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Abstract: Infections with high-risk human papillomaviruses cause ~5% of all human cancers.
E6 and E7 are the only viral genes that are consistently expressed in cancers, and they are necessary
for tumor initiation, progression, and maintenance. E6 and E7 encode small proteins that lack
intrinsic enzymatic activities and they function by binding to cellular regulatory molecules, thereby
subverting normal cellular homeostasis. Much effort has focused on identifying protein targets of
the E6 and E7 proteins, but it has been estimated that ~98% of the human transcriptome does not
encode proteins. There is a growing interest in studying noncoding RNAs as biochemical targets and
biological mediators of human papillomavirus (HPV) E6/E7 oncogenic activities. This review focuses
on HPV E6/E7 targeting cellular long noncoding RNAs, a class of biologically versatile molecules that
regulate almost every known biological process and how this may contribute to viral oncogenesis.
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1. Human Papillomaviruses as Oncogenic Drivers

Papillomaviruses are a large family of non-enveloped viruses with ~8000 base pair, circular, double
stranded DNA genomes. They have been detected in almost all vertebrates, are highly host-specific and
preferentially infect squamous epithelial tissues. More than 440 human papillomaviruses (HPVs) have
been molecularly characterized as of 03/2020, and they are organized into five phylogenetic genera:
alpha, beta, gamma, mu and nu [1]. HPVs exhibit a marked preference for infecting specific squamous
epithelial tissue types; most alpha HPVs infect mucosal epithelia, whereas beta, gamma, mu and
nu HPVs preferentially infect cutaneous epithelia. HPV infections are either asymptomatic or cause
formation of generally benign hyperplastic lesions, or warts. Some cutaneous HPV infections contribute
to initiation of cutaneous squamous cell carcinomas, particularly in long-term immunosuppressed
organ transplant patients, and in individuals with a rare hereditary skin disease, epidermodysplasia
verruciformis [2,3]. The mucosal alpha HPVs can be clinically classified into low and high-risk types.
Low-risk HPVs cause benign genital warts, whereas high-risk HPVs cause premalignant lesions that
can progress to carcinomas. Approximately 5% of all human cancers are caused by high-risk HPV
infections. These include almost all cervical carcinomas, a large fraction of other anogenital tract
carcinomas and a growing percentage of oral cancers, particularly oropharyngeal carcinomas [4].

High-risk HPV-associated cancers are generally non-productive infections and only two viral genes,
E6 and E7, are consistently expressed. HPV E6 and E7 encode low molecular weight, cysteine-rich,
zinc-binding proteins of ~150 and ~100 amino acids, respectively. Despite their diminutive size,
they are potent oncogenic drivers and are necessary for tumor initiation, progression and maintenance.
They lack intrinsic enzymatic activities and do not directly bind to specific DNA sequences. Hence,
they function by binding to host cellular regulatory molecules, thereby subverting their normal
physiological activities [5,6]. As a consequence, HPV E6 and E7 target almost all cellular processes
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that have been designated “hallmarks of cancer” [7,8]. A large number of cellular protein interaction
targets for E6 and E7 have been identified, most prominently the TP53 and retinoblastoma (RB1)
tumor suppressor proteins, respectively [9,10]. Similarly, dysregulation of the cellular transcriptome
by E6 and E7 has been amply documented but the majority of studies have focused on enumeration
of the expression profiles of protein-encoding mRNAs. Given, however, that ~98% of the cellular
transcriptome does not encode proteins, a significant amount of information has remained untapped.

The majority of studies on the contributions of noncoding RNAs to HPV carcinogenesis has
focused on one class, the microRNAs (miRNAs) [11]. However, more recently there has been an
emerging interest in determining the mechanistic contributions of another, large class of noncoding
RNAs, the long noncoding RNAs (lncRNAs), in the context of HPV-associated carcinogenesis.

