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SUMMARY
The development of intelligent blood coagulation diagnoses is awaited tomeet the current need for large clin-
ical time-sensitive caseloads due to its efficient and automated diagnoses. Herein, a method is reported and
validated to realize it through artificial intelligence (AI)-assisted optical clotting biophysics (OCB) properties
identification. The image differential calculation is used for precise acquisition of OCB properties with elim-
ination of initial differences, and the strategy of space-time regulation allows on-demand space time OCB
properties identification and enables diverse blood function diagnoses. The integrated applications of smart-
phones and cloud computing offer a user-friendly automated analysis for accurate and convenient diagno-
ses. The prospective assays of clinical cases (n = 41) show that the system realizes 97.6%, 95.1%, and 100%
accuracy for coagulation factors, fibrinogen function, and comprehensive blood coagulation diagnoses,
respectively. This method should enablemore low-cost and convenient diagnoses and provide a path for po-
tential diagnostic-markers finding.
INTRODUCTION

Assessment of the blood coagulation function is crucial in many

time-sensitive clinical settings, including surgery, transfusion,

trauma etc., to predict, avoid, and guide the management of

serious diseases caused by bleeding or thrombosis.1–4 Current

clinical monitoring methods mainly rely on active stimulus-

response systems (monitoring probes, resonance, etc.). These

active stimulus-response methods often require precise input

source-detector modules. This leads to the complexity of current

equipment, and the well-trained operation needed, for example,

a widely used clinical thromboelastography analyzer, the TEG

(TEG5000, Denver, CO, USA) performs thromboelastography

detection by monitoring the amplitude changes of a high-preci-

sion probe.5–8 In addition, active stimulation methods (probes,

particle motion, resonance) will affect the stability of the clot;

clot fragmentation and dislodgement often occur in practical

clinical applications, thus interfering with the measurement.

The disruptive technology development for blood coagulation

function diagnosis is urgently needed and widely expected.

Currently, a series of good studies about optofluidic imaging

systems combined artificial intelligence (AI) for smart disease

diagnosing are gradually emerging,8–24 which implies a potential
Cell Repo
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possibility of combining optical imaging and AI technologies for

convenient and accurate smart blood coagulation function diag-

noses. Blood clotting is a continuous process that includes clot-

ting activation, formation, and densification, and the patients

differ in the rate and intensity of each process.25–27 Therefore,

AI-assisted single clotting image recognition has trouble accu-

rately assessing the comprehensive blood coagulation capacity.

In addition, the clinical diseases induce changes in the oxygen

content of the blood red cells, which leads to inconsistent initial

chromaticity and optical intensity of the clotting images, and it

further interferes with the accuracy of AI-assisted coagulation

imaging recognition.28,29 The real clinical application of this

promising method is still a challenge.

Here, we propose a convenient and scalable approach to

realize it, based on AI-assisted space-time regulation of optical

clotting biophysics (OCB) properties (Figure 1). The developed

optical imaging system9,30–32 enables continuous clotting imag-

ing capture, and the images’ differential calculation was used to

precisely acquire the OCB properties with elimination of initial

differences.10 Space-time regulation of OCB properties is used

to enable diverse coagulation function diagnoses. Simply, the

different coagulation function diagnoses were realized by OCB

properties segmentation and combination. The regulated OCB
rts Medicine 3, 100765, October 18, 2022 ª 2022 The Author(s). 1
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Figure 1. Working principle and application scenarios of this system
(A) The developed system and promising applications.

(B) The schematic diagram of the continuous clotting process. (I) Pre-clotting, (II) activated clotting, (III) clotting growth, and (IV) clotting densification.

(C) The optical clotting reconstruction of the clotting during continuous coagulation process. The color bar refers to the gray value.

(D) The collected continuous optical clotting biophysical (OCB) properties with differential computing.

(E) The OCB properties-based deep-learning model for smart blood coagulation diagnosis.
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properties were then imported to neural networks for accurate

and automated diagnoses. We then prospectively tested the

method in human subjects for usability and accuracy against a

standard clinical device. Our results support clinical equivalency

in accuracy. This method should meet large-scale and time-sen-

sitive clinical caseload need.

