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Shifts in broadband power 
and alpha peak frequency observed 
during long‑term isolation
Jan Weber1,2,3*, Timo Klein1,4 & Vera Abeln1*

Prolonged periods of social isolation and spatial confinement do not only represent an issue that 
needs to be faced by a few astronauts during space missions, but can affect all of us as recently shown 
during pandemic situations. The fundamental question, how the brain adapts to periods of sensory 
deprivation and re-adapts to normality, has only received little attention. Here, we use eyes closed 
and eyes open resting-state electroencephalographic (EEG) recordings to investigate how neural 
activity is altered during 120 days of isolation in a spatially confined, space-analogue environment. 
After disentangling oscillatory patterns from 1/f activity, we show that isolation leads to a reduction 
in broadband power and a flattening of the 1/f spectral slope. Beyond that, we observed a reduction in 
alpha peak frequency during isolation, but did not find strong evidence for isolation-induced changes 
that are of oscillatory nature. Critically, all effects reversed upon release from isolation. These findings 
suggest that isolation and concomitant sensory deprivation lead to an enhanced cortical deactivation 
which might be explained by a reduction in the mean neuronal population firing rate.

There is a strong consensus that oscillatory activity driven through cell assembly synchronization modulates 
a variety of behavioral and cognitive states, such as attention1, memory2 and sleep3. A vast body of literature 
has demonstrated the existence of several oscillatory frequency bands, ranging from approximately 0.05 Hz to 
150 Hz (up to 500 Hz in animals)4 that have been associated with a diversity of complex cognitive operations. 
Furthermore, these narrowband oscillations, commonly referred to as delta (1–4 Hz), theta (4–8 Hz), alpha 
(8–12 Hz), beta (12–30 Hz) and gamma (> 30 Hz)5, have widely been studied during resting-state settings to 
better understand network dynamics. Multiple studies have also been employed in patient populations6,7 as 
resting-state narrowband oscillations have been shown to correlate with cognitive functions8,9. Therefore, resting-
state measurements are extensively used to derive objective biomarkers that might be used in clinical settings5.

However, a ubiquitous property of such narrowband activity is its embedding within non-oscillatory, scale-
free neural activity10 (also termed fractal component, 1/f electrophysiological noise etc.) that has until very 
recently just been considered as pure noise without any deeper functional meaning. Recent studies, however, 
revised this view and were able to demonstrate that scale-free activity might instead constitute an important 
behavioral and physiological index10–13. The 1/f component of the aperiodic signal itself is determined by 
the exponential decay (spectral slope) and the total offset (y-intercept) of the spectrum both of which have 
been shown to fluctuate with cognitive and physiological states. The spectral slope is assumed to reflect the 
ratio between excitation and inhibition at the synaptic level with more negative slopes reflecting enhanced 
inhibition11,14. In contrast, the spectral offset has been shown to reliably index the mean population-averaged 
firing rate of single units as revealed through intracranial EEG recordings15 as well as computational models14. 
Thus, both parameters might have the potential and robustness to serve as a proxy for neuronal population activ-
ity when only macroscopic measures are available, but information about the current cortical state wants to be 
inferred. It has, for example, been shown that the spectral slope reliably differentiates between different cortical 
states, such as sleep and wakefulness with more negative slopes during sleep indexing enhanced inhibition16. 
Another recent study revealed that medication naïve children suffering from an Attention-deficit/hyperactivity 
disorder (ADHD) have greater offsets and steeper slopes as compared to age-matched controls. These broadband 
power shifts have been proposed to be a signature of asynchronously arriving input to the dendrites of pyramidal 
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neurons17. Thus, it is intelligible that broadband power increases as a function of the dendritic response to the 
sensory input and in turn decreases during a loss of sensory perturbation. Such a loss of sensory perturbation, 
commonly referred to as sensory deprivation, remains a critical point in human-isolation, both during scenarios 
such as COVID-19 or space flights where multisensory perception through social interaction is rare. Previous 
studies that looked into the effects of sensory deprivation during long-term isolation, so far, only investigated 
changes in oscillatory patterns, however, without accounting for potential shifts or tilts in the power spectrum. 
For example, previously reported decreases in alpha and beta band activity during over-wintering in the interior 
of Antarctica18 might have also originated through a decrease in broadband power or a spectral tilt towards a 
flatter slope during isolation when sensory input is monotonous. This is because the 1/f component of the power 
spectrum partially determines the oscillatory amplitude. Furthermore, as alpha peak frequency has also been 
shown to be a reliable predictor of cortical (de)activation that adjusts depending on the task demands19, caution 
is suggested when interpreting effects without accounting for shifts in peak frequency.

Therefore, in the present study, we took a comprehensive approach and investigated long-term-isolation-
induced changes in spectral offset, slope, alpha peak frequency and oscillatory activity during both eyes opened 
and eyes closed resting-state conditions. To reliably estimate these features of the electrophysiological power 
spectrum, we used irregular resampling20 (IRASA) to separate oscillatory components from broadband 1/f activ-
ity. Based on aforementioned results and theoretical considerations on how the brain might adapt to sensory 
deprivation, we hypothesized (1) that reduced sensory input leads to reduced broadband power, (2) that spectral 
slopes will be steeper during isolation as a consequence of increased inhibition and less task demands and (3) 
that alpha peak frequency decreases during isolation as an adaptive mechanism due to reduced sensory sampling. 
No prior hypotheses on isolation-induced effects on oscillatory patterns were made.

Results
An international crew of three women and three men (aged 33.67 ± 6.41 years (mean ± SD) participated in the 
SIRIUS-19 (Scientific International Research in Unique Terrestrial Station 2019) isolation mission and were 
isolated for 120 days under space analogue conditions. We recorded EEG activity at 32 scalp sites on 6 different 
timepoints: The first assessment day was 13 days prior to the start of the isolation period (Pre-Isolation). The 
second, third, fourth and fifth measurement were taken at isolation day 15, 54, 79 & 110, respectively. The last 
assessment was taken 7 days after participants were released from isolation (Post-Isolation). EEG was always 
recorded in the same settings (stationary set up in a separate laboratory compartment, noise was kept at a 
minimum and participants wore noise cancelling ear plugs during recordings), but recording times randomly 
varied between 8am and 6pm due to the complexity of international space analogue isolation missions simulat-
ing a space flight to the moon. To ascertain that the fluctuations in daytime at which we recorded EEG did not 
introduce any spurious effects, we performed several control analyses (see Supplementary Fig. S14). By taking 
recordings at multiple stages during isolation, we (1) aimed to examine if the aforementioned parameters of 
interest (broadband power, spectral slope and alpha peak frequency) are progressively altered as a function of 
time spent in isolation and (2) to ascertain that any observed change during isolation is constant across multiple 
stages during isolation and does not reflect a spurious fluctuation. However, as we did not observe a paramet-
ric modulation of any parameter throughout isolation (e.g. a progressive reduction of broadband power from 
isolation day 15 to isolation day 110), we sought to average across all isolation timepoints. This substantially 
reduced our degrees of freedom for follow-up post-hoc comparisons. With 6 timepoints representing 6 levels of 
our main factor time, we would need to perform 15 follow-up comparisons. When averaging across all isolation 
timepoints, the factor levels reduce from 6 to 3 and the post-hoc comparisons from 15 to 3. It is important to 
note, however, that the inference that can be drawn from the study does not differ if we average across isolation 
timepoints or treat them all separately. This can be appreciated in the Supplementary Material in Tables S1 to S5 
where all possible post-hoc results for each analysis are listed.

Sensory deprivation reduces aperiodic spectral power offset.  In a first step we sought to test 
whether sensory deprivation as induced by exposure to a space-analogue environment alters the broadband 
power spectrum as mainly determined by the aperiodic spectral offset. We mainly predicted that broadband 
power would be reduced as a consequence of reduced sensory input to the brain. The grand average aperiodic 
power spectral density (PSD) estimates for both conditions (eyes open and eyes closed) are shown in Fig. 1. The 
average number of trials was 74.47 ± 3.07 and 76.42 ± 5.18 (mean ± SD) for eyes closed and eyes open, respec-
tively. Note that for all subsequent post-hoc analyses (spectral offset, spectral slope, alpha peak frequency, periodic 
PSD), we always used the average over all data obtained during isolation and refer to this as Iso. (Isolation), if 
not stated otherwise.

In order to test whether the aperiodic spectral offset was modulated across all testing sessions, we applied a 
within-subject repeated measures ANOVA (implemented in Fieldtrip with ft_statfun_depsamplesFunivariate), 
separately for eyes closed and eyes open conditions. Both conditions revealed a significant change in spectral 
offset over time (cluster permutation test eyes closed: sum(F) = 37.27, p < 0.01; eyes open: sum(F) = 24.74, p < 0.05). 
Follow-up pairwise comparisons (ft_statfun_depsamplesT) revealed a significant decrease in spectral offset upon 
exposure to isolation. This effect was again manifested in both resting-state conditions and was spatially extended 
over a broad range of electrodes (cluster permutation eyes closed: sum(t) = − 41.74, p < 0.001, disolation − pre-isolation 
= − 2.12, 11 significant channels; eyes open: sum(t) = − 29.39, p < 0.001, disolation − pre-isolation = − 1.88, 7 significant 
channels, see Fig. 2A,B).

Due to the limited number of subjects that are allowed to participate in these particular studies, we sought to 
further investigate the effects on a single-subject level using a cluster-based trial-shuffling procedure. Remark-
ably, we found robust spectral offset reductions upon exposure to isolation that were highly significant for all 
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6 subjects in both resting state conditions. The spatial distribution of this effect was again global (see Fig. 3 for 
eyes closed & Supplementary Fig. S8 for eyes open). Importantly, we observed the reversal effect in terms of 
spectral offset increases in both conditions once subjects were released from the space-analogue environment 
(cluster permutation eyes closed: sum(t) = 6.48, p < 0.05, dpost-isolation − isolation = 1.9, 2 significant channels; eyes open: 
sum(t) = 10.56, p < 0.05, dpost-isolation − isolation = 0.95, 3 significant channels, see Fig. 2C,D). We again examined this 
effect on the single-subject level and found significantly increased offsets after release from isolation in 5 out 
of 6 subjects in both resting-state conditions (see Supplementary Figs. S5, S9 for eyes closed and eyes open, 
respectively). In a final contrast, we compared the spectral offset between pre- & post-isolation, but did not find 
significant differences. These results indicate that sensory deprivation during isolation leads to a reduction in 
broadband power (here between 2 and 45 Hz) indicating an enhanced cortical deactivation. Crucially, the brain 
re-adapted upon release from isolation in terms of an increase in broadband power.

Figure 1.   Grand average aperiodic power spectral density (PSD) after IRASA. PSD presented as mean ± SEM 
in semi-log power space (Figure C & D only show the mean for the purpose of visibility). (A) Grand average 
(across all participants and channels) for eyes closed condition before (Pre-Iso.), during (Iso.) and after isolation 
(post-iso.). Upper panel shows the same data without shaded error bars for visualization purposes. (B) Grand 
average (across all participants and channels) for eyes open condition (same conventions as in (A)). Upper panel 
shows the same data without shaded error bars for visualization purposes. Note the decrease in broadband 
power in both conditions during isolation and the rebound effect (back to baseline) post-isolation. (C) Grand 
average (across all participants and channels) for eyes closed condition during all timepoints of measurement. 
Note that in figure A & B, all isolation timepoints (Iso. T1, Iso. T2, Iso. T3, Iso. T4) were averaged together and 
referred to as Iso. (D) same as (C) only for eyes open condition. Note the consistent decrease in broadband 
power in both conditions during all timepoints of isolation and the rebound effect after the isolation period. 
Pre Iso. = Pre-Isolation (− 13 days before start of isolation period), Iso. T1 =  + 15 days, Iso. T2 =  + 54 days, Iso. 
T3 =  + 79 days, Iso. T4 =  + 110 days, Post Iso. = Post-Isolation (+ 7 days after end of isolation period).
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Isolation‑induced changes in aperiodic spectral slope.  Next, we investigated whether sensory depri-
vation and its subsequent release modulated the aperiodic spectral slope as this has been shown to be an index 
for the synaptic excitatory/inhibitory balance11,12 with more negative slopes indexing enhanced inhibition. We 
essentially predicted a more negative slope during isolation as a proxy for increased cortical inhibition as a con-
sequence of sensory deprivation. We again employed a within-subject repeated measures ANOVA, separately 
for both resting-state conditions, to test for a main effect of time over all sessions. However, we did not observe 
a significant effect over sessions (no resultant cluster). Although one should be cautious in interpreting post-hoc 
effects when the main effect was not significant, we performed follow up post-hoc pairwise comparisons. A 
group-level, non-parametric permutation approach revealed a significant increase in spectral slope from pre- to 
within-isolation. This effect, however, could only be observed during eyes closed resting state (sum(t) = 8.88, 
p < 0.05, disolation − pre-isolation = 1.56, 3 significant channels clustered at occipital electrodes; eyes open: no resultant 
cluster, see Fig. 4A,B). Although analyses on the group level are substantial for making conclusive inference, 
single-subject analyses are of equal importance in regards to the search of potential neurophysiological screen-
ing parameters for astronauts in space. Therefore, we again tested this effect on the single-subject domain. We 
found evidence for an increase in spectral slope in 4/6 subjects whereas in 2/6 we were facing the opposite pat-
tern (in both resting-state conditions, see Supplementary Figs. S6, S10). Subsequently, we tested whether this 
effect reverses from within- to post-isolation. We only found evidence for a significant decrease in spectral slope 
after isolation for the eyes open condition (sum(t) = − 20.31, p < 0.001, dpost-isolation − isolation = − 2.13, 6 significant 
channels clustered at right-frontal electrodes), but not for the eyes closed condition (Fig. 4C,D). On the single-
subject level, we observed spectral slope decreases post-isolation in 4/6 subjects during eyes closed and in 6/6 
subjects during eyes open condition (see Supplementary Material Figs. S7, S11).

In order to test if the two main aperiodic features, spectral slope and offset are related to one another, we 
performed an exploratory correlation analysis and found a negative correlation between both metrics (eyes 

Figure 2.   Change in spectral offset of the aperiodic signal. Gray lines represent the change in offset for 
individual participants (n = 6). The black line represents the mean change across participants. The topographical 
t-value distribution obtained via cluster permutation is plotted for each condition difference (pairwise t-tests). 
Black dots represent significant sensors belonging to observed negative clusters. Gray dots represent significant 
sensors belonging to observed positive clusters. (A) Change in spectral offset from pre-isolation to isolation 
for eyes closed condition (Cluster permutation test: n = 6, p < 0.001) and (B) eyes open condition (Cluster 
permutation test: n = 6, p < 0.001). (C) Change in spectral offset from isolation to post-isolation for eyes closed 
condition (Cluster permutation test: n = 6, p < 0.05) and (D) for eyes open condition (Cluster permutation test: 
n = 6, p < 0.05) *** p < 0.001, * p < 0.05, EC = Eyes Closed, EO = Eyes Open, Pre-Iso. = Pre-Isolation, Iso. = Isolation, 
Post-Iso. = Post-Isolation.
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closed: two-sided, r(34) = − 0.42, p = 0.01, CI = [− 0.66 − 0.11]; eyes open: two-sided, r(34) = − 0.31, p = 0.06, 
CI = [− 0.58 0.02]).

Alpha Peak Frequency is increased after release from isolation.  Alpha Peak Frequency (APF) has 
been proposed to reflect the activation level of neuronal populations with higher APF mirroring a more active 
and lower APF mirroring a more inactive cortical state19. Therefore, we predicted that APF would slow down 
during isolation as a consequence of reduced sensory input and increase after release from isolation as a result 
of re-adjustment to augmented sensory input. To test this hypothesis, we performed a detection of APF using 
the local maxima between 8 and 12 Hz. We performed a channel-wise peak detection (see “Methods” on how 
peak detection was accomplished) for the eyes closed condition as alpha peaks could be reliably estimated on 
a channel basis. On average only 1.06 ± 2.08 (mean ± SD) channels did not show a reliable peak. If this was 
the case, we interpolated the channel’s APF based on its neighbors (see “Methods” on how neighbors were 
defined). In contrast, a channel-averaged peak detection was performed for the eyes open condition as many 
channels did not show a reliable peak between 8 and 12 Hz. We used a non-parametric, cluster-based permuta-
tion approach to test for APF modulations during the eyes closed condition, whereas we employed a repeated-
measures ANOVA for the eyes open condition as no inference on the spatial extent of the effect could have 
been made (due to the channel-averaged approach that was used). A within-subject repeated measures ANOVA 
revealed a significant main effect of time for both resting-state conditions (cluster permutation test eyes closed: 
sum(F) = 34.96, p < 0.001; repeated-measures ANOVA: F2,10 = 8.25, p < 0.01). Follow-up post-hoc testing revealed 
that APF increased in both conditions once subjects were released from isolation (cluster permutation eyes 
closed: sum(t) = 42.75, p < 0.001, dpost-isolation − isolation = 2.49, 10 significant channels [Fig. 5B]; dependent t-test eyes 
open: t(5) = 2.36, p < 0.05, dpost-isolation − isolation = 1.17 [Fig. 5C]). We again examined this effect on the single-subject 
level for the eyes closed condition as peak detection was reliable on a single trial level as compared to the eyes 
open condition (see Supplementary Fig.  S3A for examples of single-trial APF estimates). Using an adaptive 
power threshold approach (see Methods), we discarded on average 13.99 ± 15.22% (mean ± SD) of all trials. This 
led to a remaining number of 60.54 ± 9.47 trials (mean ± SD) that was used for the statistical within-subject APF 
analysis. 4/6 subjects displayed increases in APF from within- to post-isolation whereas 1 subject displayed a 

