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Drug-likeness prediction is important for the virtual screening of drug candidates. It is challenging because

the drug-likeness is presumably associated with the whole set of necessary properties to pass through

clinical trials, and thus no definite data for regression is available. Recently, binary classification models

based on graph neural networks have been proposed but with strong dependency of their performances

on the choice of the negative set for training. Here we propose a novel unsupervised learning model

that requires only known drugs for training. We adopted a language model based on a recurrent neural

network for unsupervised learning. It showed relatively consistent performance across different datasets,

unlike such classification models. In addition, the unsupervised learning model provides drug-likeness

scores that well separate distributions with increasing mean values in the order of datasets composed of

molecules at a later step in a drug development process, whereas the classification model predicted

a polarized distribution with two extreme values for all datasets presumably due to the overconfident

prediction for unseen data. Thus, this new concept offers a pragmatic tool for drug-likeness scoring and

further can be applied to other biochemical applications.
1 Introduction

Prediction of the biochemical properties of molecules is
essential for efficient drug development. Simulations based on
physicochemical principles can be used for this purpose.
However, these methods are oen not practical, especially if
either target properties are associated with a number of
different biological causes or those mechanisms are unclear.
Data-driven approaches can be applied to such cases thanks to
their convenience of making predictions from data alone
without efforts to know the underlying biological mechanisms,
as have been shown by successful examples of deep learning
methods for accelerated drug developments.1–7

One example of such biochemical properties is drug-
likeness. It can be used to remove compounds in advance that
are likely to fail in clinical trials, which is important to enhance
the success rate and reduce the economic costs of drug devel-
opment.8,9 It is presumably associated with the whole set of
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essential characteristics to pass through clinical trials such as
bioactivity, metabolic stability, toxicity, and so on. As those
numerous factors can affect drug-likeness, it cannot be directly
measured as a single-valued quantity. Therefore, various drug-
likeness expressions have been suggested using data-driven
approaches as a result of studies for more than two decades.10

In the beginning, the drug-likeness has been dened based
on the certain physicochemical properties of the known drug
molecules.11 In general, human experts select those physico-
chemical properties that seem to be closely associated with the
drug-likeness and have been analyzed their distribution from
drug databases. According to the result, a certain drug-likeness
method is determined and used in a virtual screening scenario.
Most methods developed in the early days were a classier type
based on the rules derived from the property distribution
analysis.12–20 It is designed to determine whether a query
molecule has drug potential or not. The representative example
is the rules of ve (Ro5) proposed by Lipinski et al., which
introduced the criteria of the number of hydrogen bond donors,
the number of hydrogen bond acceptors, the molecular weight,
and the octanol–water partition coefficient for being drug-
like.21,22 Though these rule-based lters have been widely used
thanks to the convenience, their inexibility provokes
a substantial possibility of screening out good drug candidates.
For instance, 16% of the oral drugs violate at least one of the
Ro5, and 6% of them violate more than two.23,24 Thus, these
rules have been used to predict the bioavailability of molecules.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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To prevent such strict cut-off, quantitative approaches have
been proposed.24–28 The quantitative estimate of drug-likeness
(QED) score is a representative example, which derives a nal
score from desirability functions tted to the distribution of
eight molecular properties.23 However, a recent study reported
that QED is not practical to discriminate drug from non-drug
molecules by showing that the distributions of the features
used in QED are indistinguishable for drugs and non-drugs.29

This result indicates that human-driven features at the current
level may have limitations for a screening purpose in practice.

To overcome the weakness of the previous data-driven
methods, deep learning approaches have been attempted.30,31

The key difference of the deep learning approaches from the
previous ones is to extract suitable features directly from raw
data.3,32 Thus, the performance of deep learning models
strongly relies on the quality and quantity of data used in
training. Unfortunately, however, no quantitative data for the
development of regression models is available because the
drug-likeness is not a directly measurable quantity. In this
regard, most deep learning approaches for drug-likeness
adopted a two-class classication (TCC) method, which aims
to classify query molecules into drug or non-drug.29,33,34

The TCC methods inevitably need both drug molecules for
a positive set and non-drug molecules for a negative set. The
positive set can readily be prepared with the known drug
molecules. However, preparing a comprehensive negative set
with chemical diversity is not straightforward, as true non-drug
molecules can only be veried with the investigation through
clinical trials. Thus, TCC approaches proposed so far regarded
a certain set of molecules, so-called non-drug-like molecules, as
the negative set by assuming that they have a very low proba-
bility of turning out to be a drug. Based on this assumption, Hu
et al. used an autoencoder-based classier to distinguish drug
and ZINCmolecules with�700 chemical descriptors that can be
obtained from given molecules.33 Beker et al. improved the
performance of the classier to distinguish drug and ZINC
molecules by combining autoencoder, Mol2vec, and graph
convolutional network (GCN) models with uncertainty quanti-
ed from Bayesian deep neural network.29

