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ABSTRACT Enteroviruses infect humans and animals and can cause disease, and some
may be transmitted across species barriers. We tested Central African wildlife and
found Enterovirus RNA in primates (17) and rodents (2). Some sequences were very similar,
while others were dissimilar to known species, highlighting the underexplored enterovirus
diversity in wildlife.

The genus Enterovirus (family Picornaviridae) contains many diverse viruses that infect
humans and cause disease, including poliomyelitis (human poliovirus), hand, foot, and

mouth disease (human enterovirus 71), and the common cold (human rhinoviruses) (1).
Enteroviruses associated with many other mammalian species have also been discovered,
but their diversity, distribution, and roles in disease are overall poorly understood (2, 3). As
zoonotic transmission from animals in close contact with humans is of concern, we were
interested in the diversity of enteroviruses in wildlife in Cameroon and the Democratic
Republic of the Congo (DRC).

Samples from 1,450 bats, 488 rodents, 86 nonhuman primates (NHPs), and 65 shrews
were collected in Cameroon and the DRC from 2003 to 2014. The samples included pri-
marily oral and rectal swabs, liver and spleen tissue, as well as feces, and were obtained
from animals that were trapped and released, animals in captivity, and animals hunted
for consumption. RNA was isolated and reverse transcribed (4), before the samples were
screened for enterovirus RNA using a family level consensus PCR targeting the 59 non-
coding region (5). Both strands of the PCR amplicons were sequenced (Sanger), aligned
(ClustalW, Geneious 11.1.3), and subjected to phylogenetic analysis using MrBayes 3.2,
employing default parameters and 4 chains of 1,000,000 generations, with final split fre-
quencies below 0.01 (6). The first 10% of the trees was discarded, and the remaining
trees were combined using TreeAnnotator (BEAST 2.5.1) and displayed using FigTree
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1.4.4 (7, 8). Samples for which no RNA of the expected size could be amplified and
sequenced were counted as negative.

Enterovirus RNA was detected in 17 NHPs and 2 rodents (Table 1). The sequences
fall into four phylogenetic clusters, one of them coinciding with the species enterovirus B,
one clustering with enterovirus C and D sequences, one related to enterovirus L, and one
clustering with unclassified enteroviruses from rodent and primate hosts (Fig. 1; Table 1).

The detection of Enterovirus RNA in almost 20% of the sampled NHPs supports previous
findings that suggest a high prevalence of enteroviruses among primates (9–16). Even
though attempts with multiple assays failed to produce sequence beyond the 59 noncoding
region, the results suggest that the diversity of NHP enteroviruses needs further exploration.
Enteroviruses can be transmitted between humans and NHPs, and contact between these
two is not uncommon across many parts of Central Africa, which is of concern (12, 13). The
RNAs detected in the rodents suggests the presence of two novel enterovirus species, given
their low sequence similarity and phylogenetic placement; however, in the absence of full
genomic sequence information, classification is not possible. Despite having tested many
bats in the study, we did not detect enterovirus RNA in any of them. Bats, which are hosts

TABLE 1 Sequencing and phylogenetic analysis data

Sample
GenBank
accession no.

Amplicon
size (nt)a

BLASTN search resultsb

Host (sample type) Country (interface)
Similarity
(%)

Reference strain (GenBank
accession no.)

CD116032 MK215161 360 93 Coxsackievirus A13 (MG571836) Pan troglodytes (feces) Democratic Republic of the
Congo (captive)

CD116033 MK215162 363 93 Coxsackievirus A17 (JF260925) Pan troglodytes (feces) Democratic Republic of the
Congo (captive)

CD116035 MK215163 358 94 Coxsackievirus A17 (JF260925) Pan troglodytes (feces) Democratic Republic of the
Congo (captive)

CD116037 MK215164 360 93 Coxsackievirus A13 (MG571836) Pan troglodytes (feces) Democratic Republic of the
Congo (captive)

CD116038 MK215165 360 93 Coxsackievirus A13 (MG571836) Pan troglodytes (feces) Democratic Republic of the
Congo (captive)

