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Abstract: The αvβ3 integrin, an endothelial cells’ receptor-binding fibronectin (FN) in the extracellular
matrix (ECM) of blood vessels, regulates ECM remodeling during migration, invasion, angiogenesis,
wound healing and inflammation, and is also involved in the epithelial mesenchymal transition.
In vitro-grown human control fibroblasts organize a fibrillar network of FN, which is preferentially
bound on the entire cell surface to its canonical α5β1 integrin receptor, whereas the αvβ3 integrin
is present only in rare patches in focal contacts. We report on the preferential recruitment of
the αvβ3 integrin, due to the lack of FN–ECM and its canonical integrin receptor, in dermal
fibroblasts from Ehlers–Danlos syndromes (EDS) and arterial tortuosity syndrome (ATS), which
are rare multisystem connective tissue disorders. We review our previous findings that unraveled
different biological mechanisms elicited by the αvβ3 integrin in fibroblasts derived from patients
affected with classical (cEDS), vascular (vEDS), hypermobile EDS (hEDS), hypermobility spectrum
disorders (HSD), and ATS. In cEDS and vEDS, respectively, due to defective type V and type
III collagens, αvβ3 rescues patients’ fibroblasts from anoikis through a paxillin-p60Src-mediated
cross-talk with the EGF receptor. In hEDS and HSD, without a defined molecular basis, the αvβ3
integrin transduces to the ILK-Snail1-axis inducing a fibroblast-to-myofibroblast-transition. In ATS
cells, the deficiency of the dehydroascorbic acid transporter GLUT10 leads to redox imbalance, ECM
disarray together with the activation of a non-canonical αvβ3 integrin-TGFBRII signaling, involving
p125FAK/p60Src/p38MAPK. The characterization of these different biological functions triggered
by αvβ3 provides insights into the multifaced nature of this integrin, at least in cultured dermal
fibroblasts, offering future perspectives for research in this field.

Keywords: αvβ3 integrin; extracellular matrix; fibronectin; Ehlers–Danlos syndromes; arterial
tortuosity syndrome; apoptosis; fibroblast-to-myofibroblast transition

1. Introduction

1.1. Extracellular Matrix

Connective tissues are a mixture of different cell types and protein components organized in the
reticular network of the extracellular matrix (ECM), which ensures tissue differentiation, structure,
integrity and elasticity. ECM regulates many physiological cells’ activities, including adhesion,
proliferation, survival, migration and apoptosis and it is also involved in phenotypic transition
during morphogenesis and wound healing [1–4]. The ECM in vivo provides the interstitial matrix of
tissues or, in basement membranes, pericellular layers binding the parenchymal cells to maintain them
closely anchored to the connective tissue. The ECM is a dynamic structure undergoing organization
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and remodeling where ECM components are deposited, degraded or modified [5,6]. This constant
turnover is essential during development and to reorganize the tissue architecture in physiological
and pathological conditions [7,8]. The ECM composition is specific for different tissues and their
physical properties, and about 300 macromolecules are defined to form the so-called matrisome,
including collagens (COLLs), fibronectin (FN), elastin (ELN), ELN-associated proteins, i.e., fibrillins
(FBNs), fibulins, and EMILINs, tenascins, laminins, osteonectin, osteopontin, glycosaminoglycans
and proteoglycans (PGs) [9–11]. These constituents associate with each other to form a hydrated
three-dimensional network that is also a reservoir of bioactive molecules and growth factors, such
as the epidermal growth factor (EGF) and the transforming growth factor β (TGF-β), which regulate
different cells’ activities [1]. The ECM is the result of biosynthetic activity and proteolytic degradation
by cells that produce either structural ECM molecules or proteases, such as metalloproteases (MMPs),
disintegrin and metalloproteinases, and plasminogen activators [12–17]. The unbalance between these
two activities elicits an abnormal ECM organization, as observed in stiffness and fibrosis [5,8,18–20],
or ECM degradation and loss occurring in invasive cancer disease [5,8,21,22] and in several heritable
connective tissue disorders (HCTDs) [5,8,9,23–25]. Among the numerous ECM structural components,
the FN is a high molecular weight (470–500 kDa) heterodimeric glycoprotein that is mainly expressed
during embryogenesis and wound healing in a fibrillar form, whereas it is present in a globular form
in the bloodstream [26–29]. The fibrillar FN is encoded by mRNA that contains the EDA segment
(EDA+FN), whereas the circulating FN does not (EDA–FN) [30–34]. Other internal regions derived
from alternative splicing at two additional sites i.e., EDB and IIICS [35], are known to play a role in
tissue differentiation and are modulated in different pathological conditions [31,34,36–41].

1.2. Integrins

ECM proteins are connected with the cell cytoskeleton by integrins, a family of 24 heterodimeric
transmembrane receptors containing an α and a β subunit, which transduce mechanical forces
derived from the ECM into the cell or forces generated by the cytoskeleton, i.e., actin microfilaments,
to the extracellular environment. The main integrins’ functions are reviewed elsewhere [42–47].
Integrin-mediated mechanotransduction induces cellular responses that drive development, cell
movement, proliferation, survival and tissue homeostasis [48]. The binding of integrins to the
cytoskeleton orchestrates cell migration [49], cell-ECM interaction, a survival signal that inhibit
pro-apoptotic proteins [50,51], and an appropriate ECM releases several growth factors driving the
cell cycle [50,52]. Cell-matrix adhesions are integrin-mediated molecular sites where the mechanical
cues are converted into biochemical signaling. Different adhesive structures exist, such as nascent,
focal, and fibrillar adhesions, which vary in shape, subcellular location, lifetime, functions and protein
composition. Movements and interactions of their scaffold and signaling protein components lead
to the assembly/disassembly, maturation, and interconversion of these dynamic architectures both
in vivo and in vitro [53–55]. In cultured fibroblasts, the ECM adhesions can be classified in two
major types, recruiting different settings of integrins and cytoskeleton anchor molecules, i.e., focal
and fibrillar adhesions. Focal adhesions are transmembrane anchorage sites located at the fibroblast
periphery between cells and underlying ECM fibrils. They are associated with the end of stress fibers
and usually contain the αvβ3 integrin interacting with a complex pattern of proteins that include
vinculin, talin, paxillin, α-actinin, zyxin, p125 focal-adhesion kinase (p125FAK), integrin-linked kinase
(ILK), and other phosphotyrosine proteins and kinases [53,56,57]. Fibrillar adhesions, arising from
focal adhesions, are elongated structures distributed more centrally on the cell surface, enriched in
α5β1 integrins bound to tensin, and directly involved in the FN–ECM organization [53,56,58].

1.3. The αvβ3 Integrin

The αvβ3 integrin, originally named vitronectin receptor [59] because of its predominant ECM
ligand, is one of the most promiscuous receptors binding a plethora of at least 21 different ECM proteins,
including FN, FBNs, osteopontin, laminin, fibrinogen, von Willebrand factor, thrombospondin, and
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thrombin [60]. This integrin is widely expressed in endothelial cells (EC) where it is involved in
angiogenesis [61–64], in smooth muscle cells (SMC) [65], myofibroblasts [66,67], osteoclasts, and blood
cells, such as monocytes and platelets [59,60]. The recruitment on the cell surface of the αvβ3
integrin is a hallmark of myofibroblasts, specialized cells with both fibroblasts’ and SMCs’ phenotypic
characteristics. These cells are activated by inflammatory cytokines and are involved in wound
healing [68] and in pathological conditions, such as fibrosis [69] and chronic inflammation [70]. Table 1
summarizes the αvβ3 integrin cell expression, its major ligands and main functions.

Table 1. Cell expression, major ligands, and main functions of the αvβ3 integrin.

Cell types
Endothelial cells, smooth muscle cells, myofibroblasts, osteoclasts, monocytes, platelets,
fibroblasts, tumor cells (melanoma, glioblastoma, pancreatic, prostate, ovarian, breast
tumor cells), placenta

Ligands Vitronectin, fibrinogen, von Willebrand factor, thrombospondin, prothrombin, fibronectin,
fibrillins, laminin, osteopontin, bone sialoprotein

Functions

Cell adhesion, cell migration, cell survival and proliferation, growth factor
deprivation-induced apoptosis rescue, anoikis rescue, angiogenesis, hemostasis, platelet
aggregation, wound healing, fibrosis, inflammation, tumor cells’ invasion and metastasis,
restenosis, bone resorption, activation of latent TGF-β, embryonic development

As with all integrins, αvβ3 acts as a bidirectional signaling molecule. During “inside-out”
signaling, the short cytoplasmic tail of the β3 subunit, through the binding to talin and kindlin,
links the integrin to the actin cytoskeleton and elicits conformational changes, e.g., disruption
of the intracellular bridges between the cytoplasmic subunits, dissociation of the transmembrane
helices, and reorganization of the integrin in a high-affinity binding form that increase the affinity of
αvβ3 for the extracellular ligands [71–73]. The binding of αvβ3 to the ECM drives the “outside-in”
signals by clustering at the plasma membrane of other heterodimers, increase of adhesiveness, and
downstream phosphorylation of several kinases for signal transduction. The cytoplasmic domain does
not contain intrinsic tyrosine kinase activity and therefore “outside-in” signaling occurs primarily
via the recruitment of intracellular signaling kinases, e.g., p125FAK, ILK, Src family kinases, paxillin,
and vinculin that are important also for the actin cytoskeleton assembly [74,75]. A selected group of
integrins including αvβ3 can stimulate the activation of Ras via interactions of the αv subunits with
the adaptor molecule Shc and its association with Grb2 and Sos [76]. These interactions are crucial
in adhesion-dependent cell proliferation and survival, as demonstrated by the up-regulation of the
antiapoptotic protein Bcl-2 [77]. In addition, the integrin-mediated cell anchorage suppresses the p53
activity in the regulation of apoptosis [78,79]. Besides, the phosphorylation of the mitogen-activated
protein kinases (MAPK), phosphoinositide kinase (PI3K)/Akt, and extracellular signal regulated
kinase (ERK) is a downstream effect of the αvβ3 integrin activation that regulates cell proliferation,
migration/invasion, and cell survival [80].

The αvβ3 integrin’s signaling can act synergistically with several growth factor receptors, such as
the EGF receptor (EGFR) [81,82], and the TGF-β receptor (TGFBR) [83], also through the cross-talk with
their downstream pathways [84–86]. For instance, previous studies have shown a direct interaction
between αvβ3 and TGFBRII upon stimulation with active TGF-β [83,87].

1.4. Heritable Connective Tissue Disorders (HCTDs)

HCTDs comprise a wide range of pleiotropic multisystem diseases mainly affecting the connective
tissue of various organ systems, including heart, blood vessels, bone, eyes, skin, joints and lungs.
HCTDs result from genetic defects that perturb ECM assembly, maintenance, and homeostasis.
Defects in the amount or structure of one of the numerous ECM constituents affect the proper
organization and structural integrity of the supporting connective tissues and cause the weakness of
bones, skin or vascular tissue which characterizes the disease phenotypes of different HCTDs [88].
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Indeed, disease-causing mutations in several ECM-related genes or enzymes involved in biosynthesis
or processing of ECM proteins, cause a myriad of HCTDs, e.g., Ehlers–Danlos syndromes (EDS),
Osteogenesis imperfecta (OI), Marfan syndrome (MFS), Loeys–Dietz syndromes (LDS), arterial
tortuosity syndrome (ATS), and numerous skeletal dysplasias [9]. Many of these disorders show
some clinical overlap regarding cardiovascular, skeletal, craniofacial, ocular, and cutaneous features
reflecting the common denominator of the ECM perturbation [89].

1.5. The Ehlers–Danlos Syndromes (EDS) and Arterial Tortuosity Syndome (ATS)

Among HCTDs, EDS share a variable combination of skin hyperextensibility, joint hypermobility
(JHM), and manifestations of generalized connective tissue fragility. The revised 2017 EDS nosology
distinguishes 13 different EDS types with 19 causative genes known to date (Table 2) [90]. For a
comprehensive clinical and molecular description of all EDS types see the paper by Malfait and
coworkers [90].

Table 2. Ehlers–Danlos syndromes (EDS) types according to the 2017 revised nosology.

EDS Type IP Gene Protein

Classical EDS (cEDS) AD Major: COL5A1, COL5A2
Rare: COL1A1

Type V collagen
Type I collagen

Classical-like EDS (clEDS) AR TNXB Tenascin-X
Cardiac-valvular EDS (cvEDS) AR COL1A2 Type I collagen

Vascular EDS (vEDS) AD COL3A1 Type III collagen
Hypermobile EDS (hEDS) AD Unknown Unknown

Arthrochalasia EDS (aEDS) AD COL1A1, COL1A2 Type I collagen
Dermatosparaxis EDS (dEDS) AR ADAMTS2 ADAMTS-2

Kyphoscoliotic EDS (kEDS) AR PLOD1
FKBP14

LH1
FKBP22

Brittle cornea syndrome (BCS) AR ZNF469
PRDM5

ZNF469
PRDM5

Spondylodysplastic EDS (spEDS) AR
B4GALT7
B3GALT6
SLC39A13

β4GalT7
β3GalT6

ZIP13

Musculocontractural EDS (mcEDS) AR CHST14
DSE

D4ST1
DSE

Myopathic EDS (mEDS) AD/AR COL12A1 Type XII collagen

Periodontal EDS (pEDS) AD C1R
C1S

C1r
C1s

IP: inheritance pattern; AD: autosomal dominant; AR: autosomal recessive.