RESULTS

On-chip blood clotting process
After blood injection, the good seal of the chip was realized by oil

sealing20 (Figure S2). The fluorescent characterization was then
2 Cell Reports Medicine 3, 100765, October 18, 2022
performed to clearly and dynamically display the on-chip blood

clotting process. The confocal micrographs of the continuous

clotting process for platelet (PLT) bound to fibrin (FIB) are shown

in Figure 2A, and the three-dimensional fluorescence intensity

maps are shown in Figure 2B. The results (Figures 2C and 2D)

show that the 5, 15, 25, and 35 min average PLT fluorescent

areas were 0.485 (s = 0.033), 0.507 (s = 0.042), 0.612 (s =

0.051), and 0.654 (s = 0.054), respectively. The average FIB fluo-

rescent areas were 0.083 (s = 0.013), 0.146 (s = 0.024), 0.231

(s = 0.031), and 0.250 (s = 0.035), respectively. This shows the

growth of the on-chip blood clot. The 5, 15, 25, and 35 min

average PLT fluorescence intensities were 149.916 (s = 2.780),



Figure 2. On-chip clotting process
(A) The confocal micrographs of continuous clotting process for platelet (red) bound to fibrin (green). Scale bar: 200 mm.

(B) The three-dimensional fluorescence intensity maps of platelets and fibrin.

(C) The mean fluorescence area of platelets and fibrin during blood clotting process (n = 5). The error bars refer to standard deviation.

(D) The mean fluorescence intensity of platelets and fibrin during blood clotting process (n = 5). The error bars refer to standard deviation.
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152.033 (s = 3.360), 158.249 (s = 4.120), and 160.547 (s = 4.456),

respectively, and the corresponding average FIB fluorescence

intensities were 178.371 (s = 3.694), 180.843 (s = 4.973),

188.606 (s = 5.213), and 190.151 (s = 5.491), respectively. This

indicates the increased clot intensity in the chip. Overall, these

on-chip results indicate that blood clotting is a continuous pro-

cess—the FIB gradually forms and webs the blood cells to

form clotting—and the increase in FIB fluorescence area indi-

cates the clotting growth process, while the increase in the

average PLT fluorescence intensity demonstrates the increased

clotting compactness.18,33,34 And, it inspired us to perform

source-free monitoring of the clotting process by the

continuous biophysical properties changes (clotting growth

and densification).

OCB properties acquisition and processing
The continuous process of blood clotting includes the activa-

tion of the coagulation process, where thrombin is then

released to activate fibrinogen to form FIB, and it webs the

blood cells to form blood clotting.18,35–39 This in turn leads to

regular changes in optical clotting properties. Through the de-

signed optical imaging system (field of view [H 3 V, mm]:

1.81 3 1.02, resolution: 1 mm; Figure S1),9 the smartphone en-

ables continuous images capture in the blood clotting process.

Figure 3A shows the operational interface of the smartphone

data acquisition (continuous clotting process capture) and the

analysis process. In the clotting growth and densification pro-

cess, the optical intensity (gray value) of blood clotting changes

accordingly. As in the clotting growth process, the blood clot-

ting area with decreased gray value will expand, and in the

densification process, the optical gray value of the clotting
area will further decrease.18,35 Therefore, the quantification of

clotting area and compactness can be achieved by identifying

the gray value changes of the clotting images, and the optical

reconstructed treatment process (Video S1) has been shown

in Figure 3B. Figure 3C shows the recorded continuous OCB

properties (clotting area and optical gray value) from a patient

based on this system. Differential computing was used to elim-

inate the interference of the differences in initial blood gray

value (Figure S3) on the quantification of the OCB proper-

ties,40,41 and the OCB properties’ curves with differential

computing process are shown in Figure 3D. In this blood sam-

ple, the initial flat straight line refers to the pre-clotting state.

After entering the clotting state, the curve of the blood

clotting area significantly increases (clotting growth), and the

curve of the average clotting optical gray value decreases

(clotting densification). The clotting then reaches a steady state

(insignificant changes in clotting area and average optical gray

value).18

Intelligent blood coagulation diagnosis
In this study, 163 clinical patient blood samples were collected

and analyzed (room temperature: 26�C) for space-time-regu-

lated diagnoses model development, and Figure 4A presents

the differences in OCB properties of the 163 clinical patients

between hypercoagulable, normal, and hypocoagulable pa-

tients (90 healthy; 42 hypocoagulation; 31 hypercoagulation).

The 3D t-distributed stochastic neighbor embedding (T-SNE)

plots are shown in Figure 4B. It is clear to see that this method

has good discrimination for different comprehensive coagula-

tion, and it is distinct in phenotypic space visualized by

T-SNE. We performed AI diagnoses model development for
Cell Reports Medicine 3, 100765, October 18, 2022 3



Figure 3. Edge computing-based OCB

properties acquisition and processing

(A) The operational interface of the smartphone for

data acquisition and analysis.

(B) The image’s treatment process for OCB

properties acquisition.

(C and D) Differential computing process of

continuous OCB properties.
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comprehensive coagulation diagnosis (Figure 4C), and the

model possesses a good accuracy of 98.6% (space-time inter-

val: 0–30 min).

We then performed space-time regulation for smart fibrinogen

function and coagulation factor diagnoses. As shown in Fig-

ureS6A, theAImodels for fibrinogen functiondiagnosis (97normal

type; 48 low type; 18 exceeded type) with space-time regulation

(5–15, 5–20, 5–25 min) were performed, and the results show

that the deep-learningmodel based on the 5–20min regulation in-

terval has a best test accuracy of 96.0% (94.5%diagnosing accu-

racy of normal type, 98.9%diagnosing accuracy of low type, 96%

diagnosingaccuracyofexceeded type); theAImodelbasedon the

5–15 min regulation interval has a test accuracy of 95.2% (95.9%

diagnosing accuracy of normal type, 92.8% diagnosing accuracy

of low type,100%diagnosingaccuracyofexceeded type); and the

AI model based on the 5–25 min regulation interval has a test ac-

curacy of 94.8% (92.7% diagnosing accuracy of normal type,

97.5% diagnosing accuracy of low type, 99% diagnosing accu-

racy of exceeded type). Therefore, the 5–20 regulation interval
4 Cell Reports Medicine 3, 100765, October 18, 2022
was selected for fibrinogen function diag-

nose, and the heatmap of space-time-

regulated OCB properties is shown in Fig-

ure 4D. As shown in Figure S6B, the AI

models for coagulation factor diagnosis

(91 normal type; 42 low type; 30 exceeded

type)with space-time regulation (0–5, 0–8,

0–11 min) were performed. The results

show that the deep-learning model based

on the 0–8 min regulation interval has a

best test accuracy of 96.1% (97.2% diag-

nosing accuracy of normal type, 100%

diagnosing accuracy of low type, 86.2%

diagnosing accuracy of exceeded type);

the AI model based on the 0–5min regula-

tion interval has a test accuracy of 91.9%

(91.9% diagnosing accuracy of normal

type, 96.7% diagnosing accuracy of low

type, 85% diagnosing accuracy of ex-

ceeded type); and the AI model based on

the 0–11 min regulation interval has a test

accuracy of 95.1% (97.6%diagnosing ac-

curacy of normal type, 98.3% diagnosing

accuracy of low type, 81.9% diagnosing

accuracy of exceeded type). Therefore,

the 0–8 regulation interval was selected

due to the best accuracy. The 3D T-SNE

plots are shown in Figure 5A, and it is

clearly distinguished in phenotypic space
visualizedbyT-SNE, and theheatmap (Figure5B)presents thedif-

ferences in 0–8 min OCB properties between different types.

Clinical assays
Following AI model development, we proceeded to patient-ori-

ented testing for clinical comprehensive blood coagulation,

fibrinogen, and coagulation factor function diagnoses. A pro-

spective trial with 41 patients in Zhongnan Hospital was de-

signed for double-blind test against a clinical standard instru-

ment. All patients gave informed consent for the extra test.

Figure 6C shows a histogram of the comprehensive blood coag-

ulation distribution in 41 patients based on physicians’ diagno-

ses including health, hypocoagulation, and hypercoagulation,

and the confusion matrix for comparison of physician annotation

diagnosing with this method is shown in Figure 6D. The results

show 100%accuracy of comprehensive blood coagulation diag-

nosis with thismethod. Figure 6E shows a histogram of the fibrin-

ogen function distribution in 41 patients based on physicians’ di-

agnoses, which includes normal, low, and exceeded types, and



(legend on next page)
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the confusion matrix for comparison of physician annotation

diagnosing with this method is shown in Figure 6F. The results

show that this method realizes 95.1% accuracy of fibrinogen

function diagnosis with this method. Figure 7A shows a histo-

gram of the coagulation factor distribution (normal, low, and ex-

ceeded types) in 41 patients based on physicians’ diagnoses,

and the confusion matrix for comparison of physician annotation

diagnosing with this method is shown in Figure 7B. The results

show that this method realizes 97.6% accuracy of coagulation

factor diagnosis with this method. Overall, this method supports

clinical equivalency in diagnostical accuracy compared with

standard physician annotation diagnosing. These results also

validate the feasibility and scalability of this method.

DISCUSSION

Here, a brand-new method was proposed and validated to

enable convenient and accurate coagulation function diagnoses

via AI-assisted space-time regulation of OCB properties. The

developed optical imaging system enables continuous and ac-

curate space-time-based OCB properties acquisition, while im-

age differential computing was used to eliminate the interference

of initial patients’ clotting optical intensity differences, and the

diverse coagulation function diagnoses were realized through

space-time regulation of OCB properties. The feasibility and per-

formance of the method have been validated by prospective

clinical assays in which it exhibits a 97.6% accuracy for coagu-

lation factors, a 95.1% accuracy for fibrinogen function, and

100% accuracy for comprehensive blood coagulation.

Some good works have been reported for clinical optical

coagulation diagnoses, which mainly rely on a light-scattering

basis.42,43–45 But the multiple scattering interference of the clot-

ting and high equipment requirement make it hard to balance

portability and clinical accuracy. For example, Guzman Sepul-

veda et al. have performed a good study about a precise and

specialized optical fiber system for blood coagulability moni-

toring.42 While in microscopic coagulation monitoring (microflui-

dic system), there is no significant light-scattering interference

due to the large specific surface area of blood,2,18,36 this gives

a good platform for combined intelligent coagulation diagnosis.

However, blood clotting is a continuous process, and there are

differences in the initial optical intensity of patients’ blood sam-

ples due to diseases. Therefore, AI-assisted single clotting im-

age recognition has trouble meeting the accurate clinical coag-

ulation function diagnosis needed; it is also the reason that

current clinical and state-of-art smart devices for blood coagula-

tion diagnosis mainly rely on mechanical properties monitoring

of the clotting (active-sources methods: physical vibration, par-

ticle motion, etc.).46,47 In this work, we explore and validate a

method using space-time-regulation-assisted intelligent OCB
Figure 4. Space-time regulation for smart comprehensive coagulation

(A) The vector’s heatmap of the OCB properties, and space-time regulation for s

diagnosis.

(B) Three-dimensional T-SNE map of OCB properties for smart comprehensive c

(C) Confusion matrices comparing the performance for comprehensive coagulat

(D) The vector’s heatmap of the OCB properties for fibrinogen function diagnosis

(E) Confusion matrices comparing the performance for smart fibrinogen function
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properties identification for intelligent coagulation function diag-

noses, which characterizes low-cost, smart, and automated di-

agnoses. This method also has excellent portability and compat-

ibility with smartphones, mobile Raspberry Pi (RPi), computers,

clouds, etc., which should enable extensive clinical application

scenarios. We have currently implemented the integrated appli-

cations of smartphone and cloud technologies, which should

empower low-cost and convenient clinical coagulation function

diagnoses in many clinical settings (hospitals, community med-

ical centers, homes, etc.) and contribute to new diagnostic

markers finding.

Limitations of the study
Themain limitation of our study is the relatively small sample size

of the clinical patients we examined. The clinical patient engage-

ment, diversity, and breadth are not sufficient to support more

coagulation function diagnosis model development and new

diagnostic markers finding. For example, we were unable to

develop the model for fibrinolytic function diagnosis due to the

absence of significant fibrinolysis in the volunteered clinical pa-

tients. We would incorporate more disease characterization fac-

tors to further enrich it in the future. The main limitation of our de-

vice is the current inability to incorporate flow fields, endothelial

function, etc. into the system for personalized diagnostic needs.

Benefiting from the high scalability of microfluidic systems, it

may be realized with the further development of microfluidic

pumpless directional infusion technology and organ-on-a-chip

technology.48,49 In addition, this system is aimed and designed

to meet the need for convenient, low-cost testing and tremen-

dous clinical applications; therefore, we did not use an additional

external temperature control module and pump modules but

used room temperature measurement and blood perfusion to

achieve the lightness and low cost of the device (<$100). In light

of the potential applications in low-resource areas, this method

can also run on the Raspberry Pi platform in low-resource areas

without a network connection.50
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Figure 5. Space-time regulation for smart coagulation factor func-

tion diagnose

(A) Three-dimensional T-SNE map of OCB properties for smart coagulation

factor function diagnosis (regulation interval: 0–8 min).

(B) The vector’s heatmap of the OCB properties for coagulation factor function

diagnosis (regulation interval: 0–8 min).

(C) Confusion matrices comparing the performance for smart coagulation

factors function diagnosis between expert diagnosis and this method.
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Figure 6. The clinical assays of smart comprehensive coagulation and fibrinogen function diagnoses using this system

(A) The photo of the smart space-time-regulated optofluidic imaging analyzer.

(B) The detailed parameters of the optofluidic imaging analyzer.

(C) Histogram of the comprehensive blood coagulation distribution in 163 patients and 41 patients (double-blind test).

(legend continued on next page)
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

In this work, the 163 clinical patients were set for space-regulated AI model development for diverse coagulation function diagnoses

including coagulation factors, fibrinogen function and comprehensive blood coagulation. And themodel was loaded into a developed

smartphone/cloud computing system. A double-blind 41 clinical samples test comparison to standard clinical method was used to

evaluate clinical performance of this system. The blood samples of clinical patients were collected from the Zhongnan Hospital of

Wuhan University. And the volunteers had given informed, written consent. And this project (no. 202265K) has been approved

and oversighted by Ethical Approval for Clinical/Scientific Research under Medical Ethics Committee, Zhongnan Hospital of Wuhan

University. All experiments were conducted in accordance with the Declaration of Helsinki and the International Ethical Guidelines for

Biomedical Research Involving Human Subjects. And detail information of each case is available in Tables S1 and S2.

METHOD DETAILS

Fabrication of the optofluidic chip
The microfluidic chips (30 3 14 3 3 mm) were fabricated using a standard soft lithography process. The chip structure was etched

onto a silicon wafer covered with a uniform photoresist SU-8 via the mask plate (Beijing Machinery Industry Automation Research

Institute Co., Beijing, China), and the reusablemaster plate was created on the silicon template tomanufacture themicrofluidic chips.

The 20 g of polydimethylsiloxane (PDMS) prepolymer (DowCorning, Sylgard 184) was poured over the silicon template (5 inches) and

stored in an oven at 75�C for 1 h. The PDMS replica was stripped from the master plate and sealed to a flat slide surface after plasma

oxidation bonding. The microfluidic chip includes an inlet, an outlet, a symmetrical microfluidic channel and a circular chamber. The

width and height of the symmetrical microfluidic channel are 100 and 60 mm. The size of the whole microfluidic chamber is

24 mm 3 10 mm360 mm, respectively.

Design of the portable imaging system
As suggested by senior physicians, the device is split designed to prevent clinical cross-infection. The 3D printed shell

(80 3 60 3 35 mm) was fabricated by ZRapid iSLA660 with acrylonitrile butadiene styrene (C-UV 9400E), which includes two parts

(upper and lower layer). The lower layer is used to set the developed optical imaging system9 (resolution: 1 mm, H 3 V:

1.81 3 1.02 mm, working distance: 0.75 mm, Figure S1), which includes camera module (CMOS IMX214, RERVISION), optics

lens (KENWEIJIESI), USB module and LED module (C5050, BDQ), and the upper layer is used for optofluidic chip insertion. The

size of chip insertion window is 50 mm (length) 3 5 mm (width). The calibration operation is used for autofocus or manual focus

and it keep the focal plane stable for subsequent measurements. To make the device as lightweight and portable as possible, the

imaging module is not equipped with a power supply system inside and we use a USB module to power and transfer data.

Image differential computing process for clotting biophysical properties acquisition
In this work, the differential computing refers to the use of pixel differences between consecutive image frames to detect the coag-

ulation process. Through the portable optical imaging system, the smartphone collected the continuous fields of view of the blood

clotting, and the interval time was 20s. The images were converted into grayscale images by the channel splitting and the formula for

grayscale processing of color images is Yðx;yÞ = ð1 �Rðx;yÞ + 0 �Gðx;yÞ + 0 � Bðx;yÞÞ, where Rðx;yÞ, Gðx; yÞ and Bðx; yÞ are RGB

color components of Point ðx;yÞ. The differential method follows the formula:

dnðx; yÞ =

�
fnðx; yÞ � fn� 1ðx; yÞ; fnðx; yÞ � fn� 1ðx; yÞ%0
0; fnðx; yÞ � fn� 1ðx; yÞ> 0

where fnðx; yÞ is the current frame, fn� 1ðx; yÞ is the previous frame. dnðx; yÞ is the image after differential computing. In order to calcu-

late the blood clotting area and the average gray value, the grayscale value of the pixel points for each image are first summed up. The

blood clotting area is the sum of the extracted pixel points, and the average gray value is the quotient of the total gray value and the

blood clotting area, i.e.mean = sum=area, ‘mean’ refers to the optical average gray value, ‘sum’ refers to the total gray value, and

‘area’ refers to the clotting area. Finally, the image differential computing processed data was loaded into the input vector

table.9,10,51,52

Developed deep learning system
The 163 clinical cases were set for space time-based neural network (convolutional neural networks) diagnostic model development.