2. Long Noncoding RNAs

Long noncoding RNAs (lncRNAs) are defined as transcripts of >200 nucleotides with no or
limited coding potential of <100 amino acids. Large intergenic noncoding RNAs (lincRNAs) are a
subset of lncRNAs that do not overlap with protein coding genes, whereas other lncRNAs share some
overlap, either on the sense or antisense strand, with coding genes [12]. The first cellular lncRNAs,
H19 and X-Inactive Specific Transcript (XIST), were discovered in the early 1990s [13,14]. With the
development of high-throughput sequencing techniques in the late 2000s, there was substantial increase
in identified lncRNAs. Compared to the ~21,000 protein coding genes, the number of lncRNA genes
has been estimated to be in the range of ~15,000 to ~58,000 [15,16]. As sequencing depth increases,
it is expected that additional lncRNAs will be identified. The majority of lncRNAs are transcribed by
RNA Polymerase II, have 5′ cap structures and are 3′ polyadenylated, rendering them biochemically
indistinguishable from mRNAs. LncRNAs can localize to nuclear as well as cytoplasmic compartments.

Only ~20% of lncRNA nucleic acid sequences are significantly conserved between humans and
mice, whereas the remaining lncRNAs only share small areas of microhomology [17]. The fact that such
microhomologies are significant has been impressively demonstrated by complementation experiments.
For example, despite limited sequence similarity of the linc-birc6 (megamind) and linc-oip5 (cyrano)
lncRNAs across species, the phenotype of megamind and cyrano depletion in zebrafish was rescued
by expression of murine or human transgenes [18].

LncRNAs can interact with linear RNA or DNA sequences by base pairing. Moreover, secondary
and tertiary lncRNA structures can also act as recognition surfaces for binding proteins with high affinity
and specificity. Molecular interactions with RNA, DNA and proteins furnish almost endless possibilities
for lncRNAs modes of action. These include epigenetic regulation of gene expression, forming scaffolds
for macromolecular complex assembly, binding and inactivation of miRNAs (“sponging”), and
regulating mRNA stability (Figure 1).

The role of nuclear lncRNAs in epigenetic regulation has been extensively investigated, and there
are numerous examples of lncRNAs affecting the epigenetic status of neighboring loci (in cis) or at
distant loci (in trans). A classic example of a lncRNA acting in cis is the X-inactive specific transcript
(XIST). During X-inactivation, XIST accumulates in cis where it tethers polycomb repressive complexes
to silence genes on the X-chromosome, a phenomenon referred to as X-inactivation [19]. The HOX
transcript antisense intergenic RNA (HOTAIR), transcribed from the HOXC locus, acts in trans by
guiding chromatin repressive complexes to HOXD and other chromosomal loci [20]. Other lncRNAs
such as the HOXA transcript at the distal tip (HOTTIP) and nettoie Salmonella pas Theiler’s (NeST)
cause activation of target genes by recruiting WDR5, a component of the MLL/MLL1 histone H3 lysine
4 methyltransferase complex, which marks genes for transcriptional activation [21,22].
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The ability of nuclear or cytoplasmic lncRNA to associate with proteins allows them to function
as scaffolds for the assembly of individual proteins into functional complexes. The nuclear enriched
abundant transcript 1 (NEAT1) lncRNA, for example, forms a complex with the HEXIM1 protein to
assemble a complex that contains DNAPK, cGAS, TBK1 and IRF3, which is necessary to trigger innate
immune signaling in response to cytoplasmic DNA sensing [23].

Figure 1. Major mechanisms of action of long noncoding RNAs (lncRNAs). See text for detail.

Cytoplasmic lncRNAs have also been reported to act as “miRNA sponges”. By base pairing
with individual microRNAs they can restrain their abilities to bind to and inhibit their mRNA targets,
thereby interfering with miRNA mediated repression [24].

Lastly, cytoplasmic lncRNAs can directly or indirectly bind mRNAs thereby modulating their
stability and/or translation. The pro-differentiation terminal differentiation-induced lncRNA (TINCR),
for example, binds and stabilizes mRNAs that are critical for critical for epithelial differentiation
through the recruitment of the Staufen RNA binding protein [25].

Given the versatility of their biochemical modes of action, it comes as no surprise that cellular
lncRNA expression is dysregulated in many cancers. However, there have been only very few studies
that have carefully evaluated how specific, well established oncogenic drivers trigger dysregulation of
lncRNA expression and how this may contribute to carcinogenesis. Given that HPV E6 and E7 are
universal drivers of ~5% of human cancers, they are ideally suited to address this critical matter.