The classical (cEDS), vascular (vEDS) and hypermobile (hEDS) EDS forms account for more than
90% of EDS patients. Briefly, cEDS is characterized by abnormal skin involvement and generalized JHM
(gJHM) [90,91], and is mainly caused by mutations in the COL5A1 and COL5A2 genes encoding the type
V collagen (COLLV) [92,93]. vEDS is characterized by a clinical history of arterial rupture, dissection
or aneurysm, rupture of the large intestine, and pregnancy complications at young ages [94]. vEDS is
caused by mutations in the COL3A1 gene that encodes the type III collagen (COLLIII), which is the
major expressed collagen in blood vessels and hollow organs [95]. The clinical criteria according to the
revised 2017 EDS nosology suggestive for cEDS and vEDS are shown in Tables 3 and 4. Confirmatory
molecular testing is needed to reach a final diagnosis.
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Table 3. Clinical criteria for classical Ehlers-Danlos syndrome (cEDS) according to the revised 2017
EDS nosology.

Major Criteria Minor Criteria

1. Skin hyperextensibility and
atrophic scarring
2. Generalized joint hypermobility
(BS ≥ 5)

1. Easy bruising
2. Soft, doughy skin
3. Skin fragility (or traumatic splitting)
4. Molluscoid pseudotumors
5. Subcutaneous spheroids
6. Hernia (or history thereof)
7. Epicanthal folds
8. Complications of joint hypermobility (e.g., sprains,
luxation/subluxation, pain, flexible flatfoot)
9. Family history of a first degree relative who meets clinical criteria

Minimal criteria suggestive for cEDS: Major criterion (1) Plus either: major criterion (2) and/or: at least
three minor criteria.

Table 4. Clinical criteria for vascular Ehlers-Danlos syndrome (vEDS) according to the revised 2017
EDS nosology.

Major Criteria Minor Criteria

1. Family history with documented COL3A1
variant
2. Arterial rupture at a young age
3. Spontaneous sigmoid colon perforation
4. Uterine rupture during the third trimester
in the absence of previous C-section and/or
severe peripartum perineum tears
5. Carotid-cavernous sinus fistula formation
in the absence of trauma

1. Bruising unrelated to identified trauma
2. Thin, translucent skin with increased venous visibility
3. Characteristic facial appearance
4. Spontaneous pneumothorax
5. Acrogeria
6. Talipes equinovarus
7. Congenital hip dislocation
8. Hypermobility of small joints
9. Tendon and muscle rupture
10. Keratoconus
11. Gingival recession/fragility
12. Early-onset varicose veins

Minimal criteria suggestive for vEDS: Family history of the disorder, arterial rupture or dissection in
individuals less than 40 years of age, unexplained sigmoid colon rupture, or spontaneous pneumothorax in
the presence of other features consistent with vEDS.

hEDS follows an autosomal dominant inheritance pattern with an unknown molecular basis
and is mainly characterized by gJHM, joint instability complications, and minor skin changes [90].
The clinical criteria for a hEDS diagnosis according to the revised 2017 EDS nosology are summarized
in Table 5. The phenotypic spectrum of hEDS also includes multiple associated symptoms shared
with chronic inflammatory systemic diseases. Many of these features are not sufficiently specific
nor sensitive to be included in the formal diagnostic criteria. These include, but are not limited
to, sleep disturbance, fatigue, postural orthostatic tachycardia, functional gastrointestinal disorders,
dysautonomia, anxiety, and depression [96]. Following the new classification, the term hypermobility
spectrum disorders (HSD) is an alternative label for patients with symptomatic JHM who do not meet
the new criteria for hEDS [97].

EDS are characterized by huge genetic heterogeneity, wide phenotypic variability between the
different forms, and clinical overlap with other HCTDs. Indeed, EDS share with other HCTDs such as
ATS, MFS, LDS, and OI, some degree of phenotypical overlap of cardiovascular, cutaneous, and skeletal
features. Briefly, ATS is characterized by tortuosity and elongation of large- and medium-sized
arteries and is caused by loss-of-function mutations in the SLC2A10 gene encoding the facilitative
glucose transporter 10 (GLUT10), which facilitates the uptake of glucose and dehydroascorbic acid
(DHA) [98,99]. For an overview of the phenotypic presentation in ATS patients see Table 6. MFS,
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caused by heterozygous mutations in FBN1 encoding the ECM protein fibrillin 1, is characterized
by cardiovascular, ocular, and skeletal manifestations. The most common cardiovascular phenotype
involves aortic aneurysm and dissection at the sinuses of Valsalva [89]. LDS, caused by mutations
in different components of the TGF-β signaling pathway, i.e., TGFBR1, TGFBR2, SMAD2, SMAD3,
TGFB2 and TGFB3, is mainly characterized by a clinical triad including hypertelorism, bifid uvula or
cleft palate, and aortic aneurysm with arterial tortuosity [89]. OI comprises a heterogeneous group of
diseases characterized by susceptibility to bone fractures with variable severity. OI display different
modes of inheritance with autosomal dominant as the predominant inheritance pattern caused by
mutations in the COL1A1 and COL1A2 genes (in about 85% of individuals) encoding the α1 and α2
chains of type I COLL (COLLI), respectively [100,101].

Table 5. Clinical criteria for hypermobile Ehlers-Danlos syndrome (hEDS) according to the revised
2017 EDS nosology.