In the TCC approaches, deep learning models are trained to
nd features from data that are appropriate for discriminating
drugs from non-drug-like molecules. In other words, these TCC
models tend to learn features specialized for discrimination
between two classes rather than learn the respective features of
drugs and non-drug-like molecules, which is in contrast to the
traditional approaches that focused on deriving the common
features of drugs. This implies that the features for discrimi-
nating drug and non-drug-like molecules learned by the TCC
models can be signicantly affected by the negative set for
training. More seriously, TCC models trained with a specic
negative set may not distinguish non-drug-like molecules that
are substantially different from those in the negative training
set. Indeed, Beker et al. pointed out that their TCC model pre-
dicted hydrocarbon molecules such as benzene and cyclo-
hexane as drugs, even though they are obviously non-drug-like
molecules.29 They argued that such a failure comes from the
fact that the training data, which was a set of ZINC molecules,
© 2022 The Author(s). Published by the Royal Society of Chemistry
contains only a small portion of those hydrocarbons. It shows
that TCC models may have limitations in generalization ability
unless both the positive and negative sets encompass the entire
chemical space of drug and non-drug-like molecules, respec-
tively. In practice, it is not possible to prepare such an ideal data
set, especially the negative one. In this regard, it is questionable
whether or not the TCCmodels can be used in a practical virtual
screening process.

Here, we propose a novel approach based on unsupervised
learning to dene drug-likeness in a data-driven way. Unlike
supervised learning, such as the TCC model, unsupervised
learning does not need any labeled data. It extracts features
directly from unlabeled data, in our case, the known drug
molecules. The unsupervised learning allows our model to nd
common features from the drug molecules. The trained model
can be used to assess the drug-likeness of query molecules by
analyzing how similar these molecules are to the known drugs
in the resulting feature space. Because the proposed method
only uses drug molecules in training, we expect it can avoid the
aforementioned undesirable dependency on the negative sets of
the TCC models originating from the use of an incomplete
negative set. Conceptually, the unsupervised learning approach
is rather close to the conventional approaches analyzing the
common features of known drugs in the sense that it learns the
feature space only from the drug molecules. However, it differs
from the conventional ones in that it replaces hand-craed
features with those obtained by deep learning models.

Amongst others, we employed a simple language model
based on recurrent neural network (RNN) for learning the
probability distribution of the known drugs in an unsupervised
way. The language model learns the probability of the next word
from the previous sequence.35 Aer that, the trained model can
generate new sequences or calculate the likelihood of the given
sequence based on the Bayes' rule and the learned probability
distribution. In the same way, the language model can be
applied to the quantication of drug-likeness by representing
drug molecules as a string such as SMILES. The model is
trained to learn the probability of the next character from the
given piece of SMILES. Then, the model can score the drug-
likeness of query molecules in terms of the probability that
those molecules will appear in the learned drug space.

To show the feasibility of our unsupervised learning for drug-
likeness scoring, we have assessed its performance for several
tasks. For comparison, we devised our own TCCmodel based on
a graph convolutional network (GCN), which has been widely
used in molecular property predictions,36,37 including drug-
likeness, and examined its performance for the same tasks.
We prepared various types of data sets, especially several
negative sets to evaluate the generalization ability of the
models. As expected, the language model showed relatively
more consistent performance than the TCC model across
different negative sets.

In what follows, we rst describe the datasets used in this
study. Then, we introduce how the language model can be used
for drug-likeness scoring as a new concept and explain the TCC
model for comparison with the implementation detail for both
Chem. Sci., 2022, 13, 554–565 | 555
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models. Finally, we analyzed the performance of the twomodels
with tests on various datasets and drew conclusions.

2 Method
2.1 Dataset

Molecules in the datasets are represented with SMILES. For data
preprocessing, we only used the molecules whose SMILES are
RDKit38-readable, shorter than 100 characters, and represent
a single molecule (SMILES without ‘$’).

We considered the known drug molecules as a positive set.
We prepared two groups of the known drugs: the FDA-approved
drug set (referred to as ‘FDA’) and the other approved drugs
(referred to as ‘Worlddrug’). The Worlddrug and FDA sets were
used for training and testing, respectively. For fair evaluation,
we excluded molecules from Worlddrug if they have the Tani-
moto similarity39 of 0.8 or higher with any molecule in FDA.

