
Research Article
Solving the Manufacturing Cell Design Problem through Binary
Cat Swarm Optimization with Dynamic Mixture Ratios

Ricardo Soto ,1 Broderick Crawford ,1 Angelo Aste Toledo,1

Hanns de la Fuente-Mella ,1 Carlos Castro ,2 Fernando Paredes ,3

and Rodrigo Olivares 4

1Pontificia Universidad Católica de Valparaı́so, Avenida Brasil 2241, Valparaı́so 2362807, Chile
2Universidad Técnica Federico Santa Maŕıa, Avenida España 1680, Valparaı́so 2390123, Chile
3Universidad Diego Portales, Av. Ejército 441, Santiago 8370109, Chile
4Universidad de Valparaı́so, General Cruz 222, Valparaı́so 2603631, Chile

Correspondence should be addressed to Hanns de la Fuente-Mella; hanns.delafuente@pucv.cl

Received 29 October 2018; Revised 11 January 2019; Accepted 14 January 2019; Published 14 February 2019

Academic Editor: Oscar Castillo

Copyright © 2019 Ricardo Soto et al. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this research, we present a Binary Cat Swarm Optimization for solving the Manufacturing Cell Design Problem (MCDP). +is
problem divides an industrial production plant into a certain number of cells. Each cell contains machines with similar types of
processes or part families. +e goal is to identify a cell organization in such a way that the transportation of the different parts
between cells is minimized. +e organization of these cells is performed through Cat Swarm Optimization, which is a recent
swarm metaheuristic technique based on the behavior of cats. In that technique, cats have two modes of behavior: seeking mode
and tracing mode, selected from a mixture ratio. For experimental purposes, a version of the Autonomous Search algorithm was
developed with dynamic mixture ratios. +e experimental results for both normal Binary Cat Swarm Optimization (BCSO) and
Autonomous Search BCSO reach all global optimums, both for a set of 90 instances with known optima, and for a set of 35 new
instances with 13 known optima.

1. Introduction

Group technology is a manufacturing philosophy in which
similar parts are identified and grouped together to take
advantage of their similarities in design and production [1]
by organizing similar parts into part families, where each
part of the family has similar design and manufacturing
characteristics. +e basic concept of group technology has
been practiced for many years around the world, as part of
good engineering and scientific management practices [2, 3],
which states that similar things should be manufactured in a
similar way [4].

+e Manufacturing Cell Design Problem (MCDP) is an
application of group technology to organize cells containing
a set of machines to process a family of parts [5]. In this
context, MCDP involves the creation of an optimal design

of production plants, in which the main objective is to
minimize the movement and exchange of material between
these cells, thus generating greater productivity and re-
ducing production costs.

+e Manufacturing Cell Design Problem belongs to the
complex NP-hard class of problems, and then exploring
good search algorithms is always a challenging task from the
optimization and now also from the artificial intelligence
world [5]. In particular, in this paper, an efficient meta-
heuristic implementation is proposed to tackle this problem,
demonstrating through several benchmark instances its
performance (various global optima are reached), which is
also valuable from an artificial intelligence and optimization
standpoint. Additionally, this algorithm includes an Au-
tonomous Search Component (dynamic mixture ratio),
which is currently an important research trend in the

Hindawi
Computational Intelligence and Neuroscience
Volume 2019, Article ID 4787856, 16 pages
https://doi.org/10.1155/2019/4787856

mailto:hanns.delafuente@pucv.cl
http://orcid.org/0000-0002-5755-6929
http://orcid.org/0000-0001-5500-0188
http://orcid.org/0000-0003-2564-8770
http://orcid.org/0000-0003-4149-7730
http://orcid.org/0000-0003-0223-6052
http://orcid.org/0000-0003-0582-954X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/4787856


optimization and metaheuristic sphere. Metaheuristics are
intrinsically complex to be configured in order to reach good
results, and Autonomous Search comes to facilitate this task
by letting the metaheuristic itself to self-tune its internal
configuration without the need of a user expert for reaching
good results. To the best of our knowledge, the work done on
Autonomous Search in metaheuristics is very recent, and no
Autonomous Search work for cat swarm exists.

+e research work that has been done to solve the
problem of cell formation has followed two complementary
lines, which can be organized into two groups: approximate
methods and exact methods. Approximate methods are
mostly focused on finding an optimal solution in a limited
time; however, they do not guarantee a global optimum. Exact
methods, on the contrary, aim to fully analyze the search
space to ensure a global optimum [6]; however, these algo-
rithms are quite time-consuming and can only solve cases of
very limited size. For this reason, many research efforts have
focused on the development of heuristics, which find near-
optimal solutions within a reasonable period of time.

+is research focuses on solving the MCDP through a
recent metaheuristic in the vein of Swarm Intelligence (SI)
[7] called Binary Cat Swarm Optimization (BCSO) [8]. +is
algorithm was generated from observations of cat behavior
in nature, in which cats either hunt or remain alert. BCSO is
based on the CSO algorithm, recently proposed by Chu and
Tsai [9]. +e difference is that in BCSO, the vector position
consists of ones and zeros, instead of real numbers (CSO),
and the proposed alternate version makes use of a dynamic
mixture ratio.

As aforementioned, reaching good results for problems
belonging from the NP class is always a challenging and
appealing task from the optimization and artificial in-
telligence world. In this research, our goal was to provide an
intelligent algorithm for solving this problem by additionally
integrating self-tuning features, which is a very recent re-
search trend in the optimization and metaheuristic sphere.

2. Theoretical Framework

+e formation of manufacturing cells has been researched
for many years. One of the first investigations focused on
resolving this set of problems was Burbidge’s work in 1963
[4], which proposed the use of an incidence matrix reor-
ganized into a Block Diagonal Form (BDF) [4]. In recent
years, many exact and heuristic algorithms have been
proposed in the literature to solve MCDP. Such meta-
heuristic techniques include genetic Algorithm (GA) [10],
inspired by biological evolution and its genetic-molecular
basis; the Neural Network (NN) [11] that takes the behavior
of neurons and the connections of the human brain; and
Constraint Programming (CP) [12] where the relationships
between the variables are expressed as constraints. For ex-
tensive reviews of previous research and other methods of
cell formation, see Selim et al. [1].

Among the metaheuristics used for cell formation, there
is also the branch of Swarm Intelligence, which was initially
introduced by Beni and Wang in 1989 [13]. Inspired by

nature, Swarm Intelligence systems are typically formed by a
population of simple agents who interact locally with each
other and with their environment and who are able to
optimize an overall objective through the search for col-
laboration in a space [14]. Within this branch, the main
techniques are Particle SwarmOptimization (PSO) designed
and presented by Eberhart et al. [7, 9] in 1995; Ant Colony
Optimization (ACO), which is a family of algorithms de-
rived from Dorigo’s 1991 work based on the social behavior
of ants [15, 16]; Migrating Birds Optimization (MBO) [17]
algorithm based on the alignment of migratory birds during
flight; Artificial Fish Swarm Algorithm (AFSA) [18], based
on the behavior of fish to find food by themselves or by
following other fish; and the discrete Cat Swarm optimi-
zation (CSO) Technique presented in 2007 by Chu and Tsai
[9], which is based on the behavior of cats. Interestingly, the
CSO cat corresponds to a particle in PSO, with a small
difference in its algorithms [19, 20]. CSO and PSO were
originally developed for continuous value spaces, but there
are a number of optimization problems where the values are
discrete [21].

3. The Manufacturing Cell Design Problem

+eManufacturing Cell Design Problem (MCDP) divides an
industrial production plant into a number of cells. Each cell
contains machines with similar process types or part fam-
ilies, determined according to the similarity between parts
[4]. A manufacturing cell can be defined as an independent
group of functionally different machines, located together,
dedicated to the manufacture of a family of similar parts. In
addition, a family of parts can be defined as a collection of
parts that are similar, either because of their geometric shape
and size or because similar processing steps are required to
manufacture them [22].

+e goal of MCDP is to identify a cell organization in a
way that minimizes the transport of different parts between
cells, in order to reduce production costs and increase
productivity. +e idea is to represent the processing re-
quirements of machine parts through an incidence matrix
called machine part. +is reorganization involves the for-
mulation of two new matrices called machine-cell and part-
cell.

A detailed mathematical definition of the formulation of
the machine-part clustering problem is defined by the op-
timization model explained below [6]:

(i) M: number of machines
(ii) P: number of parts
(iii) C: number of cells
(iv) i: machine index (i � 1, 2, . . . , M)
(v) j: part index (j � 1, 2, . . . , P)
(vi) k: cell index (k � 1, 2, . . . , C)
(vii) Mmax: maximum number of machines per cell
(viii) A � [aij]: machine-to-part binary incidence ma-

trix, where

2 Computational Intelligence and Neuroscience



aij �
1, if machine i processes a part j,

0, otherwise.
 (1)

(ix) B � [bij]: machine-to-part binary incidence ma-
trix, where

bik �
1, if machine i belongs to cell k,

0, otherwise.
 (2)

(x) C � [cjk]: machine-to-part binary incidence ma-
trix, where

cjk �
1, if part j belongs to cell k,

0, otherwise.
 (3)

4. Binary Cat Swarm Optimization

+ere are about thirty different species of known felines,
e.g., lions, tigers, leopards, common housecat, etc. [23].
Although they have different living environments, cats share
similar behavioral patterns [24]. For wild cats, the ability to
hunt ensures food supply and survival of the species [25]. To
hunt their food, wild cats form groups ranging from 2–15
individuals [26]. Domestic cats also show the same ability to
hunt and are curious about moving objects [26–28]. Al-
though cats might seem to be resting most of the time, even
when awake [29, 30], they are actually in a constant state of
alert; without moving, they may be listening or have their
eyes open to look around [31]. BCSO [8] was formulated on
the basis of all these behaviors and is an optimization al-
gorithm that mimics the natural behavior of cats [9, 32, 33].
+e authors identified two main modes of behavior for
simulating cats [3, 34–39]:

(i) Seeking mode: exploration-oriented mode, where
cats are attracted by moving objects and have a high
hunting capacity. Cats may seem to spend most of
their time resting, but in fact, they are constantly
alert when moving slowly.

(ii) Tracing mode: exploitation-oriented mode, where
cats detect a prey and run after it, spending a lot of
energy due to its rapid movements. In this way, the
cats follow the best in their group.

In BCSO, these two behaviors are mathematically mod-
eled to solve complex optimization problems. +e first de-
cision is to define the number of cats needed for each
iteration. Each cat, represented by catk, where k ∈
1, 2, . . . , C{ }, has its own position consisting ofM dimensions
composed of ones and zeros (1 and 0). In addition, they have
speed for each dimension d, a flag to indicate whether the cat
is in the seeking or tracing mode, and finally a fitness value
that is calculated based on the MCDP. +e BCSO keeps
looking for the best solution until iterations are finalized. In
BCSO, each catx represents a MCDP solution through a
machine-cell matrix, where x identifies the cat and d are the
position bits of the cat. In addition, the constraint matrix
ensures that each row i is covered by at least one column.

Algorithm 1 describes the general BCSO pseudocode
where the mixture ratio (MR) is a percentage that de-
termines the number of cats in the seeking mode.

4.1. SeekingMode. +is submodels the state of the cat, which
is resting, looking around, and seeking the next position to
move towards. +e seeking mode has the following essential
factors:

(i) PMO: probability of mutation operation, a per-
centage that defines the mutation probability for the
selected dimension.

(ii) CDC: counts of dimensions to change, a percentage
that indicates how many dimensions are candidates
to change.

(iii) SMP: seeking memory pool, a positive integer used
to define the memory size for each cat. SMP in-
dicates the points to be scanned by the cat and can
be different for different cats.

+e following pseudocode describes the behavior of the
cat in the seeking mode. Here, FSi is the fitness of the ith cat,
and FSb � FSmax finds the minimum solution and
FSb � FSmin the maximum solution. To solve the MCDP, we
use FSb � FSmax.

Step 1: create SMP copies of current catx.
Step 2: for each copy:
for dimensions that are candidates for change (based on
CDC percentage):
get a random number (rand) between 0 and 1
if rand<PMO, then the position changes.
Step 3: evaluate Fitness of all copies.
Step 4: calculate the selection probability by applying a
roulette wheel or, by default, choose the best copy
according to Fitness.

Pi �
FSi − FSb

FSmax − FSmin




. (4)

Step 5: evaluate if the chosen copy is a better solution
than the currently selected cat, and replace accordingly.

Figure 1 shows the flow chart of the behavior of the cat in
the seeking mode.

4.2. TracingMode. +is submodel is used to model the state
of the cat in hunting or tracing behavior, where the cats are
moving towards the best solution obtained so far. Once a cat
enters the tracing mode, it moves according to its own
velocities for each dimension. Each cat has two velocity
vectors, defined as V1

kd and V0
kd, where V0

kd is the probability
that the bits of the cat change to zero and V1

kd is the
probability they change to one. +e velocity vector changes
its meaning with the probability of mutation for each di-
mension d. +e tracing mode action is described in the
following pseudocode.

Computational Intelligence and Neuroscience 3



Step 1: calculate d1
kd and d0

kd according to the following
expression, where Xbest,d is the dimension d of the best
cat, r1 has random values in the range of [0,1], and c1 is
a user-defined constant.

If Xbest,d � 1, then d
1
kd � −r1c1, andd

0
kd � r1c1,

If Xbest,d � 0, then d
1
kd � r1c1y, d

0
kd � −r1c1.

(5)

Step 2: update values for V1
kd and V0

kd according to the
expression, where w is the inertia weight and M is the
number of columns.

V1
kd � ωV1

kd + d1
kd,

V0
kd � ωV0

kd + d0
kd,

d � 1, . . . , M . (6)

Step 3: calculate the velocity of catk, V
′
kd, according to

V
′
kd �

V1
kd, If Xkd � 0,

V0
kd, If Xkd � 1.

⎧⎨

⎩ (7)

Step 4: calculate the probability of mutation in each
dimension, defined by parameter Tkd which takes a
value in the interval of [0,1]

Tkd �
1

1 + e−V
′
kd

. (8)

Step 5: based on the value of Tkd, the new value of each
dimension of the cat is updated as follows:

Xkd �
Xbest,d, If rand< tkd,

Xkd, If tkd < rand,
 d � 1, . . . , M. (9)

+e maximum velocity vector of V
′
kd must be limited to

value Vmax.
If the value of V

′
kd surpasses that of Vmax, V

′
kd must be

selected for the corresponding velocity dimension.
+e following is a flow chart for a cat in the tracing mode

(Figure 2).

5. Solving the Manufacturing Cell Design
Problem (MCDP)

To solve the MCDP, it is essential to use a repair method for
solutions that were not feasible. Algorithm 2 describes the
pseudocode used to solve the MCDP.

Make SMP
copies of catx

Allow SMP copies to mutate based
on PMO and CDC

Evaluate the fitness of all copies

Use roulette wheel to pick the point
to move to from the candidate point

Replace the current position
with the selected candidate

Calculate the selecting probability
of each candidate point according to

Pi = FSi – FSb/FSmax – FSmin

Figure 1: Seeking mode.

(1) Create C cats
(2) Randomly initialize cat position values with values between 1 and 0
(3) Initialize velocities and flag of each cat;
(4) while (i<NumberIterations) do
(5) Evaluate cats according to fitness function
(6) Store the position of the best cat, which has best fitness
(7) for (x� 1 to C) do
(8) if (randomNumber<MixtureRatio) then
(9) Apply seeking mode process to catx
(10) else
(11) Apply tracing mode process to catx
(12) end if
(13) Evaluate new solution, update values
(14) end for
(15) end while
(16) Postprocess results and visualization.

ALGORITHM 1: Binary Cat Swarm Algorithm.

4 Computational Intelligence and Neuroscience



6. Repair Method

A solution may not satisfy the constraints, resulting in an
unworkable solution. For this reason, the value that violates
the constraint is repaired instead of the matrix being re-
moved. In this section, a function is described to transform
nonfeasible solutions into feasible solutions.

+us, Algorithm 3 presents a repair method in which all
rows not covered are identified and assigned accordingly.
+is will cover all restrictions.

7. Autonomous Search

Autonomous Search (AS) is a modern approach that allows
the solver to automatically reconfigure its resolution pa-
rameters to provide better performance when bad results are
detected [40].

In this context, performance is assessed through in-
dicators that collect relevant information during the search.
Search parameters are then updated advantageously
according to the results obtained by the fitness evaluation.

+is approach has been effectively applied to different
optimization and satisfaction techniques, such as Constraint
Programming [41], SAT [42], mixed integer programming
[43, 44], and various other metaheuristic techniques
[45–47].

In the present investigation, a version of the BCSO with
Autonomous Search has been implemented, where the
mixture ratio (MR) variable is used as an autonomous
parameter; i.e., the MR value changes while the program is
executed to give a more dynamic algorithm that directly
influences the mode that the cat will take.

Algorithm 4 is the pseudocode describing the Autono-
mous Search BCSO.

8. Results

+e BCSO implementation process of MCDP has led to
results that will be presented in the following section. +e
metaheuristic was programmed in the JAVA programming
language. For the execution of the algorithm, the parameters
considered were the following:

(i) Iterations� 5000
(ii) Number of cats� 30
(iii) MR� 0.75 (75% seeking; 25% tracing)
(iv) SMP� 15
(v) CDC� 0.2
(vi) PMO� 0.76
(vii) w � 1
(viii) c1 � 1
(ix) r1 ∈ [0, 1]

9. Boctor Instances

Tests with the implemented solution were carried out based
on 90 instances of 16× 30 matrices, obtained from 10
problems found in the paper of Boctor [48], hereafter called
Boctor Instances. +ese problems included the use of 2 or
3 cells. In the case of 2 cells, the maximum number of
machines (Mmax) in each took values between 8 and 12. In
the case of 3,Mmax varied between 6 and 9 machines per cell.
In both cases, the value of Mmax remained constant
throughout the execution of the algorithm.

+e values obtained by submitting each problem to the
Classic BCSO and BCSO with Autonomous Search are
summarized in Tables 1–9, where “O” denotes the global
optimum given in [48]; “BCSO,” the best value obtained by
the BCSO here proposed; “A,” the average number of optima
obtained; “I,” the average number of iterations in which the
optimum is reached; ”Ms,” the time (in milliseconds) used to
reach the optimum; and “RPD,” the Relative Percent Dif-
ference, calculated as follows:

RPD �
Z−Zopt

Zopt
∗ 100, (10)

where Zopt is the best known optimal value and Z is the best
optimal value achieved by BCSO.

d = 1

End

NoYes

NoYes

NoYes

Yes

No

Xbest,d is 1?

Xkd is 1?

rand < tkd

d = d + 1

d ≤ M

d1
kd = r1c1

d0
kd = –r1c1

d1
kd = –r1c1

d0
kd = r1c1

V1
kd = wV1

kd + d1
kd

V 0
kd = wV 0

kd + d0
kd

V′kd = V 0
kd V′kd = V1

kd

tkd = 1/1 + e–V′kd

Xkd = Xkd Xkd = Xbest,d

Figure 2: Tracing mode.

Computational Intelligence and Neuroscience 5



+e above results were run 40 times for each of the 90
Boctor Instances. It is important to point out that 100% of
these were optimized, proving that BCSO can work with any
MCDP instance. +e performance of the BCSO meta-
heuristic in its Autonomous Search version was slightly
better, demonstrated by some of the optima averages
reached in the experimental results.

10. Other Author Instances

To analyze the effectiveness of the implemented algorithm in
a wider range of problems, new instances from different
authors were investigated. Matrix sizes ranged from 5 to 40
machines and from 7 to 100 parts. Table 10 shows the in-
stances used:

In order to improve the quality of the exhibited behavior
by the autonomous version of the Binary Cat Swarm Op-
timization, we performed a detailed comparison by using
these new instances, because they are hardest. +is com-
parison includes two well-known metaheuristics: the first
one is inspired by the behavior of the Egyptian vulture
(EVOA) [71], and the second one mimics the flashing be-
havior of fireflies [72]. Table 11 reports the result com-
parison between our proposal and the methods published
in [73].

If it observes the showed results for instances CF01 to
CF11, we can conclude that BCSO presents a similar per-
formance to EVOA. In both cases, the optimal values are
reached. Moreover, we note the worst and mean values are
equal. +is behavior can be attributed to the similarity of the

(1) Create C cats, each cat is a machine-cell matrix
(2) Initialize the machine-cell matrices with random values (1 or 0)
(3) Initialize all other parameters for each cat
(4) while (i<NumberIterations) do
(5) Evaluate MCDP fitness of the cats
(6) Store position of Best Matrix catx with highest fitness value
(7) for (x� 1 to C) do
(8) if (randomNumber<MixtureRatio) then
(9) Apply seeking mode process to catx
(10) Repair each modified matrix
(11) else
(12) Apply tracing mode process to catx
(13) Repair each modified matrix
(14) end if
(15) Evaluate new solution and update values
(16) end for
(17) end while
(18) Postprocess results and visualization

ALGORITHM 2: Solving MCDP.

(1) for (i to Machines) do
(2) for (j to Cells) do
(3) Count the number of cells the same machine is assigned to
(4) end for
(5) if (Assignments!� 1) then
(6) Calculate least cost column
(7) Assign the machine to the calculated least cost cell
(8) end if
(9) end for
(10) for (i to Machines) do
(11) for (j to Cells) do
(12) Count the number of machines in the same cell
(13) end for
(14) if (Number of grouped machines is greater than Mmax) then
(15) Find cell with fewer machines assigned
(16) Reassign the machine to found cell
(17) end if
(18) end for

ALGORITHM 3: Repairing solutions.

6 Computational Intelligence and Neuroscience



operations between both algorithms. Now, if it evaluates
MFAO with respect to BCSO, we again can report a similar
conclusion. Nevertheless, in CF05 and CF07, BCSO ach-
ieves two optimal values that they are not reached with
MFAO.

From CF12 onwards, BCSO begins to exhibit an
outstanding performance. For instance, in CF12, BCSO is
the only one that finds the best solution (optimum value)
reaching RPD 0%. Its closer competitor (MBFA) obtains
RPD 28.57%. However, the biggest significant difference
can be seen from CF15. In this instance, BCSO exhibits
higher efficiency than EVOA and it overcomes the reached

value by MBFA. Now, if taken any instances between
CF16 and CF 35 (more than 57% of instances), the good
yield of the BCSO exceeds the two compared approaches
term of the best-found values, average-found values, and
worst-found values also. +erefore, we can state that
BCSO is more than a competitive technique. It is a real
alternative for solving the Manufacturing Cell Design
Problem.

Now, the values obtained by submitting each problem to
Classic BCSO and BCSO with Autonomous Search are
summarized in Table 12, where the global optimum is given
in [74].

(1) while (i<NumberIterations) do
(2) if (FitnessIteration� � FitnessIterationPrevious) then
(3) RepetitionsFitness++
(4) else
(5) RepetitionsFitness� 0
(6) end if
(7) if (RepetitionsFitness> 30) then
(8) Change MixtureRatio to 1/(MixtureRatio∗ 50)
(9) if (MixtureRatio< 10%) then
(10) Change MixtureRatio to MixtureRatio∗ 15
(11) if (MixtureRatio< 50%) then
(12) Reinitialize 5 cat (machine-cell matrices) with random values (1 or 0)
(13) for (x� 1 to C) do
(14) Change PMO to 0.9
(15) Change CDC to 0.3
(16) end for
(17) else
(18) for (x� 1 to C) do
(19) Restore PMO value to 0.76
(20) Restore CDC value to 0.2
(21) end for
(22) RepetitionsFitness� 0
(23) end if
(24) end if
(25) Order cat arrangements
(26) end if
(27) end while

ALGORITHM 4: Autonomous search.

Table 1: Experimental results with cell� 2 and Mmax � 8.

Results for Boctor Instances with C� 2 Mmax � 8

P O Classic BCSO Autonomous Search BCSO
BCSO A RPD I Ms BCSO A RPD I Ms

1 11 11 11 0.00 5 30697.5 11 11 0.00 5 15977.6
2 7 7 7 0.00 7 27797.7 7 7 0.00 7 14487.6
3 4 4 4.05 0.00 79 27927.8 4 4 0.00 133 14175.7
4 14 14 14 0.00 5 29998.9 14 14 0.00 6 15149.6
5 9 9 9 0.00 93 28348.8 9 9 0.00 102 14358.0
6 5 5 5 0.00 5 28233.3 5 5 0.00 8 14165.0
7 7 7 7 0.00 5 28338.9 7 7 0.00 7 14562.7
8 13 13 13 0.00 6 28860.8 13 13 0.00 7 14895.6
9 8 8 8 0.00 6 28206.7 8 8 0.00 8 14583.8
10 8 8 8 0.00 19 28547.1 8 8 0.00 20 14750.2
X 8.6 8.6 8.605 0.00 23 28695.7 8.6 8.6 0.00 30.3 14710.6

Computational Intelligence and Neuroscience 7



+e above results were obtained after 40 executions for
each of the 35 new instances. It should be noted that it was
possible to reach optima in 100% of instances for both
algorithms, proving that BCSO can work with almost any
instance. +e performance of the BSCOmetaheuristic in its
Autonomous Search version was slightly better, demon-
strated in some of the optima achieved, improving by 3%
with respect to the original.

11. Results for Boctor Instances Using BCSO
and BCSO with Autonomous Search

Figure 3 shows the results of the experiments conducted
for the Boctor Instances presented above. +anks to the
operation mode of the BCSO, a fast optimum convergence
is obtained at C � 2; however, when C � 3, the BCSO does
not converge as quickly that said, the optimum is reached

Table 2: Experimental results with cell� 2 and Mmax � 9.

Results for Boctor Instances with C� 2 Mmax � 9

P O Classic BCSO Autonomous Search BCSO
BCSO A RPD I Ms BCSO A RPD I Ms

1 11 11 11 0 5 19412 11 11 0 5 15109.4
2 6 6 6 0 5 17803.6 6 6 0 12 14284.1
3 4 4 4 0 5 16817 4 4 0 6 14140.3
4 13 13 13 0 5 18236.3 13 13 0 5 15027.4
5 6 6 6 0 81 16863.1 6 6 0 57 14228.9
6 3 3 3 0 10 16552.5 3 3 0 24 13997.8
7 4 4 4 0 5 17681.6 4 4 0 5 14432.9
8 10 10 10 0 7 18277.8 10 10 0 9 14734.4
9 8 8 8 0 5 17690.7 8 8 0 5 14473.7
10 5 5 5 0 7 18035.8 5 5 0 7 14645.4
X 7 7 7 0 13.5 17737 7 7 0 13.5 14507.4

Table 3: Experimental results with cell� 2 and Mmax � 10.

Results for Boctor Instances with C� 2 Mmax � 10

P O Classic BCSO Autonomous Search BCSO
BCSO A RPD I Ms BCSO A RPD I Ms

1 11 11 11 0 5 18084.4 11 11 0 5 15047
2 4 4 4 0 9 16894.2 4 4 0 11 14336.8
3 4 4 4 0 5 16221.7 4 4 0 5 13991
4 13 13 13 0 6 17602.6 13 13 0 6 15051.8
5 6 6 6 0 7 16459.6 6 6 0 36 14620.4
6 3 3 3 0 8 16217.7 3 3 0 38 14853.1
7 4 4 4 0 5 16828.9 4 4 0 6 15199.7
8 8 8 8 0 8 17648.1 8 8 0 8 15858.6
9 8 8 8 0 6 16669.3 8 8 0 5 15226.4
10 5 5 5 0 6 16713.1 5 5 0 7 15591.5
X 6.6 6.6 6.6 0 6.5 16933.96 6.6 6.6 0 12.7 14977.63

Table 4: Experimental results with cell� 2 and Mmax � 11.

Results for Boctor Instances with C� 2 Mmax � 11

P O Classic BCSO Autonomous Search BCSO
BCSO A RPD I Ms BCSO A RPD I Ms

1 11 11 11 0 5 17173.2 11 11 0 5 16818.2
2 3 3 3 0 7 16000.2 3 3 0 9 15159.5
3 3 3 3 0 8 15755.9 3 3 0 29 14537.3
4 13 13 13 0 6 17011.4 13 13 0 6 15634.2
5 5 5 5 0 9 16680.3 5 5 0 18 14958.3
6 3 3 3 0 6 16433.2 3 3 0 7 28722.4
7 4 4 4 0 5 16714.5 4 4 0 6 15837.8
8 5 5 5 0 6 17223.9 5 5 0 6 17155.2
9 5 5 5 0 10 16733.8 5 5 0 22 16827.5
10 5 5 5 0 6 16698.9 5 5 0 7 17077.1
X 5.7 5.7 5.7 0 6.8 16642.53 5.7 5.7 0 12 17272.75

8 Computational Intelligence and Neuroscience



in most cases before 100 executions, which demonstrates
the effectiveness of the proposed approach.

Figure 4 shows the results of problem 3, C� 2 and
Mmax � 8, over iterations. Both versions converge quickly:
while the Autonomous Search BCSO reaches the optimum

early (iteration 10), the normal BCSO is stuck at optimum of
fitness 5 at iteration 4.

+e following graph (Figure 3) shows the results of
problem 7, with C � 3, Mmax � 8, reaching the overall
optimum in both cases at similar iterations: normal

Table 5: Experimental results with cell� 2 and Mmax � 12.

Results for Boctor Instances with C� 2 Mmax � 12

P O Classic BCSO Autonomous Search BCSO
BCSO A RPD I Ms BCSO A RPD I Ms

1 11 11 11 0 5 18226.7 11 11 0 5 17694.2
2 3 3 3 0 6 16901.6 3 3 0 6 16481
3 1 1 1 0 8 16377.7 1 1 0 21 15203.2
4 13 13 13 0 5 17816.3 13 13 0 6 15927.9
5 4 4 4 0 6 16824.9 4 4 0 20 15004.5
6 2 2 2 0 35 16411.3 2 2 0 158 14512
7 4 4 4 0 6 16939 4 4 0 6 15269.6
8 5 5 5 0 7 17716.7 5 5 0 7 15861.7
9 5 5 5 0 8 17175.5 5 5 0 18 15091
10 5 5 5 0 6 20025.5 5 5 0 7 15258.2
X 5.3 5.3 5.3 0 9.2 17441.52 5.3 5.3 0 25.4 15630.33

Table 6: Experimental results with cell� 3 and Mmax � 6.

Results for Boctor Instances with C� 3 Mmax � 6

P O Classic BCSO Autonomous Search
BCSO A RPD I Ms BCSO A RPD I Ms

1 27 27 27 0 40 23130.3 27 27 0 85 18900.6
2 7 7 7 0 12 21710.5 7 7 0 11 17891.1
3 9 9 9 0 38 21010.5 9 9 0 52 437225
4 27 27 27 0 10 22764.7 27 27 0 11 18664.8
5 11 11 11 0 11 21380.6 11 11 0 11 17956.1
6 6 6 6 0 13 20749.7 6 6 0 15 17323.4
7 11 11 11 0 60 21698.3 11 11 0 91 17904.1
8 14 14 14 0 14 22665.2 14 14 0 12 18360.5
9 12 12 12 0 12 21730.1 12 12 0 22 17725.5
10 10 10 10 0 27 22397.3 10 10 0 32 18011.2
X 13 13.4 13 0 24 21923.7 13.4 13.4 0 34 59996.3

Table 7: Experimental results with cell� 3 and Mmax � 7.

Results for Boctor Instances with C� 3 Mmax � 7

P O Classic BCSO Autonomous Search
BCSO A RPD I Ms BCSO A RPD I Ms

1 18 18 18 0 42 22915.4 18 18 0 49 18995.1
2 6 6 6 0 14 21540.1 6 6 0 16 18216.9
3 4 4 4 0 27 20955.9 4 4 0 20 17177.4
4 18 18 18 0 21 23486.3 18 18 0 22 18684
5 8 8 8 0 15 19261 8 8 0 15 16942.8
6 4 4 4 0 28 18009 4 4 0 24 16508.8
7 5 5 5 0 35 18720 5 5 0 243 16994.5
8 11 11 11 0 14 300126 11 11 0 15 17666.8
9 12 12 12 0 16 21566.1 12 12 0 14 17191.1
10 8 8 8 0 16 21380.5 8 8 0 16 17549.1
X 9 9.4 9 0 23 48796.1 9.4 9.4 0 43 17592.7

Computational Intelligence and Neuroscience 9



Table 8: Experimental results with cell� 3 and Mmax � 8.