The Clinical Diagnosis of hEDS Needs the Simultaneous Presence of Criteria 1 and 2 and 3

Criterion 1 Criterion 2 Criterion 3
Two or more among the features A–C must be present All must be met

1. Generalized joint
hypermobility:
BS ≥ 6 for pre-pubertal
children and adolescents;
BS ≥ 5 for pubertal men
and women up to the age
of 50;
BS ≥ 4 for those >50 years
of age

SIGN A (a total of five must be present):
1. Unusually soft or velvety skin
2. Mild skin hyperextensibility
3. Unexplained striae
4. Bilateral piezogenic papules of the heel
5. Recurrent or multiple abdominal hernia(s)
(e.g., umbilical, inguinal, crural)
6. Atrophic scarring involving at least two sites and
without the formation of truly papyraceous and/or
hemosiderotic scars
7. Pelvic floor, rectal, and/or uterine prolapse in
children, men or nulliparous women
8. Dental crowding and high or narrow palate
9. Arachnodactyly
10. Arm span-to-height ≥ 1.05
11. Mitral valve prolapse mild or greater based on strict
echocardiographic criteria
12. Aortic root dilatation with Z-score > +2
SIGN B:
Positive family history, with one or more first degree
relatives independently meeting the diagnostic criteria
for hEDS
SIGN C (at least one):
1. Musculoskeletal pain in two or more limbs, recurring
daily for at least 3 months
2. Chronic, widespread pain for ≥3 months
3. Recurrent joint dislocations or frank joint instability, in
the absence of trauma

1. Absence of unusual skin
fragility, which should prompt
consideration of other types of
EDS
2. Exclusion of other HCTDs,
including autoimmune and
rheumatologic conditions
3. Exclusion of alternative
diagnoses that include joint
hypermobility by means of
hypotonia and/or connective
tissue laxity

Table 6. Overview of the clinical features of arterial tortuosity syndrome (ATS).

Craniofacial: Aged appearance; long face; hypertelorism; downslanting palpebral fissures; beaked nose; cleft
palate/bifid uvula; high arched palate; micrognathia; sagging cheeks
Ocular: Keratoconus; keratoglobus; myopia
Cutaneous: Velvety texture; thin skin; hyperextensible skin; cutis laxa
Skeletal: Pectus deformity; scoliosis; arachnodactyly; joint hypermobility and pain
Cardiovascular: Aortic tortuosity; tortuosity of other arteries; abnormal implantation of the aortic branches;
aortic root aneurysm; other arterial aneurysms; arterial dissections; stenosis of the pulmonary arteries; aortic
stenosis
Other manifestations: Diaphragmatic hernia; inguinal hernia; respiratory symptoms; urogenital
abnormalities; autonomic dysfunction
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1.6. Organization of Fibronectin (FN) and Collagens (COLLs) and their Canonical Integrin Receptors in
Dermal Fibroblasts from Different EDS Types and Other HCTDs

The skin is one of the connective tissues affected in all EDS types as well as in other HCTDs,
and dermal fibroblasts have been shown to represent an excellent in vitro cell model to study ECM
organization and molecular mechanisms involved in the pathophysiology of several HCTDs [102–113].
In vitro grown human dermal fibroblasts synthesize and secrete several ECM structural proteins
that are deposited on the substrate and organized in a network covering the cell layer. In particular,
three days after seeding, control fibroblasts organize the ECM of FN (FN–ECM), with a predominant
deposition of the EDA+FN variant, COLLIII, COLLV, and rare fibrils of COLLI ([102–113], and Table 7).
The main COLLs receptor expressed by control cells is the α2β1 integrin, whereas FN is preferentially
bound to the α5β1 integrin [102–104]. In vitro cultured dermal fibroblasts derived from patients
affected with different EDSs, except spEDS-B3GALT6 [109], exhibit a common cellular phenotype that
is characterized by rare FN–ECM fibrils in association with reduced/absent patches in the plasma
membrane of the canonical FN receptor the α5β1 integrin., Consequently, these FN–ECM-deficient
cells show the preferential expression of the alternative FN receptor, i.e., the αvβ3 integrin, which is
organized in linear patches both in fibrillar and focal adhesions ([102,103,106,107,110–113], and Table 7).
This phenotype is also observed in dermal fibroblasts from patients with ATS but not in LDS-TGFBR1,
MFS, and OI cells, which organize an abundant FN–ECM and express the α5β1 integrin and not
αvβ3 ([105,114], and Table 7). EDS fibroblasts also show a reduced/absent deposition into the ECM of
COLLI and COLLIII, in association with a variable organization of COLLV ([102–104,106–113], and
Table 7). A similar disorganization of the COLLs–ECM is also observed in LDS-TGFBR1, OI, and ATS
cells but not in MFS fibroblasts ([105], and Table 7). The abnormal COLLs–ECM depositions observed
in all EDS types as well as in OI and ATS cells is associated with the loss of the canonical COLLs
α2β1 integrin receptor’s expression ([102,103,106–113], and Table 7). For the genetically defined forms
of EDS as well as for OI, the abnormal COLLs–ECM organization and the consequent loss of the
α2β1 integrin is easily explained by the underlying molecular defects that include not only anomalies
of the collagen primary structure (cEDS, vEDS, and OI), collagen processing (dEDS, aEDS), folding
and cross-linking (kEDS), but also defects in glycosaminoglycan biosynthesis (spEDS, mcEDS) that
are known to impact COLLs fibril formation and deposition [9]. Concerning hEDS and HSD cells,
the lack of COLLs–ECM [107] could partly be explained by the high levels of the active form of the
MMP-9 collagenase recently reported in their culture media [106]. In ATS cells, the lack of GLUT10
was shown to affect both the redox homeostasis and the proper processing and secretion of several
ECM components, thus accounting for their defective COLLs–ECM [99,105,115,116].

Taken together, the FN–ECM disarray in association with reduced expression of its canonical
integrin receptor α5β1 and consequent recruitment of the αvβ3 integrin seems to represent a peculiar
in vitro phenotype of the majority of EDS cells as well as ATS fibroblasts (Figure 1).

Herein, we review our previously reported findings that unraveled different biological
mechanisms elicited by the αvβ3 integrin in cEDS, vEDS, hEDS, HSD, and ATS dermal fibroblasts.
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Table 7. Organization of FN and COLLs and their canonical integrin receptors in control, EDS, and other HCTDs dermal fibroblasts.

ECM
Components and

Integrins #

Control
Fibroblasts

cEDS
COL5A1
COL5A2

vEDS
COL3A1

hEDS
HSD

Unknown

kEDS
FKBP14

kEDS u

PLOD1
dEDS u

ADAMTS2

aEDS u

COL1A2
ex6

BCS
PRDM5
ZNF469

mcEDS
CSHT14

spEDS
B3GALT6

LDS u

TGFBR1
MFS u

FBN1

OI u

COL1A1
COL1A2

ATS
SLC2A10

FN ++ + + + + + + + + + ++ ++ ++ ++ +
α5β1 ** */- */- */- - - - - */- - ** ** ** ** *,u

αvβ3 - ** ** ** **,u ** ** ** **,u **,u -,u - - - **
COLLI + +/- - - - - - - - - + + + - -

COLLIII ++ - - - - - - - - - - - + - -
COLLV ++ - ++/+ - ++ - - - + + + ++ ++ +/- +/-
α2β1 ** - - - - - - - - - - na * - -,u

#: detected by immunofluorescence analyses, ++: abundant and fibrillar ECM, +: rare ECM fibrils, **: abundant patches in plasma membrane, *: reduced patches in plasma membrane, -:
negligible amounts/absent, na: not analyzed, u: unpublished. The genes underlying the different HCTDs are reported in italics.
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Figure 1. Organization of FN–ECM and expression of the α5β1 and αvβ3 integrin receptors in control
and HCTDs dermal fibroblasts. Among the analyzed HCTDs (Table 7), all EDS fibroblasts, except for
spEDS-B3GALT6, and ATS cells show the FN–ECM disarray, the reduced expression of the canonical FN
integrin receptor α5β1 and the consequent recruitment of the αvβ3 integrin. This peculiar phenotype is
not observed in cells derived from MFS, LDS, and OI patients. Dermal fibroblasts were immunoreacted
with antibodies against FN, α5β1, and αvβ3 integrins as previously described [102,106,107]. Scale bar:
10 µm.

2. The Pro-Survival Role of the αvβ3 Integrin in Classical EDS (cEDS) and Vascular EDS (vEDS)
Dermal Fibroblasts

In cEDS and vEDS fibroblasts the αvβ3 integrin is abundantly clustered both in focal and fibrillar
contact sites, where it drives adhesion either to uncoated or purified FN-coated substrates [102,103].
The functional blocking of this integrin receptor with inhibiting antibodies reduces their adhesive
potential corroborating that the αvβ3 integrin is the main adhesive ECM receptor in these EDS
fibroblasts. In these cells, the αvβ3 integrin is a FN-binding receptor that sustains the FN assembly,
since EDS cells grown in the presence of exogenous purified human plasma FN are induced to organize
a FN fibrillar matrix without recruiting the canonical FN receptor α5β1 integrin [103]. This is consistent
with the well-known capability of the αvβ3 integrin to bind and assemble a FN–ECM [117].

Moreover, the expression of the αvβ3 integrin in cEDS and vEDS fibroblasts is a downstream
effect of COLLV and COLLIII deficiency, respectively, which, in turn, also affects the synthesis of the
EDA–FN, and its secretion and organization into the ECM [104]. Indeed, the treatment of cEDS
and vEDS fibroblasts with purified COLLV and COLLIII respectively restores the COLLs–ECM
assembly, induces the up-regulation of the EDA+FN expression in association with its organization in
a control-like ECM. This COLLs-mediated ECM rescue is associated with the restoration of a canonical
cells’ integrin setting, since the αvβ3 integrin patches disappear and both the lacking COLLs receptor
α2β1 integrin and the FN-specific α5β1 integrin are organized on the cell surface [102,104]. In cEDS
and vEDS fibroblasts, the αvβ3 integrin is activated, as demonstrated by its tyrosine phosphorylation,
and it transduces adhesion signals [103]. The adhesion-dependent fibroblasts’ survival is known to be
regulated by ECM assembly and turn over. The lack of cell adhesion to the ECM induces the fibroblasts’
growth arrest and apoptosis/anoikis [118–125]. ECM-deficient cEDS and vEDS fibroblasts proliferate
in vitro as well as control fibroblasts. However, the inhibition of the αvβ3 integrin induces cEDS and
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vEDS fibroblasts to undergo anoikis, suggesting that this receptor plays a key survival role in the rescue
of these cells from anoikis activated by the ECM disassembly [103]. The survival function of the αvβ3
integrin has been reported in other cell types, i.e., endothelial [126] and tumor [127] cells. In cEDS and
vEDS fibroblasts, the anti-apoptotic transduction pathway activated by the αvβ3 integrin does not
involve p125FAK [103], which is known to have a central role in the PKB/Akt-mediated activation
of the cell cycle and the inhibition of pro-apoptotic mediators, such as Bad and caspases [128,129].
In cEDS and vEDS cells, the down-regulation of p125FAK should explain the low synthesis of the
survival protein Bcl-2 and the activation of caspases, thus leading to a pre-apoptotic cell behavior [103].
The caspases’ proteolytic activity in these EDS fibroblasts should produce the disassembly of actin
microfilaments, as previously reported in other cell types [130]. In the absence of p125FAK, the αvβ3
integrin co-immunoprecipitates paxillin, which is distributed both in focal and fibrillar adhesions,
as well as the αvβ3 integrin, talin, and vinculin. Since vinculin and paxillin are usually recruited
in fibroblasts’ focal adhesion sites together with rare αvβ3 integrin patches [131], whereas fibrillar
contacts consist of α5β1 integrin, tensin and talin [58,132], a different type of fibrillar adhesion
is organized in cEDS and vEDS fibroblasts. Paxillin is activated trough tyrosine-phosphorylation
by the p60Src kinase playing a role in EDS cells’ survival, since p60Src inhibition elicits EDS cells’
anoikis [103]. In these fibroblasts, paxillin is not serine-phosphorylated and does not recruit ILK, which
is known to be involved in its activation [133]. The concomitant lack of ILK and p125FAK in EDS
fibroblasts might contribute to the low levels of Bcl-2 expression and caspases’ activation. In addition,
the αvβ3 integrin-p60Src-paxillin complexes recruit p130Cas at less extent, a docking protein that
is physiologically involved in cytoskeleton remodeling [134] and that is degraded by caspases [135].
Therefore, in cEDS and vEDS fibroblasts the low amounts of p130Cas could result from the activity of
caspases and could explain the actin cytoskeleton disassembly [103].

Furthermore, in these cells the αvβ3 integrin signaling rescues from anoikis by a cross-talk with
EGFR, as demonstrated by the immunoprecipitation of phosphorylated EGFR with the αvβ3 integrin
and by the induction of apoptosis observed either after antibody-mediated EGFR or αvβ3 inhibition
or both [103], in line with several evidences that reported cross-talk mechanisms between integrins
and growth factors’ receptors eliciting cell growth and rescue from apoptosis [81,82,136]. EGF–EGFR
can transduce for tyrosine phosphorylation of paxillin [137], which, in turn, can act as an adaptive
molecule integrating signals from integrins and growth factor receptors to ensure cell proliferation [138].
In Figure 2 a schematic representation of this survival pathway is shown.