Figure 3.   Single-subject change in spectral offset of the aperiodic signal from pre-isolation to isolation during 
eyes closed condition. Histograms show the probability distribution of the spectral offset. Fitting of the aperiodic 
signal was performed on a trial basis using IRASA. The gray histogram reflects the probability distribution of 
the spectral offset prior to isolation. The red histogram reflects the probability distribution of the spectral offset 
prior during exposure to isolation. The topographical t-value distribution (given by random trial shuffling 
between the two conditions, see methods for details on single-subject cluster permutation analysis) obtained via 
cluster permutation is plotted for each condition difference. Black dots represent significant sensors. Individual 
subjects are denoted as Subject A, B, C, D, E, F. Note the consistent global reduction (6/6 subjects show a 
significant decrease) in spectral power offset from pre-isolation to isolation. All other single-subject figures on 
spectral offset and slope differences are included in the Supplementary Material (Figs. S5–S11). ***p < 0.001.
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decrease and 1 subject did not show any alteration (Fig. 6). We did not find strong evidence for a modulation of 
APF upon exposure to isolation (cluster permutation eyes closed: sum(t) = − 8.89, p = 0.09, disolation − pre-isolation = − 1
.43, [Fig. 5A]; dependent t-test eyes open: t(5) = − 1.32, p = 0.12, disolation − pre-isolation = − 0.38), although it should be 
noted that there was a trend towards a decreased APF. On a single-subject level for the eyes closed condition, we 
observed a significant decrease in APF for 3/6 subjects. 1 subject displayed the reversed pattern and 2 subjects 
did not show any alteration in APF. Interestingly, we observed a significant increase in APF from pre- to post-
isolation for the eyes open condition (t(5) = − 2.36, p < 0.05, dpost-isolation − pre-isolation = 1.97, see Fig. 5D). No such 
effect was found for the eyes closed condition (no resultant cluster). The oscillatory PSDs between 7 and 14 Hz 
for both resting state conditions are visualized in Fig. 5E,F.

Since both APF and spectral offset have been proposed as a proxy of the activation level of neuronal popula-
tions, we performed an exploratory analysis to test our prediction that both parameters should be positively 
correlated. We thus correlated the channel-averaged APF and spectral offset. A one-sided spearman correla-
tion indeed revealed a significant positive correlation between both parameters for the eyes closed condition 
(r(28) = 0.44, p < 0.01, CI = [0.09 0.69], see Fig. 7A). It should be noted that for this correlation analysis, 6 data 
samples were excluded as they were clearly clustered away from the main data cloud and led to a non-normal 
distribution of the APF data. However, the inference of the correlation analysis does not change when including 
these data samples (Spearman correlation: r(34) = 0.29, p < 0.05, CI = [− 0.05 0.56], see Supplementary Fig. S13 for 
further explanation on why we excluded these data samples). A non-significant, but considerable trend towards 

Figure 4.   Change in spectral slope of the aperiodic signal. Gray lines represent the change in slope for 
individual participants (n = 6). The black line represents the mean change across participants. The topographical 
t-value distribution obtained via cluster permutation is plotted for each condition difference (pairwise t-tests). 
Black dots represent significant sensors belonging to observed negative clusters. Gray dots represent significant 
sensors belonging to observed positive clusters. (A) Change in spectral slope from pre-isolation to isolation 
for eyes closed condition (cluster permutation test: n = 6, p < 0.05) and (B) eyes open condition (cluster 
permutation test: n = 6, no resultant cluster). (C) Change in spectral slope from isolation to post-isolation for 
eyes closed condition (cluster permutation test: n = 6, no resultant cluster) and (D) for eyes open condition 
(cluster permutation test: n = 6, p < 0.001). ***p < 0.001, *p < 0.05, EC = Eyes Closed, EO = Eyes Open, Pre-Iso. = Pre-
Isolation, Iso. = Isolation, Post-Iso. = Post-Isolation.
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a positive relationship among both parameters was found for the eyes open condition (r(34) = 0.26, p = 0.06, 
CI = [− 0.08 0.54]). These result support our initial prediction that both APF and spectral offset are related.

No isolation‑induced changes in rhythmic oscillatory activity.  So far, we have demonstrated that 
both spectral offset and slope are significantly modulated during isolation and that APF is mainly modulated 
after release from isolation. In a final step, we sought to investigate overall changes in oscillatory frequency 
bands. We therefore subtracted the aperiodic spectral estimates that were obtained using IRASA from the spec-
tral estimates that were obtained by regular spectral analysis, finally leading to a PSD matrix that is mostly 
driven by oscillatory activity and less confounded by the 1/f power law (see Supplementary Material Fig. S2 
for visualization of the periodic PSD). A within-subject repeated measures ANOVA did not reveal a significant 
effect for the eyes closed condition (no resultant cluster). Further, upon exploratory post-hoc tests comparing 
pre-isolation, isolation and post-isolation separately, we did not find any change in oscillatory brain activity. 
However, we observed a significant modulation of oscillatory brain activity over time for the eyes open con-
dition (sum(F) = 389.04, p < 0.01). Post-hoc pairwise comparisons revealed a significant increase in the alpha 
frequency range from pre- to post-isolation (sum(t) = 32.95, p < 0.001, 13 significant channels, see Fig. 7B). A 
similar, yet not significant pattern, could be observed when contrasting the periodic PSD during isolation and 
post-isolation, such that alpha power was increased post-isolation (see Fig. 7C). It should, however, be noted 
that by careful inspection of the periodic PSD, it becomes apparent that the change in higher alpha frequency 
power is mainly due to the shift in the APF, although the amplitude itself is also increased as depicted in the Sup-
plementary Material Fig. S2B right panel.

