (<10 μm error) 3D
histology reconstructions for analysis of 3D microvasculature and surrounding tissue compo-
nents in small animal models.

Supporting Information
S1 Dataset. Affine Raw Values. Raw target registration error values in microns for each sam-
ple and each section for accumulated nucleus based registration.
(XLSX)

S2 Dataset. Fiducial Raw Values. Raw fiducial registration error values in microns for each
sample and each section of the pairwise fiducials.
(XLSX)

S3 Dataset. Rigid Raw Values. Raw target registration error values in microns for each sample
and each section for pairwise intensity based low resolution registration.
(XLSX)

S4 Dataset. Translate Raw Values. Raw mean squared error values of translation in the X di-
rection for each sample between each adjacent section pair.
(XLSX)
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S1 Fig. Regenerated hind limb tissue following ischemic damage. The tissue was immunos-
tained with smooth muscle α-actin and DAB chromogen and counter-stained with hematoxy-
lin. Blue arrows indicate nuclei and black arrows indicate the stained arteriole. Scale bar (A)
500μm, (B) 100μm.
(EPS)

S2 Fig. Separate set of mouse hind limb tissues that were not used for the experiments re-
ported in this paper. These tissues were used to determine nucleus size and color for nucleus
extraction. Scale bar 100 μm.
(EPS)

S3 Fig. Nucleus segmentation method. (A) The segmented nucleus labeled blue on the histol-
ogy section stained with DAB and hematoxylin counter stain. (B) The surrounding region
(white) of each nucleus was defined by morphological dilation and used to evaluate whether
the extracted nucleus was within the tissue, or was instead a false positive corresponding to de-
bris on a white background outside of the tissue, indicated with the white arrows. Scale bar
50 μm.
(EPS)
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