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ABSTRACT

Regulatory DNA elements, short genomic segments
that regulate gene expression, have been implicated
in developmental disorders and human disease. De-
spite this clinical urgency, only a small fraction of
the regulatory DNA repertoire has been confirmed
through reporter gene assays. The overall success
rate of functional validation of candidate regulatory
elements is low. Moreover, the number and diver-
sity of datasets from which putative regulatory el-
ements can be identified is large and rapidly increas-
ing. We generated a flexible and user-friendly tool
to integrate the information from different types of
genomic datasets, e.g. ATAC-seq, ChlP-seq, conser-
vation, aiming to increase the ease and success rate
of functional prediction. To this end, we developed
the EMERGE program that merges all datasets that
the user considers informative and uses a logistic
regression framework, based on validated functional
elements, to set optimal weights to these datasets.
ROC curve analysis shows that a combination of
datasets leads to improved prediction of tissue-
specific enhancers in human, mouse and Drosophila
genomes. Functional assays based on this predic-
tion can be expected to have substantially higher
success rates. The resulting integrated signal for
prediction of functional elements can be plotted in
a build-in genome browser or exported for further
analysis.

INTRODUCTION

The multitude of cell types that arise throughout animal de-
velopment acquire their different morphologies and func-

tions from the expression of distinct sets of genes. The regu-
lation of the spatio-temporal patterns of gene expression is a
highly controlled process that allows for fine-tuning at many
levels (1). An important part of gene regulation occurs at
the transcriptional level: the degree to which genomic DNA
is transcribed into RNA by RNA polymerase II (Pol 1I).
The promoter of a gene, consisting of the genomic sequence
surrounding the transcription start site (TSS), is by itself
sufficient to engage the Pol II machinery. However, typi-
cally the required level of transcription of a gene within a
tissue is established through the activity of a repertoire of
interacting regulatory DNA elements and their associated
protein complexes. Such regulatory DNA has been found
in the form of transcriptional activators, repressors, insula-
tors and tissue-specific switches; collectively these elements
have been dubbed cis-regulatory modules. The first regula-
tory DNA regions that were identified markedly enhanced
the transcription of reporter genes and these elements are
thus generally referred to as enhancers (2). Enhancers con-
tain short DNA motifs that function as binding sites for
sequence-specific transcription factors (TF). TF binding
depends on chromatin accessibility and thus on chromatin
remodelling proteins (reviewed in (3)). The interaction of
TFs with co-activators and co-repressors leads to a com-
plex of which the regulatory cues determine the activity of
the enhancer.

Genetic variation in regulatory elements, including en-
hancers, the most studied representative, is heavily impli-
cated in developmental disorders and human disease (4,5).
Despite this clinical urgency, enhancer identification has
been hampered by the daunting complexity of gene reg-
ulation that has been encountered and the relatively high
costs of functional assays. Furthermore, the average success
rate of enhancer validation studies stands at a low 55% (6).
Thus far less than 1000 enhancers have been validated (6),
whereas the human genome may contain as many as 100 000
enhancers (7). In terms of linear genomic DNA sequence,
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enhancers can be located hundreds to millions of base pairs
(bp) away from their target genes (8), which makes their
identification challenging. Enhancer activity is correlated
with the presence of characteristic histone modifications,
such as histone H3 lysine 4 monomethylation (H3K4mel)
and H3 lysine 27 acetylation (H3K27ac), which make the
chromatