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Abstract

MicroRNAs (miRNAs), a class of endogenous small regulatory RNAs, play important roles in many biological and
physiological processes. The perturbations of some miRNAs, which are usually called as onco-microRNAs (onco-miRs), are
significantly associated with multiple stages of cancer. Although hundreds of miRNAs have been discovered, the perturbed
miRNA regulatory networks and their functions are still poorly understood in cancer. Analyzing the expression patterns of
miRNA target genes is a very useful strategy to infer the perturbed miRNA networks. However, due to the complexity of
cancer transcriptome, current methods often encounter low sensitivity and report few onco-miR candidates. Here, we
developed a new method, named miRHiC (enrichment analysis of miRNA targets in Hierarchical gene Co-expression
signatures), to infer the perturbed miRNA regulatory networks by using the hierarchical co-expression signatures in large-
scale cancer gene expression datasets. The method can infer onco-miR candidates and their target networks which are only
linked to sub-clusters of the differentially expressed genes at fine scales of the co-expression hierarchy. On two real datasets
of lung cancer and hepatocellular cancer, miRHiC uncovered several known onco-miRs and their target genes (such as miR-
26, miR-29, miR-124, miR-125 and miR-200) and also identified many new candidates (such as miR-149, which is inferred in
both types of cancers). Using hierarchical gene co-expression signatures, miRHiC can greatly increase the sensitivity for
inferring the perturbed miRNA regulatory networks in cancer. All Perl scripts of miRHiC and the detailed documents are
freely available on the web at http://bioinfo.au.tsinghua.edu.cn/member/jgu/miRHiC/.
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Introduction

MicroRNAs (miRNAs) are a class of small (,22 nt) regulatory

RNAs, which play important roles in many essential biological and

physiological processes, such as embryo development, cancer

progression and immune response. About 1,400 miRNAs have

been identified in human and more than 30% known protein-

coding genes are potentially regulated by evolutionary conserved

miRNAs [1,2]. The perturbations of some miRNAs, usually called

as onco-microRNAs (onco-miRs, including both oncogenic and

tumor suppressive miRNAs in this study), have been reported to

be significantly associated with multiple stages of cancer. But till

now, only a few of the hundreds of miRNAs are linked to the

complex dys-regulated cellular processes in cancer. There is a

great need for inferring the perturbed miRNA regulatory networks

and their functions in cancer [3].

To infer the perturbed miRNA regulatory network, one popular

strategy is to analyze miRNA target gene set enrichments in

differentially expressed gene signatures. This includes many

developed methods, such as gene set analysis by hyper-geometric

test (HG-test, or Fisher’s exact test); GSEA (gene set enrichment

analysis) [4,5]; FAME (functional assignment of miRNAs via

enrichment) [6]; and miRBridge [7], which assume that the target

gene set enrichments reflect the perturbations of their upstream

miRNA regulation strengths. But due to the complexity of cancer

transcriptome, these methods usually show low sensitivity of

inferring onco-miR candidates (here, the ‘‘sensitivity’’ mainly

means the number of inferred onco-miR candidates under a given

statistical significance level).

Cancer is a multi-stage and mixed process, usually involving

many hierarchically organized sub-processes regulated at multiple

scales [8]. The miRNA regulations also show the property of

multi-scale [9]: a few miRNAs, which help determine cell types or

cellular states, suppress hundreds of target gene expressions to

maintain cell type or cellular state specific expression profiles, such

as miR-124 in brain and miR-1, miR-133 in muscle [10,11,12];

however, many other miRNAs may only regulate some specific

processes by targeting a small group of closely-related genes. The

former kind of candidate onco-miRs can be easily identified by

analyzing the enrichment of their target genes in the whole set of

the differentially expressed genes, but the latter ones are frequently

missed by existing methods due to insufficient target gene
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enrichments in the differentially expressed genes or in the co-

expression signatures using pre-defined similarity cutoffs.

In this study, we proposed a new strategy to infer the onco-miRs

and their perturbed regulatory networks. This strategy takes

consideration of the multi-scale and hierarchically organized

regulatory structures in the differentially expressed genes using

gene co-expression information, and fine-tunes the scales in the

gene co-expression hierarchy to analyze the miRNA target gene

set enrichment. Our method, named as miRHiC (enrichment

analysis of miRNA targets in Hierarchical gene Co-expression

signatures), can infer the perturbed miRNA regulatory networks in

cancer by analyzing the enrichments of miRNA target gene sets in

the hierarchical gene co-expression signatures. These gene

signatures were established by hierarchical gene co-expression

clustering, one common way to separate the mixed signals in gene

expression profiles at different correlation levels. In miRHiC, the

miRNA target gene set is not required to be enriched in the whole

set of the differentially expressed genes but within any signature at

the fine scale of the gene co-expression hierarchy. Besides the

higher sensitivity for inferring the onco-miR candidates, another

advantage of considering the gene co-expression information is to

reduce the noises of inferring the corresponding perturbed target

genes: the ‘‘scattered’’ differentially expressed genes with little

expression pattern similarity to other genes, which are more likely

to be ‘‘false’’ miRNA targets due to expression noises [13], are

excluded during the analysis. On two large-scale cancer gene

expression datasets, miRHiC successfully identified several known

onco-miRs and also inferred many new candidates.

Materials and Methods

MiRNA target genes
miRNAs and their target genes (the miRNAs from the same

family are merged as a single item) were extracted from

TargetScan database (v6.2) [1,2]. A gene was regarded as a target

of one miRNA, if the gene contains at least one conserved

predicted miRNA binding site in its 39-UTR. And the summarized

context score (a negative score measuring miRNA-target regula-

tion strength or confidence, provided by TargetScan) was

recorded for each miRNA-target pair. Then, we discretized the

context scores into K levels: all miRNA-target pairs were sorted

according to their context scores in decreasing order (the pairs

ranked on the top have the lowest regulation strength) and the

discretized score for the miRNA-target pair with rank r was

defined as: s = 1+b[rK/N]. It means the first 1/K miRNA-target

pairs have lowest score 1, while the last 1/K pairs have highest

score 1+b(K-1). According to ref.[6], K is set as 5 and b as 3 in this

study.

The control miRNA target gene sets were generated by

bipartite graph based random permutation of the miRNA-target

pairs with the same discretized scores but keeping the sizes of all

target gene sets. This kind of stringent permutation procedure can

generate the control miRNA target gene sets which preserve the

statistical properties much better than the randomization without

restriction [6].

Cancer gene expression data
We test miRHiC on two large-scale cancer gene expression

datasets downloaded from NCBI GEO database: 1) lung cancer

(LUC) dataset, GSE19804 including 60 paired cancer and para-

cancer samples; and 2) hepatocellular cancer (HCC) dataset,

GSE22058 including 96 paired cancer and para-cancer samples.

To avoid the noises in lowly expressed genes, we only kept the

genes whose expression values rank at top 10,000 in at least 30%

samples in each dataset. Then, the differentially expressed genes

were identified with p-value ,0.0001 using t-test (the p-values

were multiple testing adjusted by BH correction). We identified

3,397 and 5,699 differentially expressed genes for LUC and HCC

datasets, respectively.

miRHiC: enrichment analysis of miRNA targets in
Hierarchical gene Co-expression signatures

miRHiC was proposed to infer the perturbed miRNA

regulatory networks in cancer by incorporating the hierarchically

organized co-expression information of the differentially expressed

genes: firstly, the hierarchical gene co-expression signatures were

established by clustering the differentially expressed genes based

on pairwise gene co-expression correlations; then the miRNA

target gene set enrichment was analyzed across the hierarchical

co-expression signatures; and finally, a permutation test was used

to estimate the statistical significance of the enrichment (Figure 1).

1) Get the hierarchical gene co-expression signatures. Firstly,

average linkage hierarchical clustering is implemented to cluster the

differentially expressed genes based on their pairwise co-expression

correlations. To reduce the noises caused by poorly correlated genes, the

hierarchical clustering is stopped if the gene co-expression correlation is

too low: we used the correlation with z-score 0.52 as the cutoff in this

study (about p-value 0.3; z-score of any given correlation level is

calculated using Fisher’s transformation). This cutoff shows few

influences on the results: for the LUC dataset, when the z-score cutoff

changed from 0.3 to 0.9 by step 0.1, the hierarchical clustering was

stopped at almost the same place. Then, we extracted the gene co-

expression signatures (stable gene co-expression clusters) at different

correlation scales by traversing the co-expression hierarchy from leaf to

root (the correlation is decreasing and the size of signatures is increasing

when traversing the hierarchy from leaf to root). The details of the

signature extraction algorithm are given in user manual via miRHiC

website.

2) Analyze the miRNA target gene set enrichments in the

hierarchical gene co-expression signatures. For the j-th

gene co-expression signature in the hierarchy, we can find the

overlapped genes between the signature (denoted as Sj) and the i-th

miRNA target gene set (denoted as Ti), and then calculate the raw

enrichment score by summing the discretized TargetScan scores

(see the details of the score discretization in the above section) of

the overlapped genes for i-th miRNA:

ESij~
X

g[Ti\Sj

sig:

The p-value pij for this enrichment was estimated by examining

the enrichment scores ESij(r) of 10,000 size-matched random

control miRNA target gene sets:

pij~
# rjESij rð Þ§ESij ,r~1,2, � � � ,10000
� �

10000
:

After getting the enrichments in all hierarchical gene co-

expression signatures (j = 1, 2, …), the P-score Pi for the i-th

miRNA was calculated as the p-value of the most significant

enrichment:

Onco-miRNA Inference Using Hierarchical Signatures
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Pi~ min
j

pij :

The P-score was used to measure the miRNA target gene

enrichment across the whole gene co-expression hierarchy.

3) Calculate the statistical significance of the P-score

based enrichments. The P-score is the minimal of a set of p-

values, so it is not uniformly distributed along 0,1 (biased to 0). It

cannot be directly used to measure the statistical significance of

enrichment. Again, we used permutation test to estimate the

statistical significance of the P-score: the P-scores Pi(r) of 10,000

size-matched control miRNA target gene sets were calculated

according to above steps; and the empirical p-value pi for the P-

score Pi was calculated as:

pi~
# rjPi rð ÞƒPi, r~1,2, � � � ,10000f g

10000
:

The empirical p-value pi was used to measure the statistical

significance of miRNA target gene set enrichment across the whole

hierarchical gene co-expression signatures. To correct the multiple

test, fdrtool was used to calculate the q-values according to the

empirical p-values [14].

Comparisons with other methods
miRHiC was compared with Gene Set Enrichment Analysis

(GSEA) and gene set analysis by hyper-geometric test (HG-test).

GSEA is a widely used method for inferring the perturbed gene

sets by taking the continuous values and the rank information of

differential gene expressions [5]. When comparing miRHiC with

GSEA, the fold changes of gene expressions between cancer and

normal samples were used in GSEA and the same miRNA target

gene set permutation method was used to calculate the empirical

p-values.

GSEA and HG-test use different computational models to

measure gene set enrichments with miRHiC. For directly testing

the advantage of using the hierarchical gene co-expression

information, we used the differentially expressed genes as the

only signature and ran miRHiC on it. For clear presentation, we

named this approach as miRDeG (enrichment analysis of miRNA

targets in Differentially Expressed Genes).

Except hierarchical clustering, k-means clustering is another

commonly used algorithm to generate gene co-expression signa-

tures. The algorithm can partition all differentially expressed genes

into k non-overlapped clusters. Unlike hierarchical clustering, k-

means is hard to exclude the poorly correlated genes by setting any

threshold. In the comparison, we used k-means (k is set to 5 or 10)

to get the gene co-expression signatures. Then we run the same

procedure to analyze the miRNA target enrichments in the

generated signatures with different k. We named this approach as

miRKM (miRKM5 and miRKM10) in the below section.

Results

Estimating the empirical p-values with no bias by miRHiC
To demonstrate that miRHiC did not have the problem of over-

estimating the statistical significances, we generated 100 size-

matched control target gene sets for each miRNA, and then

calculated distributions of the empirical p-values for their

enrichments in the hierarchical gene co-expression signatures

using miRHiC. If miRHiC has no bias for estimating the empirical

p-values, the p-values of these control miRNA target gene sets

should be uniformly distributed between 0,1. As expected, results

showed that the empirical p-values are uniformly distributed

(Figure 2). Another possible bias affecting empirical p-value is

caused by different sizes of miRNA target gene sets: some miRNAs

have more than 1,000 target genes while some only have less than

50 target genes. We calculated the Spearman’s rank correlation

Figure 1. The flowchart of miRHiC. In the first step, the differentially expressed genes were clustered as hierarchical gene co-expression
signatures; then, the most significant enrichment of the miRNA target gene set was found across the hierarchical signatures; and finally, a
permutation test was used to estimate the empirical p-value of the enrichment.
doi:10.1371/journal.pone.0081032.g001

Onco-miRNA Inference Using Hierarchical Signatures
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between the sizes and the corresponding empirical p-values of the

gene sets. The correlation is 20.015 (p-value of this correlation

.0.05), which suggested that the empirical p-values are not

affected by the sizes of gene sets. Based on these analyses, we can

conclude that miRHiC has no bias for estimating the empirical p-

values.

Inferring the perturbed miRNA regulatory networks in
cancer

miRHiC can infer onco-miRs and their perturbed target

regulatory networks by analyzing the miRNA target gene set

enrichment in hierarchical gene co-expression signatures in

cancer. On the two large-scale gene expression datasets of lung

cancer (LUC) and hepatocellular cancer (HCC), miRHiC inferred

9 and 8 perturbed miRNAs or onco-miRs, respectively, with q-

value ,0.1. Under the same q-value cutoff, the three compared

methods, GSEA, HG-test and miRDeG did not infer any

candidate. Although miRKM inferred some candidates (for

LUC dataset, miRKM5/10 inferred 3/4 candidates; and for

HCC dataset, miRKM5/10 inferred 6/3 candidates), these

numbers are still less than miRHiC and most of the miRKM

inferences are covered by miRHiC. The details results are

provided in Table S1. Among all 17 inferences from miRHiC, 9

are supported by direct functional evidences in literatures (LUC:

miR-26, miR-29, miR-125, miR-130, miR-145 and miR-200;

HCC: miR-21, miR-124 and miR-125). These results indicate that

miRHiC can greatly improve the sensitivity of onco-miR

inferences (Table 1). Considering the heterogeneity of cancer

transcriptome, bootstrapping resampling was implemented to

check the stability of the inferences. For LUC, 6 out of 9

candidates can be repeatedly inferred in more than 50%

resampling experiments (miR-125, miR-149, miR-340 and miR-

200 are stably inferred in more than 80% experiments). For HCC,

5 out of 8 candidates can be repeated inferred (miR-125 and miR-

149 are stably inferred in more than 60% experiments).

By looking at the targeted signatures of the inferred onco-miRs,

we found that they have different levels of gene co-expressions in

the hierarchies (Figure 3). The functions associated with these

signatures (the enriched GO terms of the signatures were

annotated by DAVID web tool [15]) are significantly related to

different hallmarks of cancer, including cell cycle, oxidation

reduction, immune response, DNA repair, cell adhesion and

vasculature development (Table 2). These results indicate that

many miRNAs are linked to cancer through different sub

regulatory programs. For example, miR-200 is known as an

important regulator of angiogenesis (a child term of ‘‘vasculature

development’’). There are several experimental validated target

genes for angiogenesis, including ZEB1 and KDR [16,17,18],

existing in the inferred perturbed miR-200 regulatory networks in

LUC dataset. MiR-200 may regulate the angiogenic switch in lung

cancer through these target genes. In hepatocellular cancer, miR-

21 was predicted to regulate ‘‘immune response’’ by targeting

CD69, STAT3, CCL20 and SMAD7, in which STAT3 and

SMAD7 are important signaling molecules for immune response.

Perturbed miR-149 sub-networks shared by the two
types of cancers

The onco-miRs inferred in multiple cancers may play more

important roles in cancer initiation and development. Two

miRNAs, miR-125 and miR-149 were inferred by miRHiC in

both types of cancers. For the inferred perturbed miR-125

regulatory networks, there are only three common targets

(CDK16, TOMM40 and KIAA1522), which suggests that miR-

125 may regulate different pathways in the two types of cancers.

While for miR-149, its perturbed regulatory networks show

significant target overlapping with a shared sub-network including

14 common targets. And the 14 targets are consistently over-

expressed in cancer tissues (Figure 4).

Figure 2. The histogram of the empirical p-values of the
control miRNA target gene sets.
doi:10.1371/journal.pone.0081032.g002

Table 1. The onco-miRs inferred by miRHiC with q-value
,0.1.

Cancer miRNA q-value a References

LUC miR-125 0 (BS b) [29,30,31]

miR-130 0 (BS) [32]

miR-340 0 (BS)

miR-874 0

miR-26 0.021 (BS) [33,34]

miR-149 0.022 (BS)

miR-29 0.028 [35,36,37]

miR-200 0.029 (BS) [16,38,39,40]

miR-145 0.064 [41,42,43,44,45]

HCC miR-125 0 (BS) [46,47,48,49]

miR-149 0 (BS)

miR-370 0

miR-144 0.025

miR-339 0.026

miR-378 0.049

miR-21 0.058 [50,51,52,53,54,55]

miR-124 0.093 [56,57]

aThe q-value is due to empirical p-value ,0.0001.
b(BS) labels mean that the miRNAs are inferred in more than 50% bootstrapping
experiments with q-value ,0.1.
doi:10.1371/journal.pone.0081032.t001

Onco-miRNA Inference Using Hierarchical Signatures
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Figure 3. The perturbed miRNA regulatory networks in the two types of cancers inferred by miRHiC. A) is for lung cancer and B) for
hepatocellular cancer. The circle nodes represent the gene co-expression signatures (ClusterID:Size). The diamond nodes represent the inferred onco-
miRs. The numbers on the edges represent the sizes of the miRNA target genes overlapped with the corresponding gene co-expression signatures.
doi:10.1371/journal.pone.0081032.g003

Table 2. The selected target genes and the related signature functions of the inferred onco-miR perturbed target networks.

Type miRNA Selected Targets a Signatures and Functions

LUC miR-125 — C2 (355 genes): ncRNA processing (2.28e-3) b, oxidation reduction (9.09e-
2)

miR-874 —

miR-130 SERINC3, GJA1, PPARG, RTN1, BTG1, TGFBR2, TSC1, CD69,
S1PR1, TNFRSF1B, ZEB2

C11 (1216 genes): vasculature development (3.77e-6), cell adhesion
(6.80e-6), lung development (1.13e-5)

miR-340 TNS1 C1 (363 genes): cell adhesion (3.82e-7), vasculature development (4.35 e-
7)

miR-145 LYVE1, NEDD9, AKAP12, CAV2

miR-26 KMT6, SULF1, HMGA1 C9 (552 genes): cell cycle (1.99e-6), DNA repair (1.63e-15)

miR-29 COL1A1, MEST, MYBL2, PDGFC, GEMIN2, GPI

miR-149 MMP15, ENC1 C10 (1071 genes): ncRNA metabolic process (2.48e-4), oxidation reduction
(1.50e-2)

miR-200 ZEB1, KDR, TBX5, CHRDL1 C3 (523 genes): cell adhesion (1.81e-9), vasculature development (1.73e-8)

HCC miR-125 ERBB3, NEU1, RAF1, MAP2K7 C4 (763 genes): chromatin modification (6.66e-5), regulation of
transcription (2.27e-3)

miR-370 SMO, HDAC4

miR-339 NF2, THRA

miR-149 CLTC C9 (2086 genes): cell cycle (2.22e-12), DNA repair (9.72e-4)

miR-378 MAPK1

miR-144 ETS1, CXCL12, GATA3, PIM1, PODXL, RARB C11 (1253 genes): immune response (6.53e-49), cell adhesion (3.87e-21),
cell activation (1.60e-17)

miR-21 SMAD7, CCL20, ARHGAP24, CD69, SPRY2, RHOB, STAT3

miR-124 CPT1A, CYB5A, RAPH1, SORD, ALDH9A1, AR, HADHA C2 (624 genes): oxidation reduction (7.67–42)

aThe selected targets with high TargetScan scores and literature evidences (reported in at least 5 PubMed abstracts with key words ‘‘liver cancer’’ or ‘‘lung cancer’’).
bThese functional terms (and the corresponding FDRs) are the selected top enriched GO terms of the signature annotated by DAVID web tool.
doi:10.1371/journal.pone.0081032.t002
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MiR-149 is a mammal conserved miRNA. A few studies show

that miR-149 genetic polymorphisms are associated with the risk

of cancer [19,20]. Its expression is epigenetic silenced by DNA

hyper-methylation in colorectal cancer [21]. But the miR-149

regulatory networks are still poorly understood in cancer. The

inferred perturbed networks provide important insight of miR-149

regulations: most of the high confidence targets (with high

TargetScan scores) in the shared sub-network are related to some

essential biological processes, such as SRPK1 (serine/arginine-rich

splicing factor kinase 1) and CCT3 (chaperonin containing TCP1,

subunit 3). SRPK1 encodes a serine/arginine protein kinase

specific for the SR (serine/arginine-rich domain) family of splicing

factors. SRPK1 is upregulated in lung cancer and many other

cancer types [22,23]. CCT3 is a subunit of a molecular chaperone

protein (chaperonin containing TCP1 complex) helping fold

actin/tubulin and it can positively regulate cell cycle [24,25].

CCT3 over-expression is also reported to be related to colorectal

cancer [26] and liver cancer [27]. So, miR-149 may work as a

cancer suppressor by targeting these oncogenes.

Discussion

Analyzing miRNA target gene set enrichment in differentially

expressed genes of large-scale gene expression profiles can greatly

advance our understandings of the perturbed miRNA regulations.

But due to the complexity of cancer transcriptome, it is

challenging to infer the perturbed miRNA regulations by simply

analyzing miRNA target gene set enrichment in the whole

differentially expressed genes. In this study, we developed miRHiC

to infer the perturbed miRNA regulatory networks in cancer by

incorporating the hierarchical gene co-expression information into

miRNA target gene set enrichment analysis. Results showed that

miRHiC have much higher sensitivity for the inferences than the

commonly used methods, such as HG-test, GSEA and miRDeG

(FAME), of which all do not use the hierarchical gene co-

expression information. Over 50% of the inferred onco-miRs have

extensive literature supports and the gene co-expressions signa-

tures targeted by these miRNAs are significantly related to

multiple hallmarks of cancer. Recent studies also show that gene

co-expressions can provide important information to identify the

‘‘real’’ target genes of miRNAs in the corresponding biological

process [13,28], which suggest that the target genes overlapped

with the enriched co-expression signatures are more likely the real

targets in cancer. Although miRHiC improved the sensitivity for

inferring the onco-miRs and their perturbed target networks, a few

known onco-miRs, such as miR-126 in lung cancer and miR-122

in hepatocellular carcinoma, were missed. These missed cases

suggest that other computational models need to be developed for

identifying the onco-miRs whose regulatory networks cannot be

explained by the target gene enrichments in differential gene

expression signatures.

The lengths of 39-UTRs are strongly correlated with the

number of targeted miRNAs and the context scores. The enriched

signatures may significantly be biased to the ones with longer 39-

UTRs. When using hyper-geometry test to analyze the enrich-

ments of miRNA target gene sets, we found that the signatures

targeted by the inferred miRNAs have much longer average

lengths of 39-UTRs. However, like FAME [6], miRHiC used the

bi-partite graph based permutation method, which can largely

reduce this bias: the average lengths of 39-UTRs of the genes in the

signatures targeted by the inferred onco-miRs are 1314 nt and

1449 nt for the LUC and HCC datasets, respectively, not longer

than these lengths of the differentially expressed genes (1424 nt

and 1470 nt, respectively).

miRHiC provides a general strategy to analyze miRNA

regulations using hierarchical signatures. Different hierarchical

clustering methods can be used to get the hierarchical gene

co-expression signatures. Besides the gene co-expression, the

functional and regulatory interactions between genes (such as

protein-protein interactions, transcriptional regulations and liter-

ature co-occurrences) can further be integrated to establish the

hierarchical gene signatures. We will continuously test miRHiC

strategy using different kinds of implementations.

To get better control sets of the miRNA target gene sets,

miRHiC used the bi-partite graph based permutation. But this

permutation method is time-consuming. Also, the computational

burden is high for calculating the empirical p-values in a nested

manner across the hierarchical gene co-expression signatures. We

plan to develop faster algorithm to reduce the redundant

calculations for estimating the p-values in future.

Supporting Information

Table S1 The detailed results of miRHiC, GSEA, HG-test,

miRDeG and miRKM.

(XLSX)
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