Negative sets were prepared from various databases:
GDB17,40 ZINC15,41 and ChEMBL.42 GDB17 is a set of molecules
composed of less than 17 C, N, O, S, and halogen atoms, which
are virtually generated through a graph enumeration method.
ZINC15 is composed of commercially available compounds for
virtual screening in drug discovery. ChEMBL is a set of mole-
cules that are known to be bioactive. For ChEMBL, we used
molecules with a pChEMBL value of 5.85 or higher to only
consider highly bioactive molecules. We used only molecules
having amolecular weight of 600 or less in the ChEMBL's “small
molecule” category to meet the SMILES length condition
mentioned above. Molecules can be approved as a drug only if
they successfully pass through all steps in drug development. As
a drug candidate passes through one more step, it becomes
more probable to be approved. Therefore, it is reasonable to
assume that molecules at a later step in the drug development
would be more drug-like than molecules at an earlier step. In
this sense, within the prepared negative sets, GDB17 can be
considered as the most non-drug-like dataset. ZINC15 could be
the next non-drug-like dataset as it is regarded as a chemically
accessible set for hit discovery. Finally, ChEMBL would be the
least non-drug-like dataset among them.

Our language model requires only drug molecules and so
was trained with Worlddrug. For the TCC model, we used the
same Worlddrug as the positive set, while ZINC15 was used as
the negative set in training since Beker et al. have shown that
ZINC15 can be effective as a negative set of TCC models for
drug-likeness study. To avoid a data imbalance problem, we
randomly sampled 2833 molecules from ZINC15 for training,
which is the same number as that of Worlddrug. As for the test
set, we used FDA as the positive set and 10 000 molecules
randomly selected from each negative set. Since the size of the
test sets used here is small compared to the entire size of the
negative sets (e.g., GDB17 contains more than 166 billion
molecules), we randomly sampled ve different negative sets as
our test sets and investigated whether different samplings cause
different results.

The purpose of introducing drug-likeness is to remove
molecules with a high failure rate before carrying out expensive
experiments. Thus, it would be a more practical test to evaluate
556 | Chem. Sci., 2022, 13, 554–565
our models' performance on real drug candidates rather than
relatively easy ChEMBL, ZINC15, and GDB17 cases. Here, we
used the investigation group of the DrugBank43 database, which
contains molecules in the clinical I/II/III stages. 1792 molecules
that met the aforementioned structural conditions were ob-
tained from the database and were called the “investigation”
set. In fact, some of them may have high probabilities to be
approved as a drug, meaning that, on average, they may have
more common features with the known drugs. Therefore, the
Investigation set cannot be readily judged as negative, unlike
ChEMBL, ZINC15, and GDB17. It is intriguing to study how our
TCC and unsupervised learning models predict the drug-
likeness of those drug candidates. Table 1 summarizes all the
datasets used in this work.

2.2 Language model

A language model predicts the probability of the next possible
characters based on the previous piece of sequence.35 In this
work, we represent molecules as a sequence of characters with
SMILES prepared as described above. For example, suppose the
model takes the sequence ‘c1ccc’ as input, which can be a part
of the cyclobutadiene's SMILES ‘c1ccc1’ or the benzene's
SMILES ‘c1ccccc1’. Then, the model predicts the probability of
‘c’ and ‘1’ as output to be the next character. The output prob-
ability of each character in that example depends on the
distribution of molecules that the model used as a training set.
For instance, the predicted probability of ‘c’ would be higher
than that of ‘1’, if it is trained with typical molecular databases
such as PubChem, because benzene is a more common ring
structure than cyclobutadiene in those datasets. In such a way,
the model learns the probability distribution of molecules in
the training set and predicts the probability of a query molecule
as an output according to how frequently the features of the
molecule appear in the distribution of the feature space ob-
tained from the training data.

More precisely, the language model outputs a conditional
probability distribution, denoted as p(st+1js0,.,st), since it
predicts the probability of the next possible characters (st+1)
from the given previous (t + 1) characters, denoted as s0, s1,.,st.
Similar to other language models, for the given SMILES, deno-
ted as S¼ (s1, s2,.,sN), we used a sequence that begins with SOS
(start of sequence), followed by the characters of SMILES, and
ends with EOS (end of sequence). In other words, the sequence
is dened as (s0, s1,.,sN+1), where s0 ¼ SOS, sN+1 ¼ EOS, for the
given SMILES S ¼ (s1, s2,.,sN). The model sequentially predicts
the conditional probability p(st+1js0,.,st), starting from s0 ¼
SOS with t $ 0, until it meets st+1 ¼ EOS. For every t + 1-th step,
the model is trained to predict those conditional probabilities
as 1, when st+1 is equal to the (t + 1)-th character of SMILES of
the drug molecules, otherwise 0.