The OCB properties with differentially computing process were inputted as vector tables for model development (Figures S4 and S5),

the 5-min interval differential computation has 12 input vectors, the 3-min interval differential computation has 20 input vectors, the

1-min interval differential computation has 60 input vectors and the 20-s interval differential computation has 180 input vectors. The
Cell Reports Medicine 3, 100765, October 18, 2022
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trained neural network contained six convolutions and three fully connected layers, the 3 fully connected layers contained 180

(the 20-s interval differential), 64, and 20 vectors. The dropout method was used in the training process to avoid overfitting and in-

crease generalization performance. The training set accounts for 70%, and the test set accounts for 30%.8,9,19,23 The 70%of the data

is randomly selected as the training set each time and the remaining 30% is retained as the validation set during clinical sample

training process. The training process performs iterations of twenty large cycles. And the algorithm can be fully extended to an inex-

pensive Raspberry Pi module for low-resourced environments.

Image acquisition interval selection
As shown in Figure S6, the AI models for comprehensive coagulation diagnosis (0–30 min) with gradient image acquisition intervals

(20 s, 1 min, 3 min, 5 min) were performed, and the results show that the deep learning model based on 5-min interval differential

computation has a comprehensive test accuracy of 83.2% (94.7% diagnosing accuracy of health, 71.6% diagnosing accuracy of

hypocoagulation, 63% diagnosing accuracy of hypercoagulation), the deep learning model based on 3-min interval differential

computation has a comprehensive test accuracy of 88.3% (93.1% diagnosing accuracy of health, 81.7% diagnosing accuracy of

hypocoagulation, 82.5% diagnosing accuracy of hypercoagulation), the deep learning model based on 1-min interval differential

computation has a comprehensive test accuracy of 94.8% (93.8% diagnosing accuracy of health, 93.3% diagnosing accuracy of

hypocoagulation, 100.0% diagnosing accuracy of hypercoagulation) and the deep learning model based on 20-s interval differential

computation has a comprehensive test accuracy of 98.6% (98.7% diagnosing accuracy of health, 98.3% diagnosing accuracy of

hypocoagulation, 98.8% diagnosing accuracy of hypercoagulation). These results suggest that the deep learning model has better

diagnostic accuracy with shorter image acquisition interval, and it’s because of that the ORBC properties acquisition are more

detailed with shorter image acquisition interval. While the image acquisition interval is further shortened, it will increase the require-

ments of edge computing based smartphone for images storage and computation.9,30–32,51,52 Therefore, the 20-s image acquisition

interval was selected due to the balanced accuracy and storage need.

Fluorescence characterization of clotting
The 100 mL of blood sample was incubated with 5 mL 0.2 mg/mL PE anti-human CD41 Antibody (sigma) and 0.13 mL 2 mg/mL Alexa

FluorTM 488 fibrinogen (Thermo Fisher) in the dark at room temperature for 15 min. The fluorescent images of blood clotting (room

temperature: 26�C)20,53,54 were captured via a confocal microscope (Nikon, A1R).

Blood assays
To accurately assess the performance of themethod, both this system and the TEG instrument use the same blood sample and stan-

dard preparing procedures (Kaolin-activated and Ca2+-activated) to avoid biased results due to time sensitivity, in this work, the Ca2+

reagent used are scaled down in proportion to the amount of TEG blood (340:10) before injection.

Comparison of third-party TEG instrument test
The clinical TEG instrument performs test preparing with the following process: The normal cup was placed in the cup holder and

20 mL of calcium chloride solution was added in the cup; 1 mL of blood sample was added to the Kaolin activator tube and then

340 mL of Kaolin-activated blood sample was added to the cup. The TEG instrument then performs the test on the physics basis

of monitoring the amplitude changes of a high-precision probe, and a senior physician performs the diagnosis based the recorded

curve and parameters. The third-party TEG instrument test of 41 clinical patients was performed jointly using two senior laboratory

physicians of Zhongnan hospital.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical tests were performed using GraphPad Prism version 8.
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