3. Deregulation of lncRNAs in Cervical Carcinomas

There have been numerous studies reporting increased (Table 1) or decreased (Table 2) expression of
specific lncRNAs in HPV-associated premalignant lesions and cancers (see tables below for references).
By proposing specific mechanisms of action and linking aberrant expression to specific oncogenic
phenotypes, these studies suggest that dysregulated lncRNA expression may importantly contribute
to HPV carcinogenesis by subverting cellular processes that have been referred to as “hallmarks of
cancer” [7,26].
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Table 1. lncRNAs reported to be upregulated in various models of cervical lesions and cancers.

lncRNA Oncogenic Phenotype Proposed Mechanism References

ANRIL Proliferation, migration, invasion PI3K/AKT; Cyclin D1, CDK4, CDK6,
N-cadherin, Vimentin expression [27,28]

ARAP1-AS1 Proliferation, invasion MYC translation by PSF/PTB [29]
BLACAT1 Proliferation, migration, invasion WNT signaling/β-catenin [30]

CCAT2 Proliferation, apoptosis None reported [31]
CCEPR (CCHE1) Proliferation PCNA mRNA stabilization [32]

Proliferation independent of PCNA mRNA [33]
CRNDE Proliferation, migration, invasion miR-183 sponging/cyclin B1 [34]

Proliferation PUMA expression [35]
DANCR Proliferation, migration, invasion miR-665 sponging/TGFβ-R1-ERK-SMAD [36]

Proliferation, migration, invasion, epithelial to
mesenchymal transition (EMT) miR-335-5p sponging/ROCK1 [37]

EBIC (TMPOP2) Motility, invasion E-cadherin silencing by EZH2 [38]

Proliferation miR-375, miR-139 sponging
HPV E6/E7 expression [39]

FAM83H-AS1 Proliferation, migration and apoptosis G1/S-phase transition [40]
GATA6-AS Migration, invasion MTK-1 [41]

H19 Proliferation, anchorage independent growth None reported [42]
HOTAIR Apoptosis, invasion, migration NOTCH signaling [43]

Apoptosis, proliferation, invasion miR-23b sponging/MAPK1 axis [44]
Autophagy, EMT WNT signaling [45]

Proliferation miR-143-3p sponging/BCL2 [46]
HOXD-AS1 Proliferation Ras/ERK [47]
Linc00483 Proliferation, apoptosis, invasion, migration miR-508-3p sponging/RGS17 [48]

LINP1 DNA damage repair (Non-homologous end joining) KU80, DNA-PKcs binding [49]
Lnc-IL7R Apoptosis BCL2/caspase 3 [50]
LUCAT1 Proliferation, migration, invasion miR-181a sponging [51]
MALAT1 Cell invasion and metastasis inhibition of EMT genes [52]

Proliferation, migration, invasion miR-625-5p/AKT2 [53]
Proliferation Mir-625-5p/NF-kB signaling [54]

Cisplatin resistance PI3K/AKT [55]
MIR205HG Proliferation, apoptosis, migration SRSF1/KRT17 axis [56]

NEAT1 Proliferation, invasion PI3K/AKT [57,58]
Colony formation, migration, invasion miR-133a sponging/SOX4 [59]

NORAD Proliferation, invasion miR-590-3p sponging/SIP1 [60]
PANDAR Proliferation None reported [61]

PVT1 Proliferation, invasion Inhibiting TGFβ;
miR-140-5p sponging/SMAD3 [62,63]

EMT, chemoresistance miR-195 epigenetic silencing [64]
SNHG8 Proliferation, apoptosis RECK silencing by EZH2 [65]
SNHG12 Proliferation, apoptosis ERK/Slug [66]
SNHG16 Proliferation, invasion PARP9 expression by SPI1 binding [67]

TUG1 Proliferation, apoptosis, invasion, tumor growth miR-138-5p sponging/SIRT1 [68]

Proliferation, apoptosis, EMT BCL-2, caspase 3; fibronectin, vimentin, and
cytokeratin [69]

TP73-AS1 Proliferation, migration miR-329-3p sponging/SMAD2 [70]
Proliferation, migration, invasion miR-607 sponging/CCND2 [71]

UCA1 Radioresistance HK2/glycolytic pathway [72]
XIST Proliferation miR-140-5p sponging/ORC1 [73]