2.3 Drug-likeness scoring with unsupervised learning

Fig. 1 depicts the overall scheme of drug-likeness scoring with
unsupervised learning based on a language model. As the
model learns the probability distribution, we can compute the
joint probability, denoted as p(s0, s1,.,sN, sN+1), of a given
© 2022 The Author(s). Published by the Royal Society of Chemistry



Table 1 Dataset information used in this work

Data name Composition Description

Training Worlddrug 2833 Worlddrug molecules Dataset for training the RNN-based
language model. The model only
requires drug molecules

Worlddrug/ZINC15 2833 Worlddrug + 2833 ZINC15
molecules

Dataset for training the GCN-based
TCCmodel. ZINC15 has been widely
used as a negative set for training
TCC models for drug-likeness

Test FDA/GDB17 1489 FDA + 10 000 GDB17
molecules

GDB17 is a set of molecules
composed of less than or equal to 17
C, N, O, S, and halogen atoms
generated by a graph enumeration
method. It is expected to be highly
non-drug-like

FDA/ZINC15 1489 FDA + 10 000 ZINC15
molecules

ZINC15 represents a chemically
accessible space, expected to be
more drug-potential than GDB17

FDA/ChEMBL 1489 FDA + 10 000 ChEMBL
molecules

ChEMBL represents a bioactive
space. Molecules with a pChEMBL
value of 5.85 or higher were used
and thus expected to be more drug-
potential than ZINC15

Investigation 1792 molecules from DrugBank that
are under investigation

Examples of real drug candidates in
clinical trials
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sequence. Since this sequence is given as the SMILES of an
input molecule, which is determined by the RDKit rule in this
work, this joint probability can be dened as the nal output
probability of the given molecule. In short, p(S) ¼ p(s0, s1,.,sN,
sN+1). The joint probability can be calculated as the product of
the conditional probability of each character consisting of the
sequence according to the Bayes rule as follows.

pðSÞ ¼ pðs0; s1; s2;.; sNþ1Þ
¼ pðs0Þ

QN
t¼0

pðstþ1js0; s1;.; stÞ ðBayes ruleÞ

¼ QN
t¼0

pðstþ1js0; s1;.; stÞ ðpðs0Þ ¼ 1Þ
(1)

Here, p(s0) is equal to 1, because every sequence starts with SOS.
Eqn (1) implies that the higher the value of each conditional
Fig. 1 Diagram of calculating drug-likeness score from the languagemod
conditional probability distribution p(st+1js0,.,st). By referring to the n
probability can be selected as shown in red. This example shows the scor
repeats obtaining pst+1, until st+1 equals to the EOS. The drug-likeness sco
the score so that the maximum score becomes 100.

© 2022 The Author(s). Published by the Royal Society of Chemistry
probability, the higher the probability that the corresponding
molecule will appear in the distribution of the training dataset.
In terms of (structural or linguistic) syntax, the molecule has
a high probability of having a common feature with molecules
in the training set. In other words, p(S), dened as the product
of conditional probabilities, means that the corresponding
molecule to the SMILES code S as input is more likely to have
the common features of the training set. Since we use drug
molecules in Worlddrug as the training set for the language
model, we can consider the p(S) value as a drug-likeness score.
The actual p(S) value is numerically too small. For the sake of
convenience, we applied the logarithm to the value and added
100 to the result, so the maximum score becomes 100. Our nal
drug-likeness score is dened as follows.
el. st denotes the t-th character of the given SMILES, S. pst+1 denotes the
ext character st+1 (indicated as the grey curved arrows), the correct
ing process of the drug-likeness of benzene. Starting from s0 ¼ SOS, it
re is given as the sum of log values (log(pst+1)). Constant 100 is added to

Chem. Sci., 2022, 13, 554–565 | 557
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drug-likeness ¼ 100þ logðpðSÞÞ
¼ 100þ log

�QN
t¼0

pðstþ1js0; s1;.; stÞ
�

¼ 100þPN
t¼0

log pððstþ1js0; s1;.; stÞÞð
(2)

One of the important factors for drug-likeness is the infor-
mation on stereocenters, as a slight change of the stereo-
chemistry could lead to a huge difference in the drug-target
interactions. Therefore, we considered all possible stereoiso-
mers of given molecules for drug-likeness scoring and then
chose the one with the highest score.
2.4 Implementation of the language model

Fig. 2 shows the language model used in this work. We adopted
a simple RNN architecture based on the gated recurrent unit
(GRU).44 The input starts with SOS, subsequently followed with the
SMILES code of a givenmolecule, and ends with EOS. Considering
all stereoisomers can cause very slow training, so we used only
a single stereoisomer randomly sampled among them at each
training epoch. Also, the drug-likeness based on the language
model depends on the SMILES format since the probability of the
next character is given conditionally by the previous characters.
Therefore, we only used the canonical SMILES format to avoid it.
The output of the GRU is passed through a fully connected layer
and a somax layer to convert the output value to the probability
distribution of the next character. In this work, we used four GRU
layers with the dimension of the hidden state equal to 1024. The
output dimension was equal to 66 since there are 66 different
types of characters (including EOS) within SMILES for the entire
Fig. 2 The architecture of the language model used in this work. It is a
which gives the final probability distribution of the possible next charact
means a higher probability. The numbers denoted in the embedding/fully
working process of RNN with an input example of benzene represented