Figure 5.   Change in Alpha Peak Frequency (APF) during eyes closed and eyes open condition after removal 
of the aperiodic signal using IRASA. Gray lines represent the change in APF for individual participants (n = 6). 
The black line represents the mean change across participants. The topographical t-value distribution obtained 
via cluster permutation is plotted for each condition difference (pairwise t-tests). Black dots represent significant 
sensors belonging to observed negative clusters. Gray dots represent significant sensors belonging to observed 
positive clusters. (A) Change in APF from pre-isolation to isolation (cluster permutation test: n = 6, p = 0.09) and 
(B) from isolation to post-isolation (cluster permutation test: n = 6, p < 0.001). (C) Change in APF from isolation 
to post-isolation (dependent t-test as detection was done on channel-averaged data: n = 6, p < 0.05) and (D) from 
pre-isolation to post-isolation (dependent t-test: n = 6, p < 0.05). (E) The grand average power spectral density 
(PSD) across all channels for the eyes open condition and (F) the mean 1 /f corrected PSD across all significant 
channels as derived via cluster-based permutation statistic. For visualization purposes, both PSDs are cut 
between 7 and 14 Hz. Note the increase in APF after the isolation period in both conditions. **p < 0.01, *p < 0.05, 
EC = Eyes Closed, Pre-Iso. = Pre-Isolation, Iso. = Isolation, Post-Iso. = Post-Isolation.
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Discussion
The large majority of studies has particularly emphasized the role of narrowband oscillations in neuronal com-
munication, cognition and behavior21–24. However, in addition to narrowband oscillations, the 1/f component of 
the electrophysiological power spectrum has been shown to equally index important physiological features13,15,25. 
Here, we provide first unique insights into how long-term isolation alters the electrophysiological power spec-
trum. We show that long-term isolation (120 days), where sensory input is at a minimum state, does not intro-
duce strong changes in terms of narrowband (de)synchronization, but instead leads to broadband power shifts, 
spectral tilts as well as shifts in alpha peak frequency (APF).

Broadband power and APF are reduced during long‑term isolation.  Broadband power was esti-
mated after subtraction of band-limited oscillations using irregular resampling20 (IRASA) and refers to the inter-
cept of the corrected, aperiodic-like power spectrum. We observed a reduction in broadband power (2–45 Hz) 
upon exposure to isolation. A rebound effect, in terms of increased broadband power, was observed upon release 
from isolation. Single-subject analyses using a cluster-based trial-shuffling procedure further substantiated the 
robustness of this observation as it was evident and consistent across all subjects in both resting-state condi-
tions. Previous research has tried to examine the association between broadband spectral changes and activation 
levels of neuronal populations. One example is a study by Manning, et al.15 where they simultaneously recorded 
LFP and single-unit activity in neurosurgical patients and demonstrated that broadband LFP power across all 
frequencies reliably tracked single neuron activity in widespread subcortical and cortical areas. This observation 
has been further substantiated by Ray and Maunsell26 who showed a robust relationship between broadband 
gamma and spiking activity in macaque visual cortex. Furthermore, broadband power shifts in fusiform and 
parahippocampal gyri reliably classified the visual presentation of either faces or houses with high temporal 
precision indicating that broadband power closely tracks the activation level at local cortical circuits17. Even 
though EEG and LFP recordings both reflect the superposition of multiple transmembrane currents in the brain 
(e.g. synaptic activity, action potentials etc.), they do represent underlying activity at fairly different spatiotem-
poral scales where activity recorded at a single EEG electrode reflects a spatiotemporally smoothed version of 
the LFP27,28 Therefore, we cannot unambiguously extrapolate our findings to the aforementioned relation of 
broadband power to single unit activity. However, it is plausible to argue that periods of sensory deprivation and 
spatial confinement during long-term isolation reduce the level of vigilance and arousal which in turn might 

Figure 6.   Single-subject change in Alpha Peak Frequency (APF) after removal of the aperiodic signal using 
IRASA. Bar plots show the mean APF during isolation (red) and post-isolation (green). Error bars represent the 
standard deviation over trials. The topographical t-value distribution (given by random trial shuffling between 
the two conditions, see methods for details on single-subject cluster permutation analysis) obtained via cluster 
permutation is plotted for each condition difference. Black dots represent significant sensors that are part of 
a negative cluster (here: APF increased during isolation as compared to post-isolation). Gray dots represent 
significant sensors that are part of a positive cluster (here: APF reduced during isolation as compared to post-
isolation). Individual subjects are denoted as Subject A, B, C, D, E, F. Note that APF increased in 4/6 subjects 
after isolation whereas 1 subject showed the opposite pattern and in 1 subject APF was not altered. Please find 
the figure for single-subject comparison between pre-isolation and isolation for APF in the Supplementary 
Fig. S11. *p < 0.05, **p < 0.01, ***p < 0.001, ns not significant.
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lead to an enhanced cortical deactivation. This notion can be further accentuated when taking the global, yet 
not significant (p = 0.09), reduction in APF during and its subsequent (significant) increase after isolation into 
consideration. The interpretation of the reduction in APF during isolation as a corollary of a reduced vigilance 
state can be further supported by a recent study29 which revealed a systematic decrease of APF over the course 
of an experimental session (1 h). In addition, Samaha and Postle30 measured the temporal resolution of visual 
perception by estimating the temporal threshold at which two successive light flashes could no longer be dis-
criminated and correlated this behavioral measure with eyes-closed APF. Intriguingly, they were able to demon-
strate that APF reliably tracked the temporal resolution of visual perception. That is, subjects with a higher APF 
had a finer temporal resolution of visual perception. Importantly, however, APF has been shown to be robust 
against bottom-up sensory fluctuations which suggests that APF is rather regulated in a top-down manner31. 
Our present results converge with this idea and suggest that the brain adaptively top-down regulates APF in 
dependence to sensory stimulation. Hence, as we show here, APF is down-regulated during isolation where 
sensory input is at a minimum level, but is again up-regulated post-isolation when sensory stimulation is back 
to normal. This interpretation is coherent with the assumption that the frequency at which active neural ensem-
bles oscillate is self-regulated and can be described as a function of the input statistics (e.g. sensory input, task 
demands etc.)19. In order to further justify the claim that both broadband power and APF track cortical deactiva-
tion during long-term sensory deprivation, we correlated APF and broadband power, hypothesizing that if both 
reflect a proxy of neural de(activation), they should be positively correlated. We were indeed able to confirm our 
prediction by demonstrating a positive correlation between both parameters (significant for eyes closed, highly 
trending for eyes open). This reduction in cortical activation observed here during long-term isolation further 
raises the important question to what extent this effect might reflect a pathological condition. We argue that 
the broadband power decrease observed during isolation reflects a self-correcting mechanism where neuronal 
population activity is reduced as a consequence of sensory deprivation. However, in contrast to the broadband 
power increase observed in medication naïve young ADHD patients13 which might indeed reflect a disturbed 
feedback mechanism, we do not think that the decrease within- and subsequent increase post-isolation are signs 
of pathological conditions, but rather reveal a homeostatic adaption to the brain in response to reduced needs of 
sensory integration. We recently observed a comparable homeostatic self-regulating process for cortisol secre-
tion during short-term isolation with highly increased cortisol values during isolation that, however, returned 
back to baseline values post-isolation32.