Proliferation, invasion, apoptosis, EMT miR-200a sponging/FUS [74]
ZEB-AS1 Proliferation, migration, invasion, EMT ZEB1 expression [75]

Table 2. lncRNAs reported to be downregulated in various models of cervical lesions and cancers.

lncRNA Oncogenic Phenotype Proposed Mechanism Reference

GAS5 Proliferation, invasion, migration E-cadherin, Vimentin [76]
Proliferation, migration, invasion, colony formation miR-21 expression/STAT3 [77]

Radiosensitivity miR-106b sponging/IER3 [78]
HOTAIR Decreased polycomb repression Binding to HPV E7 [79]

Lnc-CCDST Migration, invasion, angiogenesis DHX9, MDM2 scaffolding [80]
MEG3 Proliferation, apoptosis Binding, degradation of P-STAT3 [81]

Proliferation, colony formation, apoptosis miR-21-5p expression/TP53 [82]
STXBP5-AS1 Viability, invasion miR-96-5p expression/PTEN [83]

TINCR Differentiation, colony formation, migration S100A8 and other ZNF750 targets [84]
WT1-AS Proliferation TP53 [85]

Proliferation, invasion, migration miR-203a-5p binding/FOXN2 [86]
XLOC_010588 Proliferation MYC mRNA binding/degradation [87]
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4. Deregulation of lncRNAs by HPV E6 and/or E7 Proteins

Several reviews have focused on the clinical implications of lncRNA expression changes in
HPV-associated cancers [88–90], but dysregulation of cellular lncRNA expression in HPV-associated
lesions and cancers does not infer that the observed changes represent a primary consequence of
HPV infection and E6 and/or E7 expression. Some of the studies cited in the tables above implicated
E6 and/or E7 as regulators of certain lncRNAs, including PVT1, MALAT1, SNHG12, lnc-CCDST,
LINC01101 and LINC00277 [64,66,80,91,92] by depleting E6/E7 expression in cervical cancer lines.

To determine how HPV16 E6/E7 expression deregulates lncRNA expression in normal human
epithelial cells, we analyzed RNA sequencing (RNAseq) data of two independently derived populations
of HPV16 E6/E7 expressing primary human foreskin keratinocytes (HFKs) and their donor and passage
matched, control vector-transduced parental cells [93]. Of the 7109 annotated lncRNA species that
were detectably expressed, the levels of 1453 was altered at least twofold. Of these, 1070 lncRNAs
were expressed at higher levels whereas 383 were expressed at lower levels in HPV16 E6/E7 expressing
HFKs than in parental HFKs (Figure 2A).

Figure 2. Differential expression of cellular lncRNAs in human papillomavirus (HPV)16 E6/E7
expressing human foreskin keratinocytes (HFKs). (A). Expression of annotated cellular lncRNA
by RNA sequencing (RNAseq) analysis of HPV16 E6/E7 expressing and parental primary HFKs.
(B). Quantitative reverse transcription PCR (qRT-PCR) analysis of select cellular lncRNAs in HPV16
E6/E7 expressing versus parental HFKs. See text for detail.

From this list, we analyzed by quantitative reverse transcription PCR (qRT-PCR), expression
of a small number of lncRNAs that were shown to be dysregulated in HPV-associated lesions and
cancers (see Table 1; Table 2) or are well established modulators of cancer hallmarks targeted by
HPV16 E6/E7. From this panel, the most significantly upregulated and downregulated lncRNAs are
the cervical carcinoma expressed PCNA regulatory lncRNA (CCEPR) and the DNA damage-induced
noncoding lncRNA (DINO), respectively. HOTAIR, human ovarian cancer-specific transcript 2
(HOST2), growth arrest-specific 5 (GAS5), metastasis associated lung adenocarcinoma transcript 1
(MALAT1) and tissue differentiation-inducing non-protein coding RNA (TINCR) were downregulated,
whereas hepatocellular carcinoma up-regulated EZH2-associated lncRNA (HEIH), differentiation
antagonizing non-protein coding RNA (DANCR), EZH2-binding lncRNA in cervical cancer (EBIC),
neuroblastoma associated transcript 1 (NBAT1) and H19 were upregulated in HPV16 E6/E7 expressing
HFKs (Figure 2B).