Results for Boctor Instances with C� 3 Mmax � 8

P O Classic BCSO Autonomous Search
BCSO A RPD I Ms BCSO A RPD I Ms

1 11 11 11 0 16 21580 11 11 0 15 18090.8
2 6 6 6 0 20 20246.3 6 6 0 20 17017.4
3 4 4 4 0 17 19927.2 4 4 0 42 16878.1
4 14 14 14 0 19 21022.2 14 14 0 24 18642.2
5 8 8 8 0 36 19499.3 8 8 0 215 17156.4
6 4 4 4 0 31 19735.9 4 4 0 144 16542.7
7 5 5 5 0 30 20064.9 5 5 0 39 17352
8 11 11 11 0 19 21113.4 11 11 0 76 18459.6
9 8 8 8 0 36 20879.4 8 8 0 56 17950
10 8 8 8 0 17 19959.3 8 8 0 17 18353.6
X 8 7.9 8 0 24 20402.8 7.9 7.9 0 65 17644.3

Table 9: Experimental results with cell� 3 and Mmax � 9.

Results for Boctor Instances with C� 3 Mmax � 9

P O Classic BCSO Autonomous Search
BCSO A RPD I Ms BCSO A RPD I Ms

1 11 11 11 0 13 21872.7 11 11 0 16 18462.7
2 6 6 6 0 20 20489.4 6 6 0 16 17624.9
3 4 4 4 0 14 20044 4 4 0 15 16748.8
4 13 13 13 0 15 22408 13 13 0 17 17698.7
5 6 6 6 0 69 22768.2 6 6 0 168 17120.3
6 3 3 3 0 69 19580.2 3 3 0 139 17167.1
7 4 4 4 0 24 20863.5 4 4 0 29 17602.5
8 10 10 10 0 66 23977.9 10 10 0 184 18202.8
9 8 8 8 0 15 26618.9 8 8 0 21 17849.1
10 5 5 5 0 17 20694.3 5 5 0 26 18483.6
X 7 7 7 0 32 21931.7 7 7 0 63 17696.1

Table 10: New instances from other authors.

Problem Author Machines Parts Cells Mmax

CFP01 King and Nakornchai [49] 5 7 2 3
CFP02 Waghodekar and Sahu [50] 5 7 2 4
CFP03 Seifoddini [51] 5 18 2 3
CFP04 Kusiak and Cho [52] 6 8 2 3
CFP05 Kusiak and Chow [53] 7 11 5 2
CFP06 Boctor [48] 7 11 4 2
CFP07 Seifoddini and Wolfe [54] 8 11 4 3
CFP08 Chandrasekharan and Rajagopalan [55] 8 20 3 4
CFP09 Chandrasekharan and Rajagopalan [56] 8 20 2 5
CFP10 Mosier and Taube [57] 10 10 5 4
CFP11 Chan and Milner [58] 10 15 3 4
CFP12 Askin and Subramanian [59] 14 24 7 3
CFP13 Stanfel [60] 14 24 7 3
CFP14 McCormick et al. [61] 16 24 8 5
CFP15 Srinivasan et al. [62] 16 30 6 6
CFP16 King [63] 16 43 8 4
CFP17 Carrie [64] 18 24 9 4
CFP18 Mosier and Taube [65] 20 20 6 7
CFP19 Kumar et al. [66] 23 20 7 6
CFP20 Carrie [64] 20 35 5 5
CFP21 Boe and Cheng [67] 20 35 5 5
CFP22 Chandrasekharan and Rajagopalan [68] 24 40 12 5

10 Computational Intelligence and Neuroscience



Table 10: Continued.

Problem Author Machines Parts Cells Mmax

CFP23 Chandrasekharan and Rajagopalan [68] 24 40 7 5
CFP24 Chandrasekharan and Rajagopalan [68] 24 40 7 5
CFP25 Chandrasekharan and Rajagopalan [68] 24 40 11 5
CFP26 Chandrasekharan and Rajagopalan [68] 24 40 12 3
CFP27 Chandrasekharan and Rajagopalan [68] 24 40 12 3
CFP28 McCormick et al. [61] 27 27 6 11
CFP29 Carrie [64] 28 46 10 4
CFP30 Kumar and Vannelli [69] 30 41 14 4
CFP31 Stanfel [60] 30 50 13 3
CFP32 Stanfel [60] 30 50 14 4
CFP33 King-Nakornchai [49] 36 90 17 6
CFP34 McCormick et al. [61] 37 53 3 15
CFP35 Chandrasekharan and Rajagopalan [70] 40 100 10 6

Table 11: Comparison between classic BCSO.

ID M P C Mmax
Optimum
values

EVOA MBFA CSOA

Best Worst Mean RPD
(%) Best Worst Mean RPD

(%) Best Worst Mean RPD
(%)

CF01 5 7 2 3 0 0 0 0 0.00 0 0 0 0.00 0 0 0 0.00
CF02 5 7 2 4 3 3 3 3 0.00 3 3 3 0.00 3 3 3 0.00
CF03 5 18 2 3 5 5 5 5 0.00 5 5 5 0.00 5 5 5 0.00
CF04 6 8 2 3 2 2 2 2 0.00 2 2 2 0.00 2 2 2 0.00
CF05 7 11 5 2 8 8 8 8 0.00 9 9 9 12.50 8 8 8 0.00
CF06 7 11 4 2 4 4 4 4 0.00 4 4 4 0.00 4 4 4 0.00
CF07 8 12 4 3 7 7 7 7 0.00 8 8 8 14.29 7 7 7 0.00
CF08 8 20 3 4 7 7 7 7 0.00 7 7 7 0.00 7 7 7 0.00
CF09 8 20 2 5 25 25 25 25 0.00 27 27 27 8.00 25 25 25 0.00
CF10 10 10 5 4 0 0 2 1.2 0.00 3 3 3 0.00 0 0 0 0.00
CF11 10 15 3 4 0 0 4 0.8 0.00 0 0 0 0.00 0 0 0 0.00
CF12 14 24 7 3 7 11 16 13.3 57.14 9 11 10.1 28.57 7 7 7 0.00
CF13 14 24 7 3 8 12 17 14.3 50.00 8 9 8.4 0.00 8 8 8 0.00
CF14 16 24 8 5 Unknown 30 35 32.9 — 36 41 39.6 — 24 24 24 —
CF15 16 30 6 6 Unknown 31 39 35.7 — 18 25 21.1 — 17 17 17 —
CF16 16 43 8 4 Unknown 42 47 44.6 — 39 46 43.8 — 29 30 29.05 —
CF17 18 24 9 4 Unknown 32 36 34.2 — 32 35 33.2 — 26 27 26.53 —
CF18 20 20 6 7 Unknown 46 53 49.9 — 52 59 56.2 — 41 42 41.18 —
CF19 20 23 7 6 Unknown 51 56 53.4 — 49 55 51.6 — 38 38 38 —
CF20 20 35 5 5 Unknown 28 42 36 — 7 16 12.3 — 2 2 2 —
CF21 20 35 5 5 Unknown 57 65 60.3 — 43 45 43.5 — 35 35 —
CF22 24 40 7 5 Unknown 30 43 37.5 — 0 23 15.5 — 0 5 4.9 —
CF23 24 40 7 5 Unknown 39 48 44.2 — 13 19 15 — 10 15 13.53 —
CF24 24 40 7 5 Unknown 44 53 49.7 — 25 30 27.6 — 18 22 20.98 —
CF25 24 40 11 5 Unknown 60 64 61.6 — 49 57 56.1 — 40 44 43.6 —
CF26 24 40 12 3 Unknown 68 71 70 — 64 67 65.6 — 59 63 62.15 —
CF27 24 40 12 3 Unknown 69 72 70.6 — 67 72 68.8 — 61 66 64.05 —
CF28 27 27 6 11 Unknown 84 100 94.1 — 76 97 92.1 — 54 54 54 —
CF29 28 46 10 4 Unknown 102 119 112.8 — 106 112 109.1 — 91 98 96.1 —
CF30 30 41 14 4 Unknown 57 63 59.7 — 43 65 58.3 — 37 43 42.6 —
CF31 30 50 13 3 Unknown 70 79 75.3 — 54 63 60.4 — 52 59 57.9 —
CF32 30 50 14 4 Unknown 86 90 87.6 — 76 81 77.6 — 66 75 72.15 —
CF33 36 90 17 6 Unknown 136 153 144.8 — 116 125 122.6 — 93 95 94.93 —
CF34 37 53 3 15 Unknown 352 383 369.2 — 325 335 329.5 — 256 256 256 —
CF35 40 100 10 6 Unknown 181 207 195.6 — 114 130 119.2 — 83 121 110.58 —

Computational Intelligence and Neuroscience 11



Table 12: Experimental results for new instances.