558 | Chem. Sci., 2022, 13, 554–565
molecules of the PubChem database. The loss is calculated by the
cross-entropy between the model's output and the encoded one-
hot vectors of a given sequence. We also tested a transformer
model,45 another widely used language model, but its perfor-
mance was poorer than that of the RNN for this drug-likeness
problem. Thus, we will only discuss the RNN-based language
model and its results in what follows.
2.5 Transfer learning

Transfer learning is useful to improve the performance of
a model, especially if the training data on a given task is insuffi-
cient.46 The model is rst trained on a general task with a large
amount of data and then ne-tuned on a target task that needs to
be solved with a small amount of data. The model performance
can be improved as the pre-trainedmodel already learned relevant
features from a large amount of data on the general task. Since the
number of known drug molecules is not enough, we applied the
transfer learning strategy to training the RNN-based language
model. We performed pre-training it with 10 million molecules
that were randomly selected from the PubChem database47 that
covers a wide range of general molecules. Aer that, we ne-tuned
the model parameters with the drug molecules in Worlddrug. We
note that the transfer learning improved the model performance
signicantly; we refer to ESI† for more details about the effect of
the transfer learning. Therefore, we only use the results from the
model with transfer learning hereaer.
2.6 Graph convolution network

Fig. 3 shows the GCN-based TCC model tested in this work. We
used the attention and gate-augmented GCN that was proposed
simple RNN consisting of four GRU layers and a fully connected layer
er throughout the softmax layer. The darker color in the output values
-connected layer indicate the output dimension. The figure shows the
as c1ccccc1, with nchar ¼ 3.

© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 Illustration of the GCN model with attention and gate-augmentation mechanism for two-class classification. (a) The overall model
architecture. The model consists of four graph convolution layers, a single readout layer, two fully-connected layers, and a sigmoid layer which
gives a probability of being a drug as an output. (b) Each graph convolution layer uses the attention and gate-augmentation mechanism. (c) The
readout layer aggregates the atom features as a graph feature vector.

Table 2 The atom features of the input for the GCN-based TCC
model

Atom feature Type Values

Symbol atom-type) One-hot C, N, O, S, F, P, Cl, Br, I, else
Number of hydrogens One-hot 0, 1, 2, 3, 4, 5, else
Degree (without hydrogen) One-hot 0, 1, 2, 3, 4, 5, else
Implicit valence (RDKit) One-hot 0, 1, 2, 3, 4, else
Aromaticity Integer 0, 1

Edge Article Chemical Science
in our previous work.48 Fig. 3(a) shows the overall scheme of the
model. It receives the graph representation of molecules,
denoted as G(H(0), A), where H(0) is the initial atom feature, and
A is the adjacency matrix of a given molecule. The input passes
through four graph convolution layers. Then, the resulted
output of the graph convolution layers passes through the
readout layers, which aggregate the set of vectors into a single
graph feature vector representing the features of the whole
graph. Finally, the graph feature vector passes through two MLP
layers where the dimension of the rst output is 256, and the
second one is 1. The nal output of the MLP layers is converted
to a probability of being drug through a sigmoid function.
Fig. 3(b) illustrates the structure of a single graph convolution
layer, which uses the attention and gate-augmentation mecha-
nism. Each convolution layer has four fully connected layers,
four self-attention heads, and one fully connected layer. Fig. 3(c)
shows the readout layer. The readout layer rst sums up all the
updated node features and then produces a graph feature vector
with the dimension of 256. We put dropout layers right before
the fully connected layers as a regularization for preventing
overtting.

To train the GCN-based TCC model, we used Worlddrug and
ZINC15 as a positive set and a negative set, respectively. We
used binary cross entropy as a loss function, so the model was
trained to classify whether a query molecule is a drug or non-
drug-like. For the input atom feature of each node, we
included an atomic symbol, number of hydrogen atoms, degree,
implicit valence (prepared by RDKit), and aromaticity as
© 2022 The Author(s). Published by the Royal Society of Chemistry
summarized in Table 2. The edge feature, i.e., the bond
connectivity, can be written as an adjacency matrix. We used a 5-
fold cross-validation method for training since the size of the
training set was small (<10 000). More details of the training
hyperparameters of our models are available in ESI.†
3 Results and discussions
3.1 Performance of our drug-likeness models on FDA/ZINC

We rst examined the performance of the GCN-based TCC
model and the RNN-based unsupervised learning model on
a classication test using FDA/ZINC15, a typical test set used in
other studies.29,33 QED was also included in the test for
comparison. We evaluated the AUROC of each model for the
same task.

Fig. 4 shows the resulting ROC curves, and the correspond-
ing AUROC values are given in the legend. The grey dotted line
indicates the ROC curve of a random classier whose AUROC
Chem. Sci., 2022, 13, 554–565 | 559



Fig. 4 ROC curves of the three drug-likeness models on the FDA/
ZINC15 test set. The values in the legend represent the AUROC value
of each ROC curve.

Table 3 AUROC values of the three drug-likeness models on different
test sets with respect to the negative sets. The maximum value for
each test set was written in bold

Chemical Science Edge Article
equals to 0.5. Notably, the two deep learning models showed
high AUROC values above 0.9, whereas that of QED (0.330) was
even worse than the random classication. These results indi-
cate the high potential of deep learning compared to traditional
data-driven approaches based on hand-craed features. Of the
two deep learning models, the GCN model performed slightly
better than the RNN model. The latter performed well with
a high AUROC value of 0.923, while the former showed an
almost perfect AUROC value close to 1 (0.991). It is not
surprising because the GCN model was trained with ZINC15 as
a negative set. If the feature difference between positive and
negative samples in a test set is similar to those in a training set,
it can readily be identied by the TCC model, leading to high
prediction accuracy. On the contrary, the RNN model, which
was trained in the way of unsupervised learning, has never seen
any molecule in ZINC15 during the training; it has been trained
only with Worlddrug as a true drug set. The model does not
explicitly learn the difference between positive and negative
samples. Instead, it evaluates to what extent the features of
molecules in either FDA or ZINC15 share with those of World-
drug. Thus, the high AUROC of the RNN model means that the
molecules of FDA had much more common features with those
of Worlddrug compared to those of ZINC15. However, the
AUROC of the RNN model (0.923) also implies that ZINC15
molecules also contain a slight extent of the common features
of Worlddrug molecules, leading to a slightly lower perfor-
mance than the GCN model.
Model FDA/GDB17 FDA/ZINC15 FDA/ChEMBL

RNN (unsupervised) 0.979 � 0.005 0.921 � 0.001 0.824 � 0.010
GCN (TCC) 0.747 � 0.002 0.991 � 0.000 0.701 � 0.012
QED (traditional) 0.539 � 0.024 0.326 � 0.003 0.549 � 0.004
3.2 Data dependency of the model performance

Next, we studied how consistent the performances of the three
models are across different datasets. This test is important for
560 | Chem. Sci., 2022, 13, 554–565
their practical use in virtual screening, especially considering
the fact that such models are trained with a tiny portion of the
entire chemical space of potential drug candidates. To assess
the generalization ability of our models, we evaluated the model
performance by changing the negative set to GDB17, ZINC15,
and ChEMBL, while using the same FDA positive set.

Table 3 shows the mean AUROC values along with the
standard deviation of each model during the ve tests on
GDB17, ZINC15, and ChEMBL negative sets. The standard
deviation value is relatively small compared to each mean value,
meaning that there is no signicant change in the performance
of the model. Therefore, we used results from a single test for
each data type throughout the article except for Table 3. The
bold values denote the highest AUROC value for each test set.
Except for FDA/ZINC15 discussed before, the RNN-based
unsupervised learning model outperformed the GCN model
and QED. The RNN model showed relatively high values with
the gradual decrease from GDB17 to ZINC15 to ChEMBL,
whereas QED underperformed consistently. In contrast, the
performance of the TCC model was signicantly decreased in
FDA/GDB17 and FDA/ChEMBL compared to FDA/ZINC15. It
should be noted that the AUROC value of the GCN model for
FDA/GDB17 was even lower than FDA/ZINC15, although mole-
cules in GDB17 can be regarded as more non-drug-like. This
result meets our expectation that the features learned in the
TCC model are particularly over-tted for distinguishing FDA
and ZINC15, but they may not work well with other test sets. In
that sense, unsupervised learning would be a more pragmatic
approach for drug-likeness by avoiding the data dependency
problem of the TCC model. In addition, we investigated
whether the data dependency is common to other data types of
negative training sets. We trained each model with a negative
set sampled from various data types and carried out the same
test with that of Table 3. The result (available in ESI†) conrmed
that the TCC model shows a similar data dependency to that of
Table 3 regardless of the data type.