In the following some of the well-documented HPV16 E6/E7 regulated lncRNA species will be
discussed in more detail. It will be important to determine whether similar results are also obtained
with other high-risk HPV derived E6 and E7 proteins and in all the different cell types that high-risk
HPVs are known to infect.

4.1. CCEPR (CCHE1)

Expression of the cervical carcinoma expressed PCNA regulatory (CCEPR) lncRNA (also referred
to as cervical carcinoma high-expressed long non-coding RNA 1; CCHE1) is highly upregulated
in cervical cancers and expression correlates with tumor size and poor prognosis of cervical
cancer patients [32,94,95]. High level CCEPR expression has also been noted in other tumor types
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including osteosarcoma [96], uroepithelial bladder carcinoma [97], non-small cell lung carcinoma [98],
hepatocellular carcinoma [99] and colorectal carcinoma [100]. Our own work revealed that CCEPR
lncRNA is expressed at higher levels in HPV16 E6/E7 expressing HFKs than in parental HFKs [93].
Follow up studies revealed that CCEPR was upregulated in response to HPV16 E6 expression and
this was independent of E6-mediatied TP53 degradation [33]. Consistent with previous findings [32],
we found that CCEPR overexpression contributes to proliferation of cervical cancer cell lines.
However, in contrast to this previous study our work provided no evidence for CCEPR increasing
the levels of PCNA mRNA [33]. Moreover, we detected CCEPR was mostly in the nucleus [33].
Many nuclear lncRNAs contribute to gene expression via direct transcriptional and/or epigenetic
regulation (Figure 1). Multiple alternative mechanisms of action including binding to ROCK1 or
enhancing PAK2 expression through miR-922 sponging have been suggested for CCEPR from studies
with other tumor types [101,102].

4.2. DINO

The TP53 responsive DNA damage induced noncoding (DINO) lncRNA (DINOL) binds and
stabilizes TP53, thereby amplifying TP53-mediated signaling [103]. Our studies have shown that DINO
was expressed at lower levels in HPV E6/E7 expressing HFKs than in control HFKs [93,104] (Figure 2B).
Consistent with the ability of E7 to cause TP53 stabilization and E6 to target TP53 for degradation,
we found that DINO levels were higher in E7 expressing HFKs but lower in E6 expressing HFKs
than in parental cells [104]. We showed that E7 stabilizes TP53 through DINO and that E7 initially
triggers DINO expression through a mechanism that involves epigenetic de-repression through the
H3K27 demethylase KDM6A, which E7 is known to induce [105]. Once DINO expression is induced
it activates TP53 which causes even higher DINO expression [104] (Figure 3). DINO depletion in E7
expressing cells renders cells less susceptible to cell death due to metabolic stress or treatment with
DNA damage-inducing chemotherapy agents [104].

Figure 3. Regulation of damage induced noncoding (DINO) by HPV16 E6 and E7. See text for detail.

Given that cervical carcinoma cells retain wild-type TP53 expression [106], it is tempting to
speculate that it may be possible to at least partially reconstitute the dormant TP53 tumor suppressor
pathway in HPV-associated lesions and tumors by artificially modulating DINO levels and/or activity.
Given that cancer cells cannot tolerate functional TP53, one might predict that such intervention may
have valuable therapeutic benefits.

4.3. HOTAIR

HOTAIR is one of the best-studied lncRNAs in the context of human carcinogenesis. Expression is
upregulated in many cancer types, suggesting that HOTAIR may be an oncogenic lncRNA (reviewed
in [107]). HOTAIR was also reported to be highly expressed in cervical cancer tissues [44], but another
study reported that HOTAIR levels were lower [79]. Our own analysis revealed lower HOTAIR levels
in HPV16 E6/E7 expressing primary human keratinocytes as compared to parental cells [93] (Figure 2B).
HOTAIR has been reported to recruit two distinct chromatin silencing complexes: polycomb repressive
complex 2 (PRC2) at its 5’ end and histone lysine demethylase KDM1A (LSD1)-associated complexes
at its 3’ end [108]. (Figure 4). HPV16 E7 was predicted to bind HOTAIR by in silico analysis, and
this was validated by E7 immunoprecipitations followed by qRT-PCR analysis [79]. The authors
speculated that E7 binding may impede the ability of HOTAIR to interact with PRC2 and/or KDM1A
complexes (Figure 4). This may contribute to the ability of HPV16 E7 to cause de-repression of
polycomb regulated genes [105,109] despite high level expression of the repressive H3K27 methyl
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transferase, EZH2 [110,111]. It will be interesting to determine whether there are additional biological
consequences of the E7-HOTAIR interaction and if E7 can also form complexes with other lncRNAs.

