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Abstract: Perovskite solar cells (PSCs) are regarded as the next-generation thin-film energy harvester,
owing to their high performance. However, there is a lack of studies on their encapsulation technology,
which is critical for resolving their shortcomings, such as their degradation by oxygen and moisture.
It is determined that the moisture intrusion and the heat trapped within the encapsulating cover glass
of PSCs influenced the operating stability of the devices. Therefore, we improved the moisture and
oxygen barrier ability and heat releasing capability in the passivation of PSCs by adding multi-walled
carbon nanotubes to the epoxy resin used for encapsulation. The 0.5 wt% of carbon nanotube-added
resin-based encapsulated PSCs exhibited a more stable operation with a ca. 30% efficiency decrease
compared to the ca. 63% decrease in the reference devices over one week under continuous operation.
Specifically, the short-circuit current density and the fill factor, which are affected by moisture and
oxygen-driven degradation, as well as the open-circuit voltage, which is affected by thermal damage,
were higher for the multi-walled carbon nanotube-added encapsulated devices than the control
devices, after the stability test.

Keywords: perovskite solar cells; carbon nanotubes; encapsulation; passivation; packaging; epoxy resin

1. Introduction

Organohalide perovskite materials have attracted considerable attention, especially in
the application of energy harvesting [1,2]. When applied in photovoltaics, these materials
yield a high-power conversion efficiency owing to their outstanding properties, namely
their wide range of light absorption and long exciton diffusion length [3,4]. Despite the high
efficiency of perovskite solar cells (PSCs), insufficient device stability has been the limiting
factor in commercialisation. Moreover, the perovskite materials have been reported to
degrade easily due to moisture [5], oxygen [6,7], ultra-violet (UV) light, trapped charge [8,9],
and heat [10–12]. While most researchers have focused on improving the stability of
perovskite materials against moisture, it is noteworthy that good packaging technology
can prevent water and oxygen intrusion before degradation occurs in the material [13]. The
other aforementioned adverse factors can be resolved using UV-cutting glass and charge-
transporting materials with a low chemical capacitance [8,9]. However, the thermal damage
is difficult to circumvent in such an encapsulated system because the heat is trapped inside
the encapsulating glass. As most of the known electronics utilise encapsulation, it is
evident that the PSCs will inevitably be encapsulated, which confines the device system.
The confinement works favourably in the perspective of moisture and oxygen barriers but
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unfavourably in heat release. Therefore, it is desirable to develop an encapsulation system
that blocks moisture and oxygen as much as possible while releasing heat to the furthest
extent. A cover glass is used in any type of encapsulation system, as it is a perfect barrier
for both moisture and heat. This implies that the leakage occurs where the UV curable
epoxy resin is placed [14–17]. Thus, the performance of encapsulation is determined by the
barrier ability of the epoxy resin. Accordingly, many efforts have been made to develop
epoxy resins with better barrier properties [18–20].

Since their discovery in 1991 [21], carbon nanotubes have been used in various appli-
cations owing to their exceptionally high electrical [22,23] and thermal conductivity [24,25]
along the direction of the graphitic tubes. Moreover, carbon nanotubes are highly hy-
drophobic, with an average tube diameter less than the size of a water molecule, making
it difficult for the water molecules to pass through the tubes [26,27]. In addition, the
conjugated double bonds present in carbon nanotubes react with radicals, forming strong
sigma bonds. This implies that adding carbon nanotubes to epoxy resins can improve the
moisture barrier ability and increase thermal conductivity.

Herein, we report the addition of multi-walled carbon nanotubes (MWCNTs or
MWNTs) to UV curable epoxy resin sealants used for the encapsulation of inverted-type
PSCs, demonstrating improved moisture, oxygen barrier ability, and heat releasing proper-
ties. For the standardisation of the experiment, we tested the encapsulation with different
structural approaches and applied pressures. The PSCs with MWNT (0.5 wt%)-added en-
capsulants demonstrated a longer device lifetime than conventional devices. The stability
data of the reference devices with no MWNTs showed a faster decrease in the short-circuit
current density (JSC), fill factor (FF), and open-circuit voltage (VOC) values over time. Ac-
cording to literature and experiments conducted in this work, the decreases in JSC and VOC
originated from moisture intrusion [28–30] and thermal damage [12,30,31], respectively.
While the degradation caused by moisture and oxygen was more dominant, damage by
the trapped heat was insignificant enough to ignore. The addition of MWNTs to the UV
epoxy resin alleviated the decreases in JSC by ca. 21.5% and FF by ca. 43.5%, which was
attributed to the improved moisture and oxygen barrier ability. Furthermore, VOC became
steady during the entire operation of the solar cells, indicating minimal thermal damage
due to the excellent heat-releasing property of the 0.5 wt% MWNT-added UV resin-based
encapsulation. The results indicated that incorporating the carbon nanotubes in encapsula-
tion can serve as a gateway to minimising thermal damage and as a barrier to moisture
and oxygen attack. Therefore, this study revealed the pathway to stable next-generation
thin-film photovoltaic technology, towards the commercialisation of thin-film solar cells.

2. Results and Discussion

The inverted type PSCs were fabricated in the configuration of indium tin oxide (ITO)/
poly(triaryl amine) (PTAA)/perovskite/phenyl-C61-butyric acid methyl ester (PCBM)/
C60/bathocuproine (BCP)/Ag (Figure 1a). The encapsulation process was standardised to
make stability comparisons fair during tests. From our preliminary tests, we discovered
that using desiccant, also known as ‘getter’, could reduce the UV light damage on the
perovskite film during the curing process, functioning like UV masking tape (Figure S1
in Supplementary Materials). Therefore, we used the getter in all of our encapsulated
devices. Based on this, three different structural encapsulation approaches were examined
(Figure S2a–d). The cover glass (with and without a cavity) and the applied position of the
UV epoxy resin were tested, and a UV curing time of 8 min was used. Different pressures
were applied for each structure during the encapsulation (Figure S2e,f). The results showed
that the cover glass with a cavity had the most stable operation when UV epoxy resin
was applied on the edge, with the UV masking tape protecting the device (Figures S3
and S4). However, the device on which uncured epoxy resin was applied showed the
worst device stability, revealing that uncured resin damaged the device (Figure S3c). In
addition, all the devices encapsulated under hard pressure exhibited a much higher device
stability. It is notable that the applied pressure was the most dominant factor in the device
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packaging (Figure 1b). Therefore, different specific weight pressures applied during the
encapsulation, in particular 0 N cm−2, 4.90 N cm−2, 9.81 N cm−2, and 14.71 N cm−2,
were tested. The epoxy resin thickness under different pressures was tested by cross-
sectional scanning electron microscopy (SEM) (Figure 1c). The thicknesses were 122 µm,
76.8 µm, and 72.8 µm for 4.90 N cm−2, 9.81 N cm−2, and 14.71 N cm−2, respectively.
After the UV curing of samples, the device stability of the encapsulated samples was
measured. Figure 2a shows that the devices with higher pressure, that is, thinner resin,
exhibited greater device stability (Figure S5). Although the 9.81 N cm−2 pressure was
sufficient to produce device encapsulation with good stability, the optimal pressure was
14.71 N cm−2. The current density–voltage (J–V) curves of the encapsulated devices, with
the applied pressures of 4.90 N cm−2 and 14.71 N cm−2 before and after one week of
durability testing, are shown in Figure 2b and 2c, respectively. From the changes in the
J–V curves, we can observe that the JSC and FF of the devices with an applied pressure
of 4.90 N cm−2 decreased more significantly than the devices with an applied pressure
of 14.71 N cm−2 after one week (Figure 2d,e; Table 1). Moreover, the decrease in JSC was
reportedly linked to degradation by moisture [29]. When water molecules penetrated
the epoxy resin and contacted the perovskite photoactive layer, the degradation of the
perovskite layer was triggered; NH2CHNH2PbI3 (FAPbI3) dissociated to FAI and PbI2 by
moisture and sunlight [11,30–33].

NH2CHNH2PbI3 → PbI2 + CH5IN2, (1)

NH2CHNH2PbI3 + H2O→ NH2CHNH2PbI3H2O, (2)

4(NH2CHNH2PbI3) + 2H2O→ (CH3NH3)4PbI62H2O + 3PbI2. (3)

Table 1. Packaging type of the devices and solar cell performance values before and after one week of durability testing.
More detailed corresponding J–V curves, EQE, and statistical information can be found in Figures S7, S15 and S16).

Device Type\Device Performance
Feature Stability Time JSC [mA/cm2] VOC [V] FF PCE [%]

Before encapsulation N/A 19.4 0.94 64.8 11.8
Initial 11.3 0.97 28.67 3.15

Encapsulation by 4.90 N cm−2 pressure one week 2.31 0.96 15.33 0.34
Initial 13.9 0.99 28.69 3.96

Encapsulation by 14.71 N cm−2 pressure one week 8.63 0.85 26.72 1.96
Initial 16.7 0.92 61.90 9.51

Encapsulation with MWNT (0.5 wt%)-added epoxy resin
one week 13.1 0.92 55.51 6.69

Initial 16.8 0.99 39.08 6.50
Encapsulation with MWNT (1.0 wt%)-added epoxy resin

one week 1.19 0.87 10.62 0.11
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Figure 2. (a) Normalised efficiency drop of PSCs encapsulated under different applied pressures
during the packaging process left in the atmosphere after one week; (b,c) J–V curves of the encapsu-
lated PSCs under (b) 0 N cm−2 and (c) 14.71 N cm−2 before and after being left in the atmosphere
for one week; (d) changes in JSC and VOC of the devices encapsulated under the applied pressures
of 0 N cm−2 and 14.71 N cm−2. (e) Decrease in the normalised efficiency during one week of the
stability test for the PSCs encapsulated under the applied pressures of 0 N cm−2 and 14.71 N cm−2.

Due to such degradation, the light absorption coefficient of the perovskite layer
decreased, which in turn decreased JSC. Additionally, the degradation of the perovskite
was reported to increase the contact resistance at the perovskite interfaces between PTAA
and PCBM [34]; this was reflected in the increase in the series resistance (RS) of our devices,
which entailed a decrease in FF. Therefore, we can conclude that the moisture penetration
through the UV epoxy resin was the main reason for the decrease in the JSC and FF. As more
moisture penetrates the devices encapsulated with the applied pressure of 4.90 N cm−2,
more significant decreases in JSC and FF were observed than in the devices with the applied
pressure of 14.71 N cm−2.

The decrease in the open-circuit voltage (VOC) of the devices was significantly smaller
than that of the JSC and FF during the durability test. The leakage current at the hole-
transporting layer (HTL) and the electron-transporting layer (ETL), causing hole–electron
recombination, was reported to reduce VOC [35,36]. However, in this case, the VOC decrease
was not due to the leakage current as the shunt resistance values were almost the same. It
was reported that thermal damage to the perovskite reduced VOC [28,37–40]. Furthermore,
the encapsulated devices with a stronger pressure of 14.71 N cm−2 resulted in a slightly
greater VOC loss after one week than the devices with a pressure of 0 N cm−2. Devices
to which a nitrogen gun was constantly blown during the stability test to negate the heat
damage, showed no VOC loss either (Figure S6). Thus, we can reasonably deduce that the
trapped heat caused the reduction in VOC as good encapsulation did not only let the air
and moisture out but also retained the heat. This implied that it was desirable to have a
system that could block moisture and oxygen and release heat more effectively.

Therefore, the role of the UV epoxy resin is critical in exhibiting such properties. We
introduced MWNTs into the UV epoxy resin to realise this. It has been reported that adding
MWNTs improves the moisture and oxygen barrier ability and increases the thermal con-
ductivity of the UV epoxy resin [41,42]. Accordingly, we added small amounts of MWNTs
to the UV epoxy resin and tested its effect on the PSC operating stability. In the operation
of solar cells, thermal damage also contributes to the degradation of PSCs. Therefore, it
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is important to monitor VOC, particularly by operating the device, to observe the effect
of thermal damage. The thermal energy from sunlight is transferred into the solar cells
through (1) low energy absorption, (2) an electrical operating point, (3) encapsulation heat
trapping, and (4) solar energy that is heated during charge transport. Among them, the
solar energy that is heated during the charge transport can be branched into (A) thermali-
sation loss, (B) the junction/contact between layers, (C) radiative recombination, and (D)
the thermal conductivity and resistance of materials (Figure 3a) [43,44]. These processes
generate heat when the solar cells are operating. If the devices are well encapsulated, heat
will be trapped, accelerating the degradation. The thermal damage to the solar cells results
in a conspicuous decrease in VOC and slight increase in JSC, with a slight decrease in FF
according to the theory (Figure 3b) [45]. This implies that the device should be operated
to monitor the thermal damage, reflected by the VOC drop. Therefore, the device stability
was tested by operating solar cells from this point onwards.
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the change in photovoltaic performance of the PSC.

The MWNT-added UV epoxy resin was used in the packaging process to enhance the
moisture barrier property, with the encapsulating pressure of 14.71 N cm−2 (Figure S8).
Before fabricating PSCs, we wanted to consolidate the effect of the MWNT addition and
find the optimal amount of MWNT. Therefore, we conducted water contact angle tests to
confirm that the addition of MWNT increased the hydrophobicity of the UV epoxy resin.
The water contact angle images of epoxy resin and MWNT-added UV epoxy resin are
shown in Figure 4a. The contact angle of the MWNT-added UV epoxy resin (87.9◦) was
larger than that of the bare epoxy resin (81.1◦) [46]. For further investigation, water vapour
transmittance rate (WVTR) and oxygen transmittance rate (OTR) tests were performed;
they revealed the barrier ability against water and oxygen, respectively. The WVTR results
showed that the 0.5 wt% of MWNT-added UV epoxy resin exhibited the lowest WVTR
value of 19 g m−2 day−1, as shown in Figure 4b, Figures S9 and S10. Furthermore, the OTR
test results also reveal that the optimal MWNT amount to exhibit the best barrier ability
against oxygen is 0.5 wt% (Figure S11). This indicates that a specific ratio of MWNT to
UV epoxy resin must be used for the good barrier property, and adding excess MWNTs
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can reverse the barrier effect. There are several intermolecular interactions in the carbon-
based nanostructures, such as the carbon nanotubes. The main interaction of the carbon
nanotubes is the π–π interaction, which represents one of the van der Waals forces [47].
However, the actual π interactions appeared between polycyclic unsaturated molecules
with 10–15 carbon atoms [48]. Therefore, the carbon interactions of 0.5 wt% of MWNT-
added UV epoxy resin were strong. Moreover, the amount of internal porosity of epoxy
resin was decreased by the hardened carbon interaction, and the quantity of the penetrated
water molecules reduced consequentially. Conversely, if the ratio of the MWNT to UV
epoxy resin was higher than the specific ratio of 0.5 wt%, then the condensation of the
MWNT [49] could hinder the UV light-based hardening process. The van der Waals
interaction between the MWNT was stronger than the interaction between the MWNT
and UV epoxy resin. Hence, the MWNT-added UV epoxy resin could be declined by UV
irradiation, resulting in the accumulation of MWNTs on the surface [50]. Additionally, the
permeation of the water molecules and oxygen was easier and led to the deterioration
of the solar cell properties due to the decreased rigidity of epoxy resin at 1.0 wt% of the
MWNT-added UV epoxy resin. Figure 4c shows that the 0.5 wt% of MWNT-added UV
epoxy resin-based PSCs had a greater device stability than 1.0 wt% of MWNT-added UV
epoxy resin-based PSCs and the reference PSCs without any MWNTs (Table 1). While the
normalised power conversion efficiency (PCE) of the 0.5 wt% of MWNT-added UV epoxy
resin-based PSCs decreased by approximately 30% over the operating time of one week, the
reference devices without the MWNT addition displayed a decrease in the normalised PCE
of approximately 63%. Furthermore, the 0.5 wt% of MWNT-added UV epoxy resin-based
PSCs showed a high stability in all photovoltaic parameters, namely, JSC, FF, and VOC
(Figure 4d and Figures S12–S14). In the case of 0.2 wt% MWNT-added epoxy resin-based
devices, the improvement in stability was not clearly visible. We ascribed this to the added
amount being too small (Figure S15). The results indicated that the addition of MWNT to
the UV epoxy resin increased the barrier’s ability against moisture and oxygen and released
heat better. However, adding MWNTs greater than 0.5 wt% exacerbated the device stability.
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3. Materials and Methods
3.1. PSC Fabrication

Patterned ITO/glass substrates with a dimension of 1.5 cm × 1.5 cm were cleaned by
sonication with deionised water, acetone, and isopropyl alcohol for 10 min, respectively.
After drying, the substrates were attached with heat resistant tape. A 30 µL solution
measured from a mixture of 2 mg of PTAA (Sigma-Aldrich, St. Louis, MO, USA) and 500 µL
toluene (Sigma-Aldrich) was dropped onto the substrate. The substrate was spin-coated at
5000 rpm for 30 s and subsequently annealed at 110 ◦C for 10 min in a nitrogen-filled glove
box. After the coating process, the samples underwent UV–ozone treatment for 3 min
to treat the hydrophobic surface of the PTAA layer and advance the adhesion property
between the PTAA and FACsPbI3 Perovskite layer. The perovskite solution was prepared
using 26 mg cesium iodide powder (CsI, Sigma-Aldrich), 154.8 mg formamidinium iodide
powder (FAI, Greatcell Solar, Queanbeyan, Australia), 461 mg lead iodide (PbI2, Tokyo
Chemical Industry, Tokyo, Japan), 74 µL dimethyl sulfoxide (DMSO), and 580 µL N,N-
dimethylformamide (DMF, Sigma-Aldrich). The mixture was subsequently annealed for
40–60 min at 100 ◦C. A 35 µL perovskite solution was dropped onto the substrate and
spin-coated at 6000 rpm for 20 s. About 10 s into the coating process, 1.75 µL of diethyl ether
was sequentially dropped closer to the substrate. For the formation of the perovskite layer,
the substrate was annealed for 1 min at 100 ◦C. The temperature was subsequently raised
to 155 ◦C and maintained for 9 min. This was followed by spin-coating PCBM solution
with a concentration of 10 mg mL−1 in chlorobenzene at an rpm of 3000 for 30 s. C60, BCP,
and silver were deposited consecutively with a photomask by thermal evaporation at a
speed of 5 Å s−1. For the encapsulation, the epoxy resin was spread on the edge of the
cover glass with a dimension of 1.1 cm × 1.1 cm. The cover glass was then placed on top of
the PSC in the central part of the cell. After the capping process, the cover glass was cured
by UV light for 10 min. The current–voltage properties were analysed by contacting the
external side of the silver electrode, which was exposed from the capped cover glass.

3.2. Encapsulant

The UV curable epoxy resin used to encapsulate the inverted PSC was purchased
from Nagase ChemteX Corporation (XNR5516Z, Osaka Prefecture, Japan). MWNTs were
purchased from CNT Co. Ltd. (Seoul, Korea). According to the technical sheet of the
product, the outer diameters were 10 nm–140 nm, the tube lengths were 5–20 µm, and the
purity was >99% [51–53].

3.3. Characterisations

The J−V curves were measured using a software-controlled source meter (Keithley
2400 Source-Meter) under dark conditions and the simulated sunlight irradiation of 1 sun
(AM 1.5 G; 100 mW cm−2), which was generated from a solar simulator (EMS-35AAA,
Ushio Spax Inc., Tokyo, Japan) with an Ushio Xe short arc lamp 500. The source meter
was calibrated using a silicon diode (BS-520BK, Bunkokeiki, Tokyo, Japan). A photomask
with a dimension of 3 mm × 3 mm was placed for the measurement, which defined
the active area. The long-term stability test was conducted by leaving the devices in a
room where the temperature was ca. 25 ◦C and the relative humidity was ca. 80% under
constant illumination of sunlight. The external quantum efficiency (EQE) measurement
system consisted of an MLS-1510 monochromator to scan the UV–Vis spectra. The cross-
sectional images of the epoxy resin spread between the device, substrate, and cover glass
were obtained by SEM (Hitachi High Technologies, Tokyo, Japan. S-4800). The current–
voltage measurements were performed using a source meter (Agilent Technologies, Santa
Clara, CA, USA. 4156C) under the illumination of simulated sunlight provided by an
Oriel solar simulator equipped with an AM 1.5 G filter. The hydrophobic/hydrophilic
properties of the epoxy resin and MWNT-added epoxy resin were measured using a Water
contact angle analysis system. The WVTRs were measured using a Lyssy water vapour
permeation analyser.
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4. Conclusions

The inverted PSCs were fabricated, encapsulated, and monitored for their stability. A
trace amount of MWNTs was added to the UV-curable epoxy resin during the packaging
process to improve the barrier and heat-releasing properties of the epoxy resin, thereby
protecting the devices from degradation through moisture, oxygen, and heat. Furthermore,
we investigated the water and oxygen permeability and the thermal conductivity of the
resin. Despite the degradation caused by moisture and oxygen being a dominant factor,
the trapped heat was significant enough to accelerate the degradation. Thus, our work
proposes a novel engineering approach to encapsulation technology with the potential to
advance the commercialisation of electronics, especially thin-film photovoltaics.

Supplementary Materials: The following are available online, 1. Light Absorbance Stability of
Devices; 2. Encapsulation Approaches; 3. Stability of Devices with Different Passivation Structures;
4. Devices with Different Structures; 5. Devices with Different Applied Pressures; 6. Performance
of Unencapsulated Devices; 7. Images of MWNT added UV-epoxy resin; 8. WVTR Data; 9. WVTR
Sample Preparation; 10. OTR Data; 11. JSC and VOC during Stability Test; 12. Performance of 0.5 wt%
MWNT-added Encapsulated Devices; and 13. Stability of 0.2 wt% MWNT-added Encapsulated Devices.
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