The result in Table 3 may vary since we only used a small
fraction of the negative training set sampled randomly. To
examine such undesirable data dependency, we performed two
additional experiments. First, we trained the model with ve
different negative sets that have been sampled independently
from the same data type and assessed its performance. Second,
we applied a PU learning approach by regarding the negative set
as unlabeled since the xed negative set we assumed may
contain positive samples. The PU learning enables to label
reliable negative samples out of the unlabeled data automati-
cally, so it is expected to alleviate the data bias stemming from
© 2022 The Author(s). Published by the Royal Society of Chemistry
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the xed negative set. We adopted the PU learning method
proposed by Fusilier et al.49 In both experiments, we found no
signicant change in the model performance from the original
result in Table 3. For more details of the experiments, we refer
to the ESI Section.†
Fig. 5 The violin plots of drug-likeness scores on various datasets. (a)
The drug-likeness score distribution of QED. (b) The drug-likeness
score distribution of the RNN-based unsupervised learning model. (c)
The drug-likeness score distribution of the GCN-based TCC model.
3.3 Feasibility of drug-likeness scoring

Another expected advantage of unsupervised learning is that it
can naturally quantify drug-likeness from the learned distri-
bution of drug molecules. To test the feasibility of using the
learned probability distribution of the model as drug-likeness
scores, we analyzed the distribution of the output values of
each model for molecules in each test set. The RNN model
quanties the drug-likeness score of a query molecule using eqn
(2). On the other hand, the GCN model works as a classier, so
its output can be interpreted as the probability that a query
molecule belongs to the positive class. Thus, we regarded the
probability values as drug-likeness scores despite that there
would be a debate on whether the output value of the TCC
model can be used as an actual probability.50–52 QED was also
used for comparison.

Fig. 5 shows the prediction results of QED, the RNN model,
and GCN-based TCC model. As a baseline, QED failed to
discriminate the drug molecules in FDA from the other non-
drug-like molecules, as shown in Fig. 5(a). It evaluated
ZINC15 even as the most drug-like data set. One possible reason
for the remarkably high score is that ZINC15 has been made to
obey Ro5 for use in drug discovery. QED uses the features of Ro5
to evaluate drug-likeness score and hence it will score high if
test molecules obey Ro5. The result once again conrmed the
previous report that the features QED adopted were not effective
for drug-likeness scoring.29

In contrast, the RNN model gave separated distributions for
each case. Fig. 5(b) shows the results. The average output value
of the RNN model for each dataset gradually increases from the
lowest value of GDB17 to the highest value of FDA. The drug-
likeness distribution form of GDB17 is close to a typical
Gaussian distribution, presumably due to its nature as
a collection of randomly generated molecules. On the contrary,
the distribution form of the FDA is substantially distorted from
a Gaussian function toward higher values, which well reects
the fact that the FDAmolecules are true drugs. Interestingly, the
distribution shapes of ZINC15 and ChEMBL are closer to
a Gaussian function but with slight distortions toward higher
values; that of ChEMBL shows more distortion than that of
ZINC15. This propensity agrees with our expectation consid-
ering the characteristics of each dataset as discussed in the
dataset section; GDB17 as the most non-drug-like, subsequently
followed by ZINC15 and ChEMBL. This result also supports our
suggestion that the drug-likeness dened as eqn (2) can be
a reasonable alternative as a pragmatic tool to conventional
ones.

Notably, the score distributions given by the TCCmodel were
polarized to either 0 or 1 for all the datasets as shown in
Fig. 5(c). It gives well-discriminated scores for ZINC15 and FDA.
However, it failed to discriminate the other negative test sets
© 2022 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2022, 13, 554–565 | 561
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from FDA. This result is another evidence that the TCC model
was trained to discriminate ZINC15 and FDA only, so it cannot
be generalized to other datasets. Moreover, the TCC model may
cause overcondent judgments for unseen data. For example, it
predicted high probabilities above 0.9 for 53% of the GDB17
molecules, whereas it gave very low values below 0.1 for most
ZINC15 molecules. This is because the GCN model has used
ZINC15 as the negative training set. It tends to make over-
condent judgments for unseen molecules. In fact, such over-
condent prediction by the TCC model has been reported in
other domains as well.53,54

Fig. 6 shows ve randomly selected molecules from GDB17
that had extremely low drug-likeness scores, less than 25, pre-
dicted by the RNN model but had high probabilities above 0.95
estimated by the GCN model. While the RNN model scored
them as non-drug-like, which seems reasonable, the GCN
model strongly predicted them as drug-like as a result of over-
condence. QED also assigned relatively high values to those
molecules ranging from 0.6 to 0.8.
3.4 Testing models on virtual screening scenario

As the nal test, we applied our models to the investigation set
consisting of molecules in clinical phases. This task is closer to
a real virtual screening scenario that aims to select compounds
from numerous candidates with considerable potential to pass
through all clinical trials. Classifying them into drugs and non-
drugs is challenging because they have relatively high proba-
bilities of being approved drugs than the other negative sets
presented in this work and thus may share more common
features with the known drugs. We compared the drug-likeness
Fig. 6 Examples of overconfident predictions of the GCN-based TCC
model within the GDB17 dataset, a set of highly non-drug-like mole-
cules. The GCN output probabilities of those molecules are written as
bold with red color, where all of them are larger than 0.95. The drug-
likeness scores obtained by the RNN-based language model are
written as bold with blue color, where all of them are less than 25, fairly
small compared to scores of drug molecules. QED also showed slight
overconfidence, where all of the QED values were between 0.6 and
0.8.