Figure 4. HPV16 E7 binding to HOX transcript antisense intergenic RNA (HOTAIR) may contribute to
derepression of polycomb regulated genes by displacing HOTAIR bound KDM1A containing complexes
and/or polycomb repressive complex 2 (PRC2); see text for detail.

4.4. EBIC (TMPOP2)

The EZH2-Binding lncRNA in cervical cancer, EBIC, (also known as thymopoietin pseudogene 2,
TMPOP2), may promote motility and invasion of cervical cancer cells by repressing CDH1 (E-Cadherin)
expression though EZH2 [38]. Our own experiments revealed increased EBIC expression in HPV16
E6/E7 expressing HFKs as compared to control HFKs [93] (Figure 2B). Consistent with these results,
a recent study suggested that EBIC expression was driven by E6/E7 expression, and largely due to E6
mediated TP53 degradation [39]. Interestingly, EBIC was reported to cause increased expression of
HPV E6/E7 through a mechanism that involves sponging of miR-375 and miR-139, which have been
previously reported to target HPV E6/E7 [112,113] (Figure 5). EBIC depletion in the HPV18 positive
HeLa cervical carcinoma line inhibited proliferation by affecting the expression of cell cycle genes such
as p21CIP1 (CDKN1A), cyclin E, and CDK2 [39].

Figure 5. HPV E6 and E7 cause increased EZH2-Binding lncRNA in cervical cancer (EBIC) expression
which, by sponging miR-375 and miR-139 causes increased E6 and E7 levels. See text for details
and references.

4.5. H19

The onco-fetal lncRNA H19 is undetectable in most adult tissues but is re-expressed in a variety
of tumors where it functions as an oncogenic driver [114,115]. H19 was reported to enhance cell
proliferation and anchorage-independent growth of cervical cancer lines [42]. Our analysis showed
that HPV16 E6/E7 expression in primary HFKs was sufficient to cause increased H19 expression [93]
(Figure 2B) and a more recent study reported H19 expression is driven by HPV16 E6 [40]. The exact
molecular mechanism by which HPV16 E6 drives H19 upregulation is unknown.

The cancer cell-specific expression of H19 was harnessed to design a DNA therapy approach to
selectively kill H19 expressing cancer cells by expressing diphtheria toxin A under the control of the H19
promoter. Such a plasmid, referred to as BC-819, is currently in phase II clinical trials for non-muscle
invasive bladder cancer [116], has been tested in early phase trials for other tumor types [117,118]
and has shown efficacy in preclinical animal models of a variety of other human tumors [119,120].
Moreover, transfections of HPV16 (CaSki) and HPV18 (HeLa, SW756) positive cervical cancer lines
with an H19 promoter driven diphtheria toxin A expression vector inhibited their proliferation [121],
suggesting that BC-819 or a similar reagent may also show therapeutic efficacy in HPV16 and HPV18
positive lesions and cancers.
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This approach highlights how properties of lncRNAs can be exploited to develop therapeutics
without directly targeting a lncRNA or without a detailed understanding of the upstream regulators.

4.6. FAM83H antisense RNA 1 (FAM83H-AS1)

The FAM83H antisense RNA 1 (FAM83H-AS1) lncRNA is upregulated in many types of cancer,
including cervical cancers, and a high level of FAM83H-AS1 expression correlates with poor survival [40].
FAM83H-AS1 expression is driven by E6 and is independent of TP53 degradation and may involve
p300. FAM83H-AS1 is nuclear and depletion in cervical cancer cell lines inhibits proliferation and
migration and causes apoptosis [40].

4.7. DANCR and TINCR

LncRNAs are key regulators of epidermal differentiation. Both a pro-differentiation lncRNA,
(TINCR) [25], and an anti-differentiation lncRNA, (DANCR) [122], have been described (Figure 6).

Figure 6. Regulation of keratinocyte differentiation by differentiation antagonizing non-protein coding
RNA (DANCR) and tissue differentiation-inducing non-protein coding RNA (TINCR). See text for details.

Our studies revealed that TINCR levels were reduced in HPV16 E6/E7 HFKs, while DANCR levels
were increased [93] (Figure 2B). HPVs are well known to alter epithelial cell differentiation and one
mechanism, inhibition of the non-receptor protein tyrosine phosphatase, PTPN14, by HPV E7 proteins
through UBR4 mediated degradation has recently been elucidated [123]. Nonetheless, it is conceivable
that E6 and/or E7 may regulate epithelial differentiation at least in part by modulating TINCR and/or
DANCR expression. DANCR levels were shown to be elevated in cervical tumors [36,37] and TINCR
levels were lower [84]. Depletion of DANCR in cervical cancer cell lines blunted proliferation, migration,
and invasion [37]. Whether this effect is related to DANCR’s ability to inhibit differentiation remains
to be determined.

4.8. Colorectal Neoplasia Differentially Expressed (CRNDE) lncRNA

The colorectal neoplasia differentially expressed (CRNDE) lncRNA is overexpressed in cervical
cancer tissues [34,35] and correlates with tumor size and poor clinical outcome. [35]. Our RNAseq
results suggest that CRNDE overexpression is driven by HPV16 E6/E7 expression [93]. CRNDE
overexpression in cervical cancer lines caused increased proliferation and tumorigenicity in xenograft
assays [35]. Conversely, CRNDE depletion in cervical cancer lines inhibited migration and invasion and
reduced tumorigenicity in xenograft assays. A range of CRNDE downstream targets and mechanisms
of action have been proposed. One study proposed that CRNDE drives cervical cancer growth by
inhibiting expression of the TP53 regulated apoptosis modulator, PUMA [35], whereas another study
reported that CRNDE overexpression resulted in increased cyclin B1 expression through miR-183
sponging [34]. These two mechanisms are not mutually exclusive and suggest that CRNDE may be an
important modulator of the HPV16 E6/E7 oncogenic drivers.

4.9. Maternally Expressed Gene 3 (MEG3)

The maternally expressed gene 3 (MEG3) lncRNA is expressed at lower levels in cervical cancer
tissues than in normal cervical epithelium. Low MEG3 expression was correlated with tumor size,
the presence of lymph node metastases and HPV expression [82]. Our RNAseq data suggest that
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decreased MEG3 expression is a direct consequence of HPV E6/E7 expression [93]. Ectopic MEG3
expression in cervical cancer lines inhibited proliferation, increased apoptosis and reduced tumorigenicity
in xenograft models [81]. Consistent with the ability of MEG3 to activate TP53 [124], these effects
were at least in part mediated by TP53 activation through miR-21-5p [82]. A later study by the same
group suggested a different or additional mechanism and provided evidence that MEG3 may affect
tumorigenicity by binding and targeting phospho-STAT3 for proteasomal degradation.

5. Concluding Remarks

Noncoding genes have long been belittled as “junk” DNA and their expression has been considered
“transcriptional noise”. However, some of these noncoding RNAs, particularly miRNAs, circular RNAs
(circRNAs) and lncRNAs, are now recognized as regulators of a variety of cellular processes. Given that
viruses need to reprogram their host cell to establish and maintain persistent infections and to support
the synthesis of viral progeny, it is thus not surprising that the cellular transcriptome of non-coding
genes is altered in virally infected cells. Indeed, several reports have indicated that viral infections
cause substantial alterations of the expression profile of host cellular lncRNAs [125–127]. The host
cellular lncRNA transcriptome changes in response to a viral infection reflect the “molecular arms race”
between the intruding virus and the host’s defense responses [6,128]. They include “pro-viral” lncRNAs
that the virus engages to invade and reprogram the host cell in order to support the viral life cycle,
and “anti-viral” lncRNAs that the cell triggers as part of the arsenal of innate and adaptive responses
against the unfriendly takeover attempt by the virus (Figure 7).

Figure 7. Alterations in lncRNA expression induced by HPV infection reflect the full spectrum of the
molecular arms race of the virus and the host cells and may be different for specific HPV types. See text
for details.