Figure 2. Schematic representation of the αvβ3 integrin- and EGFR-mediated signaling pathways
ensuring the rescue from anoikis in cEDS and vEDS fibroblasts.
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The pre-apoptotic behavior of vEDS fibroblasts has been associated with an abnormal endoplasmic
reticulum (ER) homeostasis resulting from intracellular retention of mutant and misfolded COLLIII
chains. In vEDS cells, an ER perturbation was suggested by the abnormal ER distribution of the protein
disulfide isomerase enzyme and by reduced expression of FKBP22, an ER resident peptidyl-prolyl
cis-trans-ER isomerase involved in the folding of COLLIII triple helix [108,139,140]. Since the perturbed
ER redox state may influence the down-regulation of Bcl-2 and the activation of the caspase-dependent
apoptosis [141], and FKBP22 can have an anti-apoptotic role acting on the expression of Bcl-2 and
caspases [142], this aspect merits further studies in vEDS fibroblasts.

In conclusion, in cEDS and vEDS fibroblasts an in vitro survival mechanism supported by an
αvβ3 integrin-EGFR cross-talk transducing to paxillin is activated, thus sustaining cell adhesion in
the absence of the actin cytoskeleton. Paxillin, activated by p60Src, probably works as a strategic
molecule to reinforce the αvβ3 integrin- and EGFR-mediated signaling pathways ensuring the rescue
from anoikis.

3. The αvβ3 Integrin Signaling Sustains the Hypermobile EDS (hEDS) and Hypermobility
Spectrum Disorders (HSD) Fibroblast-to-Myofibroblast Transition

In hEDS and HSD cells, the αvβ3 integrin was shown to be involved in the
fibroblast-to-myofibroblast transition by a transduction pathway involving ILK that signals to the
transcription factor Snail1 [106]. Contrary to cEDS and vEDS fibroblasts, hEDS and HSD cells
exhibit a peculiar in vitro myofibroblast-like phenotype characterized by organization of the α-smooth
muscle actin (α-SMA) cytoskeleton, expression of the cadherin-11, and enhanced migratory capability,
probably because they synthesize high levels of MMP9, a collagenase also able to digest FN into
proteolytic fragments [106].

The implication of αv subunits-containing integrin receptors, including αvβ3, in the promotion
of the α-SMA stress fibres assembly and fibroblast-to-myofibroblast transition has been investigated in
different in vitro cell types [143,144]. In hEDS and HSD cells, the αvβ3 integrin binds to ILK and the
β3 subunit is phosphorylated. These αvβ3 integrin-ILK complexes are recruited and activated in focal
adhesion sites, promoting the α-SMA cytoskeleton’s organization, and ensuring the maintenance of
the myofibroblast-like phenotype. The ILK inhibition with the liposoluble inhibitor Cpd22 induces
both in hEDS and HSD cells the gradual disappearance of αvβ3 integrin and the α-SMA stress fibres
disassembly [106]. Snail1, a transcription factor known to be involved in the transdifferentiation
mechanisms [145], is one of the downstream effectors of the αvβ3 integrin-ILK axis in hEDS and
HSD cells [106]. Indeed, it localizes both at cytoplasmic and nuclear level and immunoprecipitates
either with the αvβ3 integrin or with ILK, suggesting a role in the phenotypic switch of these cells.
Furthermore, the ILK inhibition delocalizes Snail1 from nuclei, confirming the activation in hEDS and
HSD cells of an αvβ3 integrin-ILK-Snail1 axis sustaining the myofibroblasts’ phenotype. This condition
is consistent with the role of Snail1 in the induction of myofibroblasts’ markers, i.e., cadherin-11 and
α-SMA, as previously described in synovial fibroblasts from rheumatoid arthritis patients [146–148].
Although target molecules possibly activated by αvβ3 integrin-ILK complexes that act upstream Snail1
were not investigated in hEDS and HSD cells [106], transcriptome data in these cell models suggest
a possible involvement of PI3K/Akt/GSK-3β and NF-kB signaling [107], which plays an important
role in transdifferentiation mechanisms [149]. In this regard, ILK may act as kinase downstream
the PI3K signaling pathway [150] and could be involved in the negative regulation, through the
phosphorylation of a specific serine residue, of the glycogen synthase kinase 3β (GSK-3β) [151].
GSK-3β is a well-known kinase that physiologically controls the Snail1 export from the nucleus to the
cytoplasm and its consequent degradation by ubiquitination [150,152,153]. Based on these findings, it
reasonable to assume that αvβ3 integrin-ILK complexes in the focal contact sites of hEDS and HSD
cells may be involved in the regulation of the GSK-3β function [106]. In hEDS and HSD cells, the
ILK-mediated action should repress GSK-3β activity by its phosphorylation, thus resulting in the
nuclear Snail1 expression and in the induction of the α-SMA organization. This is also sustained by
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the reduction of the nuclear Snail1 associated with the α-SMA disassembly observed after inhibition of
the ILK kinase activity by Cpd22 in a dose-dependent manner [106], given that Cpd22 is known to
prevent the ILK-mediated phosphorylation of GSK-3β [154]. In addition, ILK could phosphorylate
Akt that, in turn, promotes NF-κB activation that enhances Snail1’s transcription by binding its
promoter [155]. In Figure 3 a schematic representation of the αvβ3 integrin-ILK-Snail1 axis involved
in the fibroblast-to-myofibroblast transition is shown.

Figure 3. Schematic representation of the αvβ3 integrin-ILK-Snail1 transduction pathway involved in
the myofibroblast-like phenotype of hEDS and HSD cells.