562 | Chem. Sci., 2022, 13, 554–565
score for the molecules in the investigation set with those of
ChEMBL and FDA.

Fig. 7(a)–(c) exhibits the distributions of the drug-likeness
predicted by QED, the GCN-based TCC model, and the RNN-
based unsupervised learning model for the three datasets,
respectively. Both QED and GCN models provided indistin-
guishable distributions across the three datasets, manifesting
their limitations for practical use. The QED scores show very
Fig. 7 Distribution of the drug-likeness scores of the investigation set.
The distribution of ChEMBL and FDAwere also plotted for comparison.
(a) The distribution of QED. (b) The distribution of the output of the
GCN-based TCC model. (c) The distribution of the drug-likeness
scores from the RNN-based language model.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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similar distributions for all the datasets, covering a broad range
from 0 to 1, already shown in Fig. 5(a). In contrast, the GCN
model resulted in polarized distributions to either 0 or 1 for all
the datasets, as observed in Fig. 5(c).

Meanwhile, the RNN-based unsupervised learning model
made a meaningful difference in the distribution of the three
test sets. The distribution form for the investigation set looks
more similar to that of ChEMBL. We suspect that the relatively
low discrimination between the ChEMBL and investigation sets
may be due to limitations in unsupervised learning. It only
evaluates how similar molecules in the test set are to those in
the training data (in this case, Worlddrug). If the two test sets
have almost equal extent of similarity to the training set, they
may have similar drug-likeness scores, even though they are
different from one another. Nonetheless, the investigation set
has more portions at higher values, which follows the propen-
sity observed in Fig. 5(b) Compared to the FDA case, however,
the investigation set had more molecules in lower values (less
than 60). On average, the RNN model placed the investigation
set between ChEMBL and FDA. This prediction result can be
rationalized considering the fact that only less than 10% of the
drug candidates in clinical trials can eventually be approved as
drugs,5,31,55 while the ChEMBL molecules have a much lower
success rate. It should be noted that the RNN-based drug-
likeness score proposed here has not been proved to be
directly interpreted as the real probability of being approved.
However, it has shown the feasibility as an alternative to
conventional drug-likeness scoring methods.

4 Conclusion

Here we proposed a new approach based on unsupervised
learning for drug-likeness scoring. A recurrent neural network
(RNN)-based language model was adopted for implementation.
We also implemented a graph convolution network (GCN)-based
two-class classication (TCC) model for comparison. We tested
the two deep learning models on various test sets, including
GDB17, ZINC15, ChEMBL as a negative set and approved drug
molecules in the FDA and Worlddrug databases as a positive set.
We also considered the investigation group (investigation set) in
the DrugBank database, which contains molecules in clinical
phases. The GCN-based TCC model showed excellent perfor-
mance when a test set was similar to a training set. However, its
performance severely degraded for the other test sets. In
contrast, the RNN-based unsupervised learning model showed
relatively low data dependency. It determines the drug-likeness
of a query molecule by identifying to what extent the molecule
shares the common features of the drug molecules used in
training. Thus, it can avoid such a strong dataset dependency
observed in the TCC model. In addition, the unsupervised
learning model well-separated drug-likeness distributions with
increasing mean values in the order of GDB17, ZINC15,
ChEMBL, Investigation set, and FDA. This result meets our
expectation that molecules at a later step in a drug development
process would be more drug-like than those at an earlier step.
However, the TCC model predicted a polarized distribution with
two extreme values (0 or 1) for all datasets, presumably due to the
© 2022 The Author(s). Published by the Royal Society of Chemistry
well-known overcondence problem. Therefore, unsupervised
learning can be a practical approach for drug-likeness scoring as
an alternative to conventional methods.

In this study, we represented molecules with SMILES to
implement the RNN-based unsupervised learning model. The
drug-likeness score is given as the sum of the log values of each
conditional probability output of the RNN model. It should be
noted that the RNN model tends to give a higher drug-likeness
score for molecules with shorter SMILES codes regardless of
their structures, presumably due to numerical issues. For
example, methane (obviously non-drug-like molecule), repre-
sented as ‘C(EOS)’ in SMILES, can have a high drug-likeness
score. Similarly, molecules with longer SMILES codes can
have lower drug-likeness scores since the conditional proba-
bility of each character in SMILES, which should be smaller
than one, is multiplied many times. We expect such weakness
can be resolved by using other unsupervised learning models
with better model architectures and molecular representation.

Apart from that, the idea of using unsupervised learning for
the drug-likeness prediction can be readily applied to other
problems in which only one class of data is primarily available.
Toxicity, metabolic stability, or synthetic accessibility can be
such examples. We believe that our concept proposed here
offers new opportunities to solve biochemical problems using
a deep learning approach.
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