CD116040 MK215167 358 93 Coxsackievirus A13 (MG571836) Pan troglodytes (feces) Democratic Republic of the
Congo (captive)

CD116055 MK215168 358 95 Human enterovirus strain B
(JX129469)

Pan troglodytes (feces) Democratic Republic of the
Congo (captive)

CD116064 MK215173 358 96 Human enterovirus strain B
(HM209138)

Pan troglodytes (feces) Democratic Republic of the
Congo (captive)

CD116066 MK215174 359 94 Coxsackievirus A24 (EF026081) Pan troglodytes (feces) Democratic Republic of the
Congo (captive)

CD116072 MK215175 359 93 Coxsackievirus A13 (MG571836) Pan troglodytes (feces) Democratic Republic of the
Congo (captive)

CD116079 MK215176 358 93 Coxsackievirus A13 (JF260920) Pan troglodytes (feces) Democratic Republic of the
Congo (captive)

CD116084 MK215177 358 95 Human enterovirus strain B
(JX129469)

Pan troglodytes (feces) Democratic Republic of the
Congo (captive)

CD116086 MK215178 358 95 Human enterovirus strain B
(JX129469)

Pan troglodytes (feces) Democratic Republic of the
Congo (captive)

ECO05844 MK215179 321 76 Picornaviridae sp. (KF614478) Praomys sp. (liver, spleen) Cameroon (free-ranging)
ECO05846 MK215180 309 74 Apodemus agrarius picornavirus

strain Longquan-Aa118
(MF352426)

Praomys sp. (liver, spleen) Cameroon (free-ranging)

ECO50936 MK215181 358 83 Human enterovirus A
(HM209159)

Cercopithecus nictitans
(colon)

Cameroon (captive)

ECO50937 MK215184 358 83 Human enterovirus A
(HM209159)

Allochrocebus preussi
(small intestine)

Cameroon (captive)

ECO50938 MK215188 358 82 Uncultured enterovirus clone
0626416 (EU672963)

Allochrocebus preussi
(colon)

Cameroon (captive)

ECO50939 MK215192 358 82 Uncultured enterovirus clone
0626416 (EU672963)

Cercopithecus nictitans
(small intestine)

Cameroon (captive)

a nt, nucleotides.
b BLASTN search conducted on 26 October 2021.
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of many zoonotic viruses, including rabies and coronaviruses, can be experimentally
infected with enteroviruses, but reports of genuine bat enteroviruses are sparse, unlike
reports of other bat picornaviruses (4, 8, 17–22). We conclude that Central African bats may
either not host many enteroviruses or that the enteroviruses that infect bats are genetically
divergent enough from the known species to evade PCR detection with the primers used in
this study.

FIG 1 Maximum likelihood phylogenetic tree of Enterovirus sequences, based on the PCR-targeted 362-nucleotide sequence of the 59 untranslated region
(UTR). The tree includes the sequences detected during the project (red boxes) and the sequences of known species. The latter were selected to represent
all classified species and include sequences with the highest similarities to the novel ones. As the tree is based on the partial 59 UTR, its structure differs
from trees based on the full genome or individual coding sequences. The numbers at the nodes indicate the bootstrap support. Novel sequences with
high similarity (nucleotide identities of .97%) to other novel sequences are not included but are represented by a single sequence and “1N.” These are
the sequences with GenBank accession numbers MK215173, MK215177, and MK215178 (represented by MK215168); MK215192 (represented by MK215188);
MK215161, MK215165, and MK215167 (represented by MK215164); and MK215163 (represented by MK215162). The ICTV classification of species within the
genus Enterovirus is indicated where applicable.
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Data availability. The partial genomic sequences described are deposited in
GenBank under accession numbers MK215161 to MK215165, MK215167, MK215168,
MK215173 to MK215181, MK215184, MK215188, and MK215192. The raw data from the
collected samples and sampling maps are available at the Zenodo repository (https://
zenodo.org/record/5528104).
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