The αvβ3 integrin’s ligands likely involved in the myofibroblast’s phenotype have not been
identified yet, but the ECM disarray and, in particular, the proteolytic fragments generated by MMP9
from structural ECM components such as FN should play a key role in this signaling. Indeed, control
fibroblasts, grown in the presence of the hEDS- and HSD-conditioned media, disassemble the FN–ECM
and are induced to cluster at membrane level the αvβ3 integrin, which transduces through ILK to the
nuclear Snail1 for the α-SMA fibers’ organization [106]. This “reprogramming” of control fibroblasts
with hEDS and HSD cells’ media raises the question which factor(s), including not only growth factors
and cytokines, e.g., TGF-β and Wnt, but also ECM fragments produced by proteolytic activity of
different proteases such as MMP9, might be the primary contributor(s) to this transition. Indeed, it is
recognized that intracellular molecules released from damaged tissues, as well as fragments of the
ECM released downstream cell injury, can act as damage-associated molecular patterns (DAMPs).
These molecules serve as danger signals that can elicit an immune response following tissue injury
or in response to the changes in tissue composition and organization [156–160]. In this light, it is
reasonable to assume that in hEDS/HSD cells these molecules may act as DAMPs and could be
recognized by the αvβ3 integrin or other specialized receptors, which turn on pathways that transduce
for the synthesis of a plethora of inflammation molecules. Both in vivo and in vitro, DAMPs could
be responsible for the inflammation and chronic pain described in hEDS and HSD patients [161,162].
In this regard, hEDS and HSD cells express high levels of CCN2/CTGF, responsible for myofibroblast’
proliferation and differentiation, and low levels of CCN1/CYR61, involved in the myofibroblast’
apoptosis and resolution of inflammation [163,164]. The unbalanced synthesis of these inflammatory
mediators might avoid the hEDS and HSD cells’ apoptotic death and sustain the hEDS and HSD
myofibroblast-like phenotype.
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Since in hEDS and HSD fibroblasts the serum deprivation does not induce cells to undergo
apoptosis, the αvβ3 integrin-ILK-Snail1 pathway should be independent from serum growth factors’
action. Indeed, the contribution of mitogenic molecules in the fibroblast-to-myofibroblast transition
is a thrilling topic, since myofibroblast differentiation and α-SMA expression are induced by the
TGF-β [165,166]. The enhanced CCN2/CTGF expression observed in hEDS and HSD cells suggests
the possible involvement of the TGF-β signaling [106]. Furthermore, it is known that CCN2/CTGF
co-distributes and interacts with αv-containing integrins, including αvβ3 [167,168]. The possible
involvement of the TGF-β pathway in the maintenance of the high levels of CCN2/CTGF observed
hEDS ad HSD cells and, given the putative binding of CCN2/CTGF to the αvβ3 integrin, its
possible role in the activation of the αvβ3 integrin-ILK-Snail1 signaling finally leading to the
fibroblast-to-myofibroblast transition remain to be clarified. In this view, in different cell models
increased Snail1 levels have been associated with the secretion of CCN2/CTGF, which, in turn, induces
fibroblast-to-myofibroblast transition [169,170].

In conclusion, the identification of the αvβ3 integrin-ILK-Snail1 transduction pathway in hEDS
and HSD cells provides insights into the molecular mechanisms likely involved in the pathophysiology
of these neglected disorders. Further additional studies are needed and may represent a starting
point for identifying potential therapeutic options. Quantitative protein profiling of hEDS and HSD
cells’ media, aimed at clarifying which key factors secreted in their culture media are involved in
the fibroblast-to-myofibroblast transition, are ongoing. In addition, the elucidation of the possible
ILK-regulated downstream signaling partners, i.e., AKT and GSK-3β, which are likely involved in the
transduction pathway that links the αvβ3 integrin, likely through Snail1, to the phenotypic switch of
hEDS and HSD fibroblasts requires future in-depth studies.

4. In Arterial Tortuosity Syndrome (ATS) Dermal Fibroblasts the αvβ3 Integrin Is Involved in a
Non-Canonical TGF-β Signaling

Among the different HCTDs dermal fibroblasts shown in Table 7, only ATS fibroblasts share with
EDS cells the peculiar cellular phenotype characterized by the αvβ3 integrin expression (Figure 1).
In addition to the disorganization of their FN- and COLLs–ECMs, these cells also show the lack
of decorin (DCN) expression and do not organize FBNs and ELN in a fibrillar network [105]. This
abnormal ECM organization and particularly that of FBNs and ELN is consistent with the elastic
tissue disarray reported in the arterial wall of ATS patients [98]. The exact pathomechanisms by which
GLUT10 deficiency leads to the generalized ECM disarray, which reflects not only the typical ATS
vascular anomalies but also the multisystem involvement overlapping with EDSs [171], were debated
for long time and remain incompletely explored [98,99,105,115,116,172]. The first study that identified
disease-causative variants in SLC2A10 described an up-regulation of TGF-β signaling in arterial wall
and ATS dermal fibroblasts [98]. The involvement of this pathway in the molecular pathology of ATS
was sustained by the increased levels of CCN2/CTGF expression reported in ATS arterial tissue [98]
and by the reduced expression of DCN, which is a TGF-β signaling inhibitor PG, in in vitro-grown
patients’ fibroblasts [105]. In the last years, several evidences demonstrated that GLUT10 is localized in
the ER and acts as a DHA transporter, which is the oxidized form of the ascorbic acid (AA) [99,115,116].
AA plays a major role in redox homeostasis by reducing reactive oxygen species (ROS) production,
thereby protecting cells against oxidative stress. It also acts as a cofactor in reactions catalyzed by
prolyl- and lysyl hydroxylases, which are a class of ER-resident enzymes involved in the maturation of
COLLs and ELN [99,115,116]. ATS fibroblasts undergo oxidative stress, as shown by their high levels
of ROS-mediated lipid peroxidation products [105]. However, in both the “enzyme cofactor” and
“antioxidant” models of vitamin C-related pathology, the exact interaction with the TGF-β pathway
remains elusive.

Since it is known that the αv-containing integrins, including αvβ3, play a key role in the activation
of TGF-β [173] by interacting with the RGD motif present in the latency-associated peptide that results
in the activation of the latent TGF-β [143,174,175], we hypothesized that this specific integrin might be
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involved in the aberrant TGF-β signaling observed in ATS fibroblasts [98,105]. Indeed, we unraveled a
cross-talk mechanism between the αvβ3 integrin and a non-canonical TGF-β signaling. Specifically, in
these cells the αvβ3 integrin co-immunoprecipitates and co-distributes with CCN2/CTGF, suggesting a
direct interaction between αvβ3 and this growth factor, as previously reported in other cell models [168].
In ATS fibroblasts, the αvβ3 integrin transduces to p60Src through the recruitment of p125FAK,
a key mediator of the TGF-β signaling [176,177], which is likely involved in the phosphorylation of
the β3 integrin subunit [105]. Furthermore, ATS cells express very low levels of the TGFBRI and
higher amounts of TGFBRII, which immunoprecipitates with the αvβ3 integrin. TGFBRII is tyrosine
phosphorylated and p60Src should play a role in its activation, because of their co-immunoprecipitation
with the αvβ3 integrin. This non-canonical pathway not only does not involve TGFBRI but also SMAD2
that is expressed at lower level than in control cells. Furthermore, TGFBRII also recruits p38MAPK
that is activated by p60Src, as shown by the PP2-mediated inhibition of p60Src leading to the complete
elimination of p38MAPK phosphorylation [105]. p38MAPK is a kinase involved in a wide range of
signaling pathways that stimulate a multitude of different biological functions including adhesion,
migration, ECM remodelling. Since p38MAPK might also be activated by stimuli other than TGF-β
signaling, including an imbalance of redox homeostasis [178], it reasonable to assume that this kinase
and its downstream effects play a role in the pathomechanisms of ATS. However, future investigations
are needed to elucidate this intriguing aspect.