Results with 35 new instances

P O Classic BCSO Autonomous Search BCSO
BCSO A RPD I Ms BCSO A RPD I Ms

1 0 0 0 0 1 3583.2 0 0 0 1 3433.4
2 3 3 3 0 1 3619.7 3 3 0 1 3558.5
3 5 5 5 0 1 6273 5 5 0 1 6155.3
4 2 2 2 0 1 4157.7 2 2 0 1 3807.2
5 8 8 8 0 1 7897.8 8 8 0 1 7575.8
6 4 4 4 0 2 6919 4 4 0 2 6389.2
7 7 7 7 0 4 8158.6 7 7 0 5 7529.3
8 7 7 7 0 4 10048.4 7 7 0 4 9240.1
9 25 25 25 0 2 9373.3 25 25 0 2 8705.8
10 0 0 0 0 8 8982.7 0 0 0 10 8254.2
11 0 0 0 0 4 8893.5 0 0 0 4 8164.4
12 7 7 7 0 128 21747.6 7 7 0 194 19928.8
13 8 8 8 0 67 21835 8 8 0 87 20146.5
14 Unknown 24 24 103 27558 24 24 147 25383.5
15 Unknown 17 17 260 27283.5 17 17 296 25025.1
16 Unknown 29 29.05 922 40535.1 29 29.08 1268 37265.8
17 Unknown 26 26.53 717 31776.2 26 26.73 876 30591.1
18 Unknown 41 41.18 1241 26712.9 41 41.5 1174 27322.4
19 Unknown 38 38 577 31345.7 38 38.3 590 32086.5
20 Unknown 2 2 300 31251.8 2 2 358 29678.2
21 Unknown 35 35 318 34413.4 35 35.08 443 33892.7
22 Unknown 0 4.9 1909 42425.3 0 2.48 2017 103160.1
23 Unknown 10 13.53 1649 45014.9 10 12.43 1988 42954.3
24 Unknown 18 20.98 1958 45974.2 18 20.03 2080 43359.1
25 Unknown 40 43.6 2186 62062.9 40 44.08 2096 56834.7
26 Unknown 59 62.15 815 66630.4 57 60.73 2352 61659.3
27 Unknown 61 64.05 1204 66655.3 61 63.55 2202 62349.9
28 Unknown 54 54 466 43228.5 54 54.05 477 41759.4
29 Unknown 91 96.1 1434 76860.5 90 95.2 2578 67203.9
30 Unknown 37 42.6 1270 84810.9 34 40.9 2520 75800.3
31 Unknown 52 57.9 641 93391.4 49 54.3 2453 81183.7
32 Unknown 66 72.15 1670 99440.7 67 71.8 2431 87624.9
33 Unknown 93 94.93 2423 165907.8 93 95.48 1999 143833
34 Unknown 256 256 1345 70985.4 256 256 1005 70893.8
35 Unknown 83 110.58 964 153404.2 55 82.2 3579 150723
X 5.85 34.51 36.63 0 703 42547.4 33.49 35.51 0 1007 41242.1

40

35

30

25

20

15

10

5

0 1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

Iterations

Fi
tn

es
s

Fitness BCSO
Fitness BCSO with AS

Figure 3: Graph showing the results of problem 7 for BCSO and
BCSO AS with C� 3.

Fitness BCSO
Fitness BCSO with AS

18

16

14

12

10

8

6

4

2

0 1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

Iterations

Fi
tn

es
s

Figure 4: Graph showing the results of problem 3 for BCSO and
BCSO AS with C� 2.

12 Computational Intelligence and Neuroscience



BCSO, iteration 30; and Autonomous Search BCSO, it-
eration 40.

12. Results for New Instances Using BCSO and
BCSO with Autonomous Search

Figure 5 shows the results of the experiments performed for
new instances, in which it can be seen that the Autonomous
Search algorithm helps the solution not to get trapped at
some local optimum; however, not all results with Auton-
omous Search present an advantage over the original
version.

Figure 5 represents the results of problem 26, with
M� 24, P � 40, C� 12, andMmax � 3, in which it can be seen
that Autonomous Search BCSO does not have a great dif-
ference over the normal BCSO; however, Autonomous
Search BCSO is able to explore new solutions, which makes
it achieve better results.

+e graph in Figure 6 represents the results of problem
30, with M� 30, P � 41, C� 14, and MMAX � 4, in which it
can be seen that the Autonomous Search BCSO solutions
continue to change without being trapped in a local opti-
mum, whereas normal BCSO is trapped near iteration 4000.

+e graph in Figure 7 represents the results of problem
35, with M� 40, P � 100, C� 10, and Mmax � 6, in which
Autonomous Search BCSO solutions are changing, ex-
ploring new solutions, expanding their search space early on,
before iteration 3000; normal BCSO is trapped in a local
optimum near iteration 1000.

13. Conclusions

In the present investigation, a new algorithm inspired by cat
behavior, called Cat Swarm Optimization, was presented in
solving the Manufacturing Cell Design Problem, used for
placement of machinery in a manufacturing plant.

+e proposed BCSO was implemented and tested using
90 Boctor Instances plus 35 new instances, for a total of 125
instances: +e BCSO managed to obtain 100% of known
optima in the 90 Boctor Instances, achieving rapid con-
vergence and reduced execution times. In the case of the 35
new instances, it was possible to obtain 100% of the 13
known optima. It should be noted that these results were
obtained after a long testing process, where the different
parameters of the algorithm were calibrated based on ex-
perimentation. For that reason, Autonomous Search was
implemented as an optimization method to influence var-
iables in real time, which resulted in dynamic MR that
slightly improved results obtained: 3% compared to the
original, with 100% of the known optima, both for the 90
Boctor Instances and the 35 new instances.

As can be seen from the results, this metaheuristic be-
haves well in all observed cases. +is research demonstrates
that BCSO is a valid alternative for solving the MCDP. +e
algorithm works well, regardless of the scale of the problem.
However, solutions obtained could be improved by using
different parameters for each set of instances.

80

70

60

50

40

30

20

10

0 1
24

0
47

9
71

8
95

7
11

96
14

35
16

74
19

13
21

52
23

91
26

30
28

69
31

08
33

47
35

86
38

25
40

64
43

03
45

42
47

81

Iterations

Fi
tn

es
s

Fitness BCSO
Fitness BCSO with AS

Figure 5: Graph showing the results of problem 26 for BCSO and
BCSO AS.

80

70

60

50

40

30

20

10

0 1
29

6
59

1
88

6
11

81
14

76
17

71
20

66
23

61
26

56
29

51
32

46
35

41
38

36
41

31
44

26
47

21

Iterations

Fi
tn

es
s

Fitness BCSO
Fitness BCSO with AS

Figure 6: Graph showing the results of problem 30 for BCSO and
BCSO AS.

Fitness BCSO
Fitness BCSO with AS

300

250

200

150

100

50

0 1
19

4
38

7
58

0
77

3
96

6
11

59
13

52
15

45
17

38
19

31
21

24
23

17
25

10
27

03
28

96
30

89
32

82
34

75
36

68
38

61
40

54
42

47
44

40

48
26

46
33

Iterations

Fi
tn

es
s

Figure 7: Graph showing the results of problem 35 for BCSO and
BCSO AS.

Computational Intelligence and Neuroscience 13



+e BCSO performance was significantly increased after
selecting a good repair technique. However, relying on a
repair method leads us not to recommend the use of this
algorithm for other types of problems because it is far less
efficient than other techniques for more complex problems.

For future research, a more extensible configuration
could be developed to cover a wider set of problems. It would
also be interesting to implement this technique in con-
junction with other recent metaheuristics where limited
work on Autonomous Search exists such as cuckoo search,
firefly optimization, or bat algorithms [75]. Finally, hy-
bridization with learning techniques is another interesting
research line to pursue, where feedback gathered for the self-
tune phase could be processed with machine learning in
order to better track the complete solving process.

Data Availability

+e authors declare that the data used to support the
findings of this study are available from the corresponding
author.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

Broderick Crawford was supported by the Grant CONICYT/
FONDECYT/REGULAR/1171243, and Ricardo Soto was
supported by the Grant CONICYT/FONDECYT/REGU-
LAR/1160455.