Flatter 1/f spectral slope during isolation.  An additional parameter that characterizes the aperiodic 
power spectrum is its slope. Previous work has shown that the spectral slope reflects an index of the local bal-
ance between excitation and inhibition11,16,33. Thereby, steeper slopes index enhanced inhibition and vice versa. 

Figure 7.   (A) Relationship between Alpha Peak Frequency (APF) and spectral offset of the aperiodic signal) 
during eyes closed condition (Spearman correlation: r(28) = 0.44, p < 0.01). 6 data samples (clustered around 
9 Hz for APF) were removed from this correlation as they lead to a shift in the distribution of the APF data. 
Note, however, that the correlation is still significant even after inclusion of the 6 samples (Spearman correlation: 
r(34) = 0.29, p < 0.05). Please refer to the Supplementary Fig. S11A for scatterplots including the 6 data samples. 
(B) Channel-averaged Cohen’s d values for the periodic PSD contrast Post-Isolation − Pre-Isolation (Eyes Open) 
and (C) for the contrast Post-Isolation − Isolation (Eyes Open). Note the peak effect size in the high alpha 
frequency range.
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Therefore, we essentially predicted that isolation would lead towards a steeper slope due to reduced excitation 
and relatively more inhibition as induced by a lack of sensory perturbation. However, our results point towards 
the opposite direction. We show that the slope increases upon exposure to isolation, however, only during the 
eyes closed condition. In contrast, we observed a steeper slope upon release from isolation that was significant 
for the eyes open condition, but the mean difference pointed towards the same direction for the eyes closed 
condition. This observation was also highly consistent across participants when single-subject analyses were 
performed. Although we expected the change in slope to point towards the opposite direction, the following sce-
nario according to the neural noise hypothesis12 can be derived: The neural noise hypothesis states that increases 
in asynchronous and periodically decoupled population spiking leads to a flattening of the power spectrum. 
This feature has been shown to increase as a function of age12 and to mediate age-related working memory 
deteriorations. Therefore, it is reasonable to assume that increases in desynchronized neuronal spiking activity 
contributed to the flattening of the power spectrum during isolation.

Potential mechanisms that drive spectral changes during long‑term isolation.  What are the 
potential mechanisms that drive such cortical deactivation (reduced broadband power and APF) and increases 
in neural noise (flatter spectral slope) during long-term isolation? Vigilance and arousal levels are known to 
be partially modulated by the reticular activation system (RAS) through diffuse neuromodulation34. Further-
more, stimulation of the RAS led to a disruption in narrowband oscillations and induced stronger desynchro-
nized neuronal activity, prompting its potential role in regulating scale-free cortical activity35. This leads to the 
hypothesis that the ascending sensory input from the RAS to subcortical and cortical regions is reduced during 
periods of sensory deprivation and spatial confinement. However, further research is needed to directly assess 
this hypothesis. Whereas the general cortical activation state might be regulated by the ascending RAS, the 
change in neural noise, as measured by the slope of the aperiodic-like power spectrum, is likely to have different 
origins. Noradrenaline (NA) is thought to modulate sensory gain control mechanisms that regulate the bal-
ance between excitation and inhibition and determine the sensitivity of a behavioral response towards relevant 
sensory input36,37. Thus, it would be reasonable to speculate that NA and the 1/f neural noise are interrelated. 
A recent study38 could indeed provide evidence that NA as measured reliably by the pupil diameter39 and the 
1/f neural noise are correlated. Counterintuitively, however, they showed a positive correlation suggesting that 
higher levels of NA indicate a flatter power spectrum and stronger neural noise. To what extent NA is altered 
during long-term isolation should be focus of future investigations, but initial evidence suggests that levels of NA 
are highly reduced during social isolation as investigated in rats40.

Relation to previous isolation studies.  Over the past years, a considerable number of studies has been 
employed to aid our understanding on how prolonged periods of isolation impact physiological mechanisms in 
both human and animal models18,32,41–43. We here address how our present results converge with previous inves-
tigations. Early studies in animal models have shown that isolation modulates the behavioral response towards 
novel stimuli and induces locomotor hyperactivity44 and leads depletions of NA in diverse brain regions includ-
ing the hippocampus45. Furthermore, sensory deprivation as induced through isolation adversely affects cogni-
tion in animals46. Although the direct mechanisms underlying deterioration in cognitive performance has not 
been fully elucidated, it is tempting to speculate that NA might be a driving mechanism due to its important role 
in the induction of long-term potentiation (LTP) to facilitate memory consolidation47. To what extent a reduc-
tion in NA release through decreased activation of the Locus Coeruleus (LC) can explain our present observa-
tions in regards to reductions in broadband power and a flattening of the aperiodic slope remains to be seen. 
However, it has been indeed demonstrated that LC stimulation leads to a stronger rhythmicity in spike timing 
and a more reliable response towards external stimuli47 which would well align with the hypothesis that lower 
levels of NA decrease arousal and cortical activation. So far, the effect of isolation on human physiology has only 
been studied on a macroscopic level. However, our results align well with previous studies showing a reduction 
in global brain activity in the alpha and beta frequency during isolation18,42,43. Yet, it should be noted once more 
that in comparison to previous studies that only focused on changes in oscillatory activity over the course of iso-
lation, we here applied an approach to disentangle oscillatory and non-oscillatory (aperiodic) features. Thereby, 
we showed that isolation induces a reduction in broadband power rather than changes in narrowband oscilla-
tions. Therefore, we suggest that future studies investigating changes in neural activity during isolation follow 
this approach to prevent potential conflation of changes in rhythmic and arrhythmic activity.