In ATS cells, the perturbation of redox homeostasis and TGF-β signaling associated with the
aberrant ECM organization is dependent on the defective GLUT10-mediated DHA transport. In fact,
the stable expression of functional GLUT10 in ATS fibroblasts restores a correct DHA transport
activity [99], normalizes the impaired redox homeostasis, and rescues a canonical TGF-β signaling
recruiting the TGFBRI/TGFBRII receptor, which transduces to SMAD2, in the absence of αvβ3 integrin,
p60Src and p38MAPK. The recovery of both redox homeostasis and canonical TGF-β signaling is
associated with re-expression of DCN and, partly, reorganization of their ELN- and FBNs-ECM [105].
These observations agree with previous findings showing that the oxidative stress can induce an
aberrant TGF-β signaling resulting in abnormal elastogenesis and consequent ELN disassembly into
the ECM [179,180].

Overall, in ATS fibroblasts, GLUT10 deficiency, through a faulty intracellular DHA uptake, leads to
redox unbalance and abnormal ECM protein maturation resulting in generalized ECM disorganization
and activation of a non-canonical αvβ3 integrin-TGFBRII signaling, involving CCN2/CTGF, p125FAK,
p60Src, and p38MAPK.

5. Concluding Remarks

Human dermal fibroblasts from healthy individuals organize in vitro several structural ECM
components that recruit specific integrin receptors. FN is assembled in a fibrillar network through the
binding with the α5β1 integrin. In the majority of EDS and in ATS fibroblasts carrying mutations in
different ECM-related genes, but not in those derived from LDS, MFS and OI patients, the FN–ECM
and the α5β1 integrin are disorganized and strongly reduced respectively and, consequently, the
alternative FN receptor the αvβ3 integrin, which is almost absent in control fibroblasts, is recruited.
The different implications of the αvβ3 integrin identified in cultured cEDS, vEDS, hEDS, HSD, and ATS
dermal fibroblasts highlight the multifaced nature of this integrin at least in this in vitro cell model.
In cEDS and vEDS cells, the αvβ3 integrin exerts a pro-survival role promoting cell adhesion and
preventing anoikis through p60Src-paxillin-mediated signaling and EGFR cross-talking. In hEDS and
HSD cells, the αvβ3 integrin is involved in the fibroblast-to-myofibroblast transition through the
interaction with ILK that signals to the transcription factor Snail1. In ATS fibroblasts, the αvβ3 integrin
cross-talks with a TGFBRII-mediated non-canonical TGFβ signaling.

In conclusion, these data show that αvβ3 integrin, specifically recruited by EDS and ATS cells,
participates in different signaling pathways depending on the specific disorder and underlying
molecular defects. The αvβ3 integrin is sufficiently multifaced to switch on different signaling
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cascades downstream of the interplay enrolled with its numerous intracellular interactors and by its
cross-talk capability with different growth factor-receptor complexes. These findings add insights into
the manifold functions of the αvβ3 integrin, but more effort is required to deepen knowledge on the
numerous partners identified in the reported pathways that could shed light on pathomechanisms
associated with these HCTDs. In addition, further functional studies are also needed to ascertain
whether similar or different αvβ3-mediated signaling mechanisms are elicited in the other EDS
fibroblasts expressing this integrin.
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Glossary

Extracellular matrix
(ECM)

ECM is a three-dimensional structure that encapsulates cells and defines their
microenvironment, providing a physical scaffolding for the cellular constituents. ECM is a
dynamic structure, constantly undergoing a remodeling process whereby ECM
components are deposited, degraded, or modified. ECM dynamics are essential during
restructuring of tissue architecture.

Integrins
A family of cell adhesion receptors that mediate either cell–cell interactions or cell–ECM
interactions. Integrins are heterodimers with two distinct subunits, the α-subunit and the
β-subunit.

Fibroblasts
The major cells responsible for the production of collagens, glycosaminoglycans, and
proteoglycans, which are major components of the ECM.

Myofibroblasts

Specialized cells with both fibroblasts’ and SMCs’ phenotypic characteristics. These cells
are activated by inflammatory cytokines and are involved in wound-healing mechanisms
and in pathological conditions, such as fibrosis and chronic inflammation. They peculiarly
express the α-SMA that they organize into the cytoskeleton to generate contractile force
and migrate.

Fibroblast-to-
myofibroblast
transition

Phenotypic conversion of fibroblast into myofibroblast by transdifferentiation mechanisms
occurring during wound healing, fibrosis, and inflammation. A well-characterized
hallmark of the fibroblast-to myofibroblast transition is the novo formation of α-SMA stress
fibers.

Focal adhesions

Transmembrane anchorage sites organized on the lower surface of the cell and in the cell’s
periphery to anchor the underlying ECM fibrils. These structures are associated with the
end of actin stress fibers and usually contain the αvβ3 integrin that interacts with a
complex pattern of proteins including vinculin, talin, paxillin, α-actinin, zyxin, p125FAK,
ILK, and other phosphotyrosine proteins and kinases.

Fibrillar adhesions
Integrin-containing complexes arising from focal adhesions, distributed on the upper cell
surface, involved in the ECM fibrils’ organization. These elongated structures are enriched
in α5β1 integrins bound to tensin.

Anoikis
Mechanism of programmed cell death or apoptosis induced by the loss of cell-ECM
adhesion. Consequently, the ECM can be considered a survival signal for cells.

Cross-talk mechanism
Mechanism by which two or more surface receptors or two or more interactors recruited in
different signal-transduction pathways affect each other and reinforce the downstream cell
response to an extracellular signal.

Damage-associated
molecular patterns
(DAMPs)

Molecules released from damaged tissues, such as components or fragments of the ECM,
released downstream of the cell injury. These danger signals bind specific receptors, such
as Toll-like receptors, to elicit an immune response following tissue injury or in response to
the changes in tissue composition and organization. DAMPs can also play a role in chronic
pain conditions.
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Tissue homeostasis
A homeostatic process involved in the maintenance of an internal steady state within a
defined tissue of an organism, including control of cellular proliferation and death and
control of metabolic function.

Redox homeostasis Balance between intracellular reactive oxygen species (ROS) generation and elimination.
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