References

[1] H. M. Selim, R. G. Askin, and A. J. Vakharia, “Cell formation
in group technology: review, evaluation and directions for
future research,” Computers & Industrial Engineering, vol. 34,
no. 1, pp. 3–20, 1998.

[2] I. Ham, K. Hitomi, and T. Yoshida, Group Technology: Ap-
plications to Production Management, Springer Science &
Business Media, Berlin, Germany, 2012.

[3] H. Zhenggang, Z. Guo, and J.Wang, “Integrated scheduling of
production and distribution operations in a global MTO
supply chain,” Enterprise Information Systems, vol. 2018,
pp. 1–25, 2018.

[4] P. D. Medina, E. A. Cruz, and M. Pinzón, “Generación de
celdas de manufactura usando el algoritmo de ordenamiento
binario (aob),” Scientia Et Technica, vol. 1, no. 44, pp. 106–110,
2010.

[5] J. L. Burbidge, =e Introduction of Group Technology, Halsted
Press, New York, NY, USA, 1975.

[6] R. Soto, H. Kjellerstrand, O. Durán, B. Crawford, E. Monfroy,
and F. Paredes, “Cell formation in group technology using
constraint programming and boolean satisfiability,” Expert
Systems with Applications, vol. 39, no. 13, pp. 11423–11427,
2012.

[7] A. P. Engelbrecht, Fundamentals of Computational Swarm
Intelligence, John Wiley & Sons, Hoboken, NJ, USA, 2006.

[8] Y. Shara, M. A. Khanesar, and M. Teshnehlab, “Discrete
binary cat swarm optimization algorithm,” in Proceedings of
Computer, Control & Communication (IC4), 2013 3rd

International Conference, pp. 1–6, IEEE, Karachi, Pakistan,
September 2013.

[9] S.-C. Chu and P.-W. Tsai, “Computational intelligence based
on the behavior of cats,” International Journal of Innovative
Computing, Information and Control, vol. 3, no. 1, pp. 163–
173, 2007.

[10] A. Kusiak, “+e part families problem in flexible
manufacturing systems,” Annals of Operations Research,
vol. 3, no. 6, pp. 277–300, 1985.

[11] M. Shargal, S. Shekhar, and S. A. Irani, “Evaluation of search
algorithms and clustering efficiency measures for machine-
part matrix clustering,” IIE transactions, vol. 27, no. 1,
pp. 43–59, 1995.

[12] H. Seifoddini and C.-P. Hsu, “Comparative study of similarity
coefficients and clustering algorithms in cellular
manufacturing,” Journal of Manufacturing Systems, vol. 13,
no. 2, pp. 119–127, 1994.

[13] G. Beni and J. Wang, “Swarm intelligence in cellular robotic
systems,” in Robots and Biological Systems: Towards a New
Bionics?, pp. 703–712, Springer, Berlin, Germany, 1993.

[14] J. F. Kennedy, J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm
Intelligence, Morgan Kaufmann, Burlington, MA, USA, 2001.

[15] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony opti-
mization,” IEEE computational intelligence magazine, vol. 1,
no. 4, pp. 28–39, 2006.

[16] F. Olivas, F. Valdez, O. Castillo, C. I. Gonzalez, G. Martinez,
and P. Melin, “Ant colony optimization with dynamic pa-
rameter adaptation based on interval type-2 fuzzy logic sys-
tems,” Applied Soft Computing, vol. 53, pp. 74–87, 2017.

[17] R. Soto, B. Crawford, B. Almonacid, and F. Paredes, “A
migrating birds optimization algorithm for machine-part cell
formation problems,” in Proceedings of Mexican International
Conference on Artificial Intelligence, pp. 270–281, Springer,
Cuernavaca, MX, USA, October 2015.

[18] G. Srinivasan, “A clustering algorithm for machine cell for-
mation in group technology using minimum spanning trees,”
International Journal of Production Research, vol. 32, no. 9,
pp. 2149–2158, 2007.

[19] J. Kennedy and R. C. Eberhart, “A discrete binary version of
the particle swarm algorithm,” in Proceedings of 1997 Com-
putational Cybernetics and Simulation, 1997 IEEE In-
ternational Conference, pp. 4104–4108, IEEE, Orlando, FL,
USA, October 1997.

[20] J. So andW. Jenkins, “Comparison of cat swarm optimization
with particle swarm optimization for IIR system identifica-
tion,” in Proceedings of Signals, Systems and Computers, 2013
Asilomar Conference, pp. 903–910, IEEE, Pacific Grove, CA,
USA, November 2013.

[21] M. A. Khanesar, M. Teshnehlab, and M. A. Shoorehdeli, “A
novel binary particle swarm optimization,” in Proceedings of
Control & Automation, 2007. MED’07. Mediterranean Con-
ference, pp. 1–6, IEEE, Marrakech, Morocco, June 2007.

[22] S. A. Irani,Handbook of Cellular Manufacturing Systems, John
Wiley & Sons, Hoboken, NJ, USA, 1999.

[23] V. Aspinall, Complete Textbook of Veterinary Nursing, But-
terworth Heinemann, Oxford, UK, 2006.

[24] B. Pallaud, “Hypotheses on mechanisms underlying obser-
vational learning in animals,” Behavioural Processes, vol. 9,
no. 4, pp. 381–394, 1984.

[25] J. Dards, “Feral cat behaviour and ecology,” Bulletin of the
Feline Advisory Bureau, vol. 15, 1976.

[26] A. Yamane, T. Doi, and Y. Ono, “Mating behaviors, courtship
rank andmating success of male feral cat (felis catus),” Journal
of Ethology, vol. 14, no. 1, pp. 35–44, 1996.

14 Computational Intelligence and Neuroscience



[27] S. Crowell-Davis, “Cat behaviour: social organization, com-
munication and development,” in =e Welfare Of Cats,
I. Rochlitz, Ed., pp. 1–22, Springer, Berlin, Germany, 2005.

[28] W. Sung, “Effect of gender on initiation of proximity in free
ranging domestic cats (Felis catus),” M.Sc. thesis, University of
Georgia, Athens, GA, USA, 1998.

[29] R. E. Adamec, “+e interaction of hunger and preying in the
domestic cat (Felis catus): an adaptive hierarchy?,” Behavioral
Biology, vol. 18, no. 2, pp. 263–272, 1976.

[30] H. Adler, “Some factors of observation learning in cats,”
Journal of Genetic Psychology, vol. 86, no. 1, pp. 159–177, 1995.

[31] B. Santosa and M. K. Ningrum, “Cat swarm optimization for
clustering,” in Proceedings of 2009 International Conference of
Soft Computing and Pattern Recognition, pp. 54–59, Malacca,
Malaysia, December 2009.

[32] G. Panda, P. M. Pradhan, and B. Majhi, “IIR system identi-
fication using cat swarm optimization,” Expert Systems with
Applications, vol. 38, no. 10, pp. 12671–12683, 2011.

[33] P.-W. Tsai, J.-S. Pan, S.-M. Chen, and B.-Y. Liao, “Enhanced
parallel cat swarm optimization based on the taguchi
method,” Expert Systems with Applications, vol. 39, no. 7,
pp. 6309–6319, 2012.

[34] G.-G. Wang, A. H. Gandomi, X. Zhao, and H. C. E. Chu,
“Hybridizing harmony search algorithm with cuckoo search
for global numerical optimization,” Soft Computing, vol. 20,
no. 1, pp. 273–285, 2014.

[35] M. Yazdani and F. Jolai, “Lion optimization algorithm (LOA):
a nature-inspired metaheuristic algorithm,” Journal of
Computational Design and Engineering, vol. 3, no. 1,
pp. 24–36, 2016.

[36] X. Zhang, K. Tang, S. Li, K. Xia, and D. Zhao, “Design of slow-
wave structure based on multi-objective quantum particle
swarm optimization algorithm with inertia weight,” Chinese
Journal of Vacuum Science & Technology, vol. 30, no. 6,
pp. 651–656, 2010.

[37] D. Zhao, K. Xia, H. Liu, and X. Shi, “A pitch distribution in
slow-wave structure of STWT using Cauchy mutated cat
swarm optimization with gravitational search operator,”
Journal of the Chinese Institute of Engineers, vol. 41, no. 4,
pp. 297–307, 2018.

[38] M. Zhao, “A novel compact cat swarm optimization based on
differential method,” Enterprise Information Systems,
vol. 2018, pp. 1–25, 2018.

[39] C. Peraza, F. Valdez, and P. Melin, “Optimization of in-
telligent controllers using a type-1 and interval type-2 har-
mony search algorithm,”Algorithms, vol. 10, no. 3, p. 82, 2017.

[40] Y. Hamadi, E. Monfroy, and F. Saubion, “What is autono-
mous search?,” Hybrid Optimization, pp. 357–391, Springer,
Berlin, Germany, 2011.

[41] B. Crawford, R. Soto, E. Monfroy, W. Palma, C. Castro, and
F. Paredes, “Parameter tuning of a choice-function based
hyperheuristic using particle swarm optimization,” Expert
Systems with Applications, vol. 40, no. 5, pp. 1690–1695,
2013.

[42] F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-Brown,
“Performance prediction and automated tuning of random-
ized and parametric algorithms,” in Proceedings of In-
ternational Conference on Principles and Practice of Constraint
Programming, pp. 213–228, Springer, Nantes, France, Sep-
tember 2006.

[43] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Automated
configuration of mixed integer programming solvers,” in
Proceedings of International Conference on Integration of
Artificial Intelligence (AI) and Operations Research (OR)

Techniques in Constraint Programming, pp. 186–202,
Springer, Bologna, Italy, June 2010.

[44] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential
model-based optimization for general algorithm configura-
tion,” in Proceedings of International Conference on Learning
and Intelligent Optimization, pp. 507–523, Springer, Rome,
Italy, Januray 2011.

[45] J. Maturana, F. Lardeux, and F. Saubion, “Autonomous op-
erator management for evolutionary algorithms,” Journal of
Heuristics, vol. 16, no. 6, pp. 881–909, 2010.

[46] J. Maturana and F. Saubion, “On the design of adaptive
control strategies for evolutionary algorithms,” in Proceedings
of International Conference on Artificial Evolution (Evolution
Artificielle), pp. 303–315, Springer, Tours, France, October
2007.

[47] J. Maturana and F. Saubion, “A compass to guide genetic
algorithms,” in Proceedings of International Conference on
Parallel Problem Solving from Nature, pp. 256–265, Springer,
Birmingham, UK, September 2008.

[48] F. F. Boctor, “A Jinear formulation of the machine-part cell
formation problem,” International Journal of Production
Research, vol. 29, no. 2, pp. 343–356, 1991.

[49] J. R. King and V. Nakornchai, “Machine-component group
formation in group technology: review and extension,” In-
ternational Journal of Production Research, vol. 20, no. 2,
pp. 117–133, 2007.

[50] P. H. Waghodekar and S. Sahu, “Machine-component cell
formation in group technology: Mace,” International Journal
of Production Research, vol. 22, no. 6, pp. 937–948, 2007.

[51] H. Seifoddini, “A note on the similarity coefficient method
and the problem of improper machine assignment in group
technology applications,” International Journal of Production
Research, vol. 27, no. 7, pp. 1161–1165, 2007.

[52] A. Kusiak and M. Cho, “Similarity coefficient algorithms for
solving the group technology problem,” International Journal
of Production Research, vol. 30, no. 11, pp. 2633–2646, 2007.

[53] A. Kusiak and W. S. Chow, “Efficient solving of the group
technology problem,” Journal of Manufacturing Systems,
vol. 6, no. 2, pp. 117–124, 1987.

[54] H. Seifoddini and P. M. Wolfe, “Application of the similarity
coefficient method in group technology,” IIE transactions,
vol. 18, no. 3, pp. 271–277, 1986.

[55] M. P. Chandrasekharan and R. Rajagopalan, “MODROC: an
extension of rank order clustering for group technology,”
International Journal of Production Research, vol. 24, no. 5,
pp. 1221–1233, 1986.

[56] M. P. Chandrasekharan and R. Rajagopalan, “An ideal seed
non-hierarchical clustering algorithm for cellular
manufacturing,” International Journal of Production Research,
vol. 24, no. 2, pp. 451–463, 1986.

[57] C. Mosier and L. Taube, “+e facets of group technology and
their impacts on implementation-A state-of-the-art survey,”
Omega, vol. 13, no. 5, pp. 381–391, 1985.

[58] H. M. Chan and D. A. Milner, “Direct clustering algorithm for
group formation in cellular manufacture,” Journal of
Manufacturing systems, vol. 1, no. 1, pp. 65–75, 1982.

[59] R. G. Asktn and S. P. Subramantan, “A cost-based heuristic for
group technology configuration,” International Journal of
Production Research, vol. 25, no. 1, pp. 101–113, 2007.

[60] L. E. Stanfel, “Machine clustering for economic production,”
Engineering costs and production economics, vol. 9, no. 1–3,
pp. 73–81, 1985.

[61] W. T. McCormick Jr., P. J. Schweitzer, and T. W. White,
“Problem decomposition and data reorganization by a

Computational Intelligence and Neuroscience 15



clustering technique,” Operations Research, vol. 20, no. 5,
pp. 993–1009, 1972.

[62] G. Srinvasan, T. Narendran, and B. Mahadevan, “An as-
signment model for the part families problem in group
technology,” International Journal of Production Research,
vol. 28, no. 1, pp. 145–152, 1990.

[63] J. R. King, “Machine-component grouping in production flow
analysis: an approach using a rank order clustering algo-
rithm,” International Journal of Production Research, vol. 18,
no. 2, pp. 213–232, 2007.

[64] A. S. Carrie, “Numerical taxonomy applied to group tech-
nology and plant layout,” International Journal of Production
Research, vol. 11, no. 4, pp. 399–416, 1973.

[65] C. Mosier and L. Taube, “Weighted similarity measure
heuristics for the group technology machine clustering
problem,” Omega, vol. 13, no. 6, pp. 577–579, 1985.

[66] K. R. Kumar, A. Kusiak, and A. Vannelli, “Grouping of parts
and components in flexible manufacturing systems,” Euro-
pean Journal of Operational Research, vol. 24, no. 3,
pp. 387–397, 1986.

[67] W. J. Boe and C. H. Cheng, “A close neighbour algorithm for
designing cellular manufacturing systems,” International
Journal of Production Research, vol. 29, no. 10, pp. 2097–2116,
1991.

[68] M. P. Chandrasekharan and R. Rajagopalan, “GROUP-
ABIL1TY: an analysis of the properties of binary data matrices
for group technology,” International Journal of Production
Research, vol. 27, no. 6, pp. 1035–1052, 2007.

[69] K. R. Kumar and A. Vannelli, “Strategic subcontracting for
efficient disaggregatedmanufacturing,” BEBR faculty working
paper; no. 1252, University of Illinois, Champaign, IL, USA,
1986.

[70] M. P. Chandrasekharan and R. Rajagopalan, “ZODIAC-an
algorithm for concurrent formation of part-families and
machine-cells,” International Journal of Production Research,
vol. 25, no. 6, pp. 835–850, 2007.

[71] C. Sur, S. Sharma, and A. Shukla, “Egyptian vulture opti-
mization algorithm–A new nature inspired meta-heuristics
for knapsack problem,” in Proceedings of 9th International
Conference on Computing and Information Technology
(IC2IT2013), pp. 227–237, Bangkok, +ailand, May 2013.

[72] A. Ritthipakdee, A. +ammano, N. Premasathian, and
D. Jitkongchuen, “Firefly mating algorithm for continuous
optimization problems,” Computational Intelligence and
Neuroscience, vol. 2017, Article ID 8034573, 10 pages, 2017.

[73] B. Almonacid, F. Aspée, R. Soto, B. Crawford, and J. Lama,
“Solving the manufacturing cell design problem using the
modified binary firefly algorithm and the egyptian vulture
optimisation algorithm,” IET Software, vol. 11, no. 3,
pp. 105–115, 2017.

[74] B. Almonacid, F. Aspée, R. Soto, B. Crawford, and J. Lama,
Solving Manufacturing Cell Design Problem Using Modified
Binary Firefly Algorithm and Egyptian Vulture Optimization
Algorithm, IET Software, Wales, UK, 2016.

[75] R. Soto, B. Crawford, B. Almonacid, and F. Paredes, “Efficient
parallel sorting for migrating birds optimization when solving
machine-part cell formation problems,” Scientific Pro-
gramming, vol. 2016, Article ID 9402503, 39 pages, 2016.

16 Computational Intelligence and Neuroscience