Conclusion
In conclusion, we have demonstrated that both broadband power and APF are reduced during and subsequently 
increased after isolation. This suggests that long-term isolation reduces cortical activation levels. As previous 
studies have found a strong correlation between broadband power across all frequencies and single-unit activ-
ity, our findings let us to speculate that the mean population firing rate is reduced during long-term isolation. 
Furthermore, our data reveals a trend towards a flatter spectral slopes during isolation indicating more desyn-
chronized spiking activity. In conjunction, our results are the first ones to show that isolation induces changes 
in (1) broadband EEG power, (2) alpha peak frequency and (3) 1/f neural noise. It is, however, important to note 
that, although isolation studies provide unique insights into how long-term isolation shapes cortical activity, we 
cannot simply extrapolate our findings onto effects of pandemic situations and concomitant isolation. This is 
in particular because the circumstances, such as financial security, general health (not being exposed to a risk 
situation through a virus) and the concern regarding the health status of other family members, remain station-
ary during isolation studies whereas they are uncertain and highly unpredictable during pandemic situations.
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Limitations
We address three major limitations of the present study.

(1) We did not include a control group with which potential interaction effects could have been studied to 
highlight that our observations were indeed caused by isolation. However, we were able to show in previous 
studies that a non-isolated control group did not show any alterations over time32. Thus, we believe that our 
results here are caused by sensory deprivation during long-term isolation. (2) Due to the high logistic expense 
and cost effort due to the nature of these particular studies that try to mimic a space-analogue conditions, the 
sample size is extremely low. However, we tried to statistically analyze the data in a way (non-parametric cluster-
based permutations and single-subject analyses) that allows us inferring the conclusions that we finally made.

(3) Some confounding factors, that might explain some variance in our results, such as mood, boredom or 
shifts in sleep cycles, cannot be entirely excluded. We do, however, believe that these factors are not orthogonal 
to the phenomenon of sensory deprivation, but rather describe psychological consequences of prolonged periods 
of monotony and sensory deprivation.

Materials and methods
Participants.  The study was approved by the ethic committee of the Institute of Biomedical Problems 
(IMBP) as well as the Institutional Review Board of the National Aeronautics and Space Administration (NASA). 
An international crew of three women and three men (aged 33.67 ± 6.41 years (mean ± SD) participated in the 
SIRIUS-19 (Scientific International Research in Unique Terrestrial Station 2019) isolation mission. All methods 
were performed in accordance with the relevant guidelines and regulations and informed consent was obtained 
from all participants.

Experimental procedure.  The mission was conducted in the NEK (Nezemnyy Eksperimental´nyy Kom-
pleks) multicompartment facility of the IMBP at the Russian Academy of Sciences (RAS) in Moscow under 
the leadership of the IMBP and NASA Human Research Program and participation of the German (DLR) and 
French (CNES) Space Agencies. The crew was isolated for 120  days under space analogue conditions from 
March to July 2019 simulating a journey to the Moon with extravehicular activities on the lunar surface and back 
to Earth. Detailed information about the SIRIUS-19 mission scenario can be found at: https​://www.nasa.gov/
sites​/defau​lt/files​/atoms​/files​/siriu​s_19_bookl​et.pdf. Besides the medical and laboratory compartment, in which 
the present experimental recordings were realized, NEK facilities include separated compartments for physical 
training, kitchen and living room, private dorms, storage, lavatories and technical operations.

Data acquisition timepoints.  We recorded EEG activity at 32 scalp sites on 6 different timepoints: The 
first assessment day was 13 days prior to the start of the isolation period (Pre-Isolation). The second, third, fourth 
and fifth measurement were taken at isolation day 15, 54, 79 and 110, respectively. The last assessment was taken 
7 days after participants were released from isolation (Post-Isolation). EEG was always recorded in the same set-
tings (stationary set up in a separate laboratory compartment, noise was kept at a minimum and participants 
wore noise cancelling ear plugs during recordings), but recording times randomly varied between 8am and 6 pm 
due to the complexity of internal space analogue isolation missions simulating a space flight to the moon. To 
ascertain that the fluctuations in daytime at which we recorded EEG did not introduce any spurious effects, we 
performed several control analyses (see Supplementary Fig. S14).

EEG data acquisition.  EEG data was obtained during eyes closed and eyes open resting state conditions 
while subjects were seated in a relaxed position. Both conditions were continuously recorded for 2.5 min with a 
transition period of 30 s.

EEG data was recorded at a sampling rate of 1000 Hz using an electrode cap Ag/AgCl active electrodes (Acti-
Cap EEG Active Electrode System, Brain Products GmbH, Gilching, Germany) located at 32 scalp sites based 
on an international 10–20 system48.

EEG preprocessing.  Preprocessing and statistical analysis of the data was carried out in MATLAB 2019a 
(MathWorks Inc.) using custom written code along with functions from the Fieldtrip toolbox49. EEG data analy-
sis was performed separately for the eyes open and eyes closed condition. All analyses steps, however, were 
equal for both conditions. In order to prevent edge artifacts, we applied a bandpass-filter between 1 and 45 Hz 
to the continuous data. Data was then demeaned, detrended and re-referenced the data to an average reference 
before we separated the data into non-overlapping epochs of 2 s. Subsequently, data was visually inspected and 
trials containing visually prominent artifacts were rejected. Subsequently, we used an independent-component 
analysis (ICA) to remove eye-blinks, saccades or cardiac artefacts. We then extracted the variance of the signal 
channel-wise for each trial by averaging over channels. Trials were rejected if the variance exceeded the 1.5 times 
the interquartile range of the median variance. In a final step, we again visually inspected the signal for residual 
artifacts and rejected artifact-contaminated trials.

Spectral decomposition.  We computed the spectral estimates by means of a Fast-Fourier Transformation 
after applying a single Hanning window to all artefact-free segments. Spectral estimates were obtained between 
2 and 45 Hz in steps of 0.5 Hz on single trials. For later group-level analyses, we averaged the power spectrum 
along the trial dimension. We limited the analysis to 45 Hz to prevent confounds in later analyses on spectral 
slope and broadband power estimates due to line noise at 50 Hz. Besides, no further additional information was 
expected in the higher frequency ranges. To reliably estimate offset, slope and alpha peak frequency (APF) of 

https://www.nasa.gov/sites/default/files/atoms/files/sirius_19_booklet.pdf
https://www.nasa.gov/sites/default/files/atoms/files/sirius_19_booklet.pdf
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the electrophysiological power spectrum, we used irregular resampling20 (IRASA) to separate oscillatory com-
ponents from broadband 1/f contribution. To extract purely oscillatory features from the signal, we subtracted 
the spectral estimates that were obtained using IRASA from the spectral estimates that were obtained by regular 
spectral analysis50. This procedure allowed us to estimate the APF by means of the purely oscillatory driven 
signal as well as spectral slope and broadband power (offset of the spectral signal) by means of the aperiodic 1/f 
signal that itself has been shown to encompass information about the physiological state25.

Spectral slope and offset estimation.  We estimated spectral slope and spectral offset on the aperiodic 
signal using IRASA. The key aperiodic features (slope and offset) were calculated by fitting a linear regression to 
the aperiodic signal in semi-log power space (polyfit.m, MATLAB and Curve Fitting Toolbox Release R2015a, 
The MathWorks, Inc., Natick, Massachusetts, United States)13. Fitting was performed channel-wise on the trial-
averaged data for group-level analysis and on a trial-basis for single-subject analysis.

Analysis of Alpha Peak Frequency.  We calculated the Alpha Peak Frequency (APF) by means of the 
periodic signal that entails the residual oscillatory components of the signal. This approach facilitates the identi-
fication of a spectral peak and prevents misleading detection of a peak that is purely explained by the 1/f contri-
bution to the signal51,52. As a reminder, the purely oscillatory driven signal was obtained by subtracting the aperi-
odic 1/f contribution from the original power spectrum. We used a semi-automatic detection for APF detection. 
We predefined a range for APF between 8 and 12 Hz. The algorithm then extracted the APF that was defined as 
the local power maxima between 8 and 12 Hz. To finally determine whether the local maximum indeed reflected 
a peak, we used an adaptive power threshold procedure. Therefore, we first computed the power spectrum for 
each channel and derived its mean and standard deviation over the whole frequency range. We then multiplied 
the standard deviation by a factor of 3 and added the resulting product to the spectral mean. This computation 
finally resulted in a single number that predefined the threshold for a peak to be considered as robust and reli-
able for further statistical analysis. We visually inspected the power spectrum and confirmed the decision of 
the algorithm on each trial. There was, however, no need for manual adjustment. APF detection was performed 
channel-wise on the trial-averaged data for group-level analysis and on a trial-basis for single-subject analysis.

Statistical analysis.  We used cluster-based permutation tests to test for changes in spectral slope, offset 
and APF over time53. Since, to the best of our knowledge, no prior study has investigated the effects of isolation 
and sensory deprivation on spectral slope, offset or APF, no prior assumptions on the spatial extent of the effects 
were made. Therefore, we decided against testing the effects on a certain subset of electrodes, but to take advan-
tage of the non-parametric cluster-based permutation approach that provides insights into the spatial extent 
of the effect while still correcting for the multiple comparison problem. Statistical effects were employed both 
on the group as well as on the single-subject level. We used exactly the same statistical approach for examining 
changes in spectral slope, offset and APF.

Group‑level analysis.  In a first step, we employed a non-parametric, cluster-based within-subject repeated 
measures ANOVA (implemented in Fieldtrip with ft_statfun_depsamplesFunivariate) to assess the main effect 
of time using all timepoints (6 factor levels: pre-isolation, isolation day 15, 54, 79, 110, post-isolation). To ascer-
tain that the main effect of time was still present when we averaged across all isolation timepoints (isolation day 
15, 54, 79 and 110), we also employed the ANOVA on the isolation-averaged data (3 factor levels: pre-isolation, 
average isolation, post-isolation). This extra ANOVA was conducted as post-hoc tests were employed on the 
isolation-averaged data (see beginning of results section for a more detailed explanation).

Follow-up pairwise comparisons were performed using cluster-based permutation tests. Permutation distri-
butions for higher group level analysis were obtained by randomly shuffling the condition labels (timepoints of 
interest, e.g. pre-isolation vs. isolation). Due to the small sample size, we used all possible random partitions (here: 
62 = 64) to derive the permutation distribution. For every random partition, we contrasted the two conditions 
of interest using dependent-sample t-tests on the channel-level. Spatial clusters were formed by thresholding 
at the t-statistic at a critical alpha of 0.05. Clusters were formed by two or more neighboring channels in space. 
The selection of neighbors was based on the triangulation method. The maximum t-statistic within a spatial 
cluster was calculated by summation of all t-values. Finally, the largest t-sum among all clusters was extracted. 
Repeating this step for the maximal number of possible permutations ensured a distribution of the maximum 
t-statistics. The p-value was then computed by calculating the proportion of random partitions that exceeded 
the observed (true) test statistic. The p-value was directly adjusted for two-tailed testing and thereby multiplied 
by a factor of two.

Single‑subject analysis.  We followed the same rationale to test for effects on the single-subject level. However, 
instead of randomly shuffling the condition labels on the subject-level, we randomly permuted the labels on a 
trial-level. That is, the mean value of a single channel was derived by averaging across trials instead of averaging 
across subjects.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author upon reasonable request.
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