Like other viruses, HPVs dramatically remodel the host cellular lncRNA transcriptome [125–127].
While it is technically straightforward to catalogue these changes, it remains challenging to
mechanistically comprehend their biological consequences. Upstream regulators of lncRNAs can
be determined by the same experimental approaches that have been developed for protein coding
mRNAs. Similarly, depletion or overexpression experiments followed by determining transcriptional
or biological readouts can offer vital clues regarding the molecular pathways that specific lncRNAs are
involved in, provided that such experiments are performed in biologically relevant cell types. Further,
experiments where TP53 and/or RB1 are depleted may help to distinguish between changes in cellular
lncRNA expression that are caused by TP53 and/or RB1 loss and those that reflect other mechanisms of
the E6 and/or E7 proteins. Moreover, it will be interesting to determine changes in cellular lncRNA
expression in response to expression of the full HPV genomes, since these changes may be different
than upon E6/E7 expression as is observed in HPV-associated tumors. Since there is often limited
sequence homology in lncRNAs between different species, it is difficult to use animal models to study
the relevance of these lncRNA changes. Hence, relevant cell-based models and organoid models are
best suited to address these issues. Lastly, given the versatility of lncRNAs to function as molecular
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matchmakers for nucleic acids as well as proteins in the nucleus and/or the cytoplasm (Figure 1)
it remains challenging to accurately and conclusively determine their molecular mechanisms of action.

Viral proteins may also alter the biological activities of lncRNAs by direct or indirect binding,
thereby changing their protein and/or nucleic acid interactomes. As described in Section 4.3., HPV16
E7 has been reported to interact with HOTAIR, thereby potentially impeding its ability to repress
polycomb regulated genes [79]. Given that HPV16 E7 and E7 have been reported to interact with
a large number of protein targets [9,10], it is conceivable that they may also have multiple lncRNA
interaction targets.

Studies with oncogenic viruses have been crucial for the discovery of oncogenes and tumor
suppressors and helped establish foundational concepts regarding their modes of action. Mechanistic
evaluation of lncRNAs as oncogenic drivers in the context of viral carcinogenesis promises to provide
similarly important insights.

Some lncRNAs may serve as biomarkers for cancer detection, metastasis and survival of
patients [129], and the prostate cancer specific lncRNA, prostate cancer antigen 3 (PCA3) is an
FDA approved lncRNA biomarker for prostate cancer detection [130]. The EGFR-AS1 lncRNA is a
predictor of the therapeutic response to erlotinib, an anticancer drug that targets epidermal growth
factor receptor (EGFR), in that erlotinib-resistant lung cancer cell lines expressed very low levels of
EGFR-AS1 [131]. Erlotinib combined with cisplatin and radiotherapy showed promising results in
phase 2 clinical trials for cervical cancers [132]. EGFR-AS1 levels were lower in HPV16 E6/E7 expressing
cells than in control cells [93]. Hence, EGFR-AS1 expression may serve to identify cervical cancer
patients likely to benefit from erlotinib therapy.

Oncogenic or tumor suppressive lncRNA are excellent candidates for direct therapeutic targeting
and lncRNA-based therapeutics can be developed through a variety of approaches. Oncogenic
and pathogenic lncRNAs can be depleted by RNAi or RNAse H-mediated decay by antisense
oligonucleotides (ASOs). On the other hand, tumor suppressive lncRNAs can be introduced in tumors
by gene therapy methods or nanoparticle delivery. Furthermore, similar to miRNAs, lncRNA activities
can be modulated by nucleic acid-based mimics and inhibitors. Once considered undruggable, RNAs,
including lncRNAs are now considered druggable with small molecules [133–135].

The concept that lncRNAs can be used to specifically kill virally infected cells has been
demonstrated by the selective killing of HIV-1 infected macrophages upon depletion of a lncRNA
upregulated by HIV-1 infection, SAF (FAS-AS1) [136]. Therefore, studies aimed at identifying
vulnerabilities of HPV-infected cells to inhibiting specific lncRNAs are clearly warranted and may
provide lncRNA targets to be exploited for developing HPV-specific therapeutic approaches.

Lastly, the regulatory elements of lncRNAs that are highly expressed in cancers may be harnessed
for therapeutic approaches as in the case of BC-819, the vector driving expression of the diphtheria
toxin A from the H19 promoter, which is in clinical trials and may be applicable to HPV16 positive
tumors as well (see Section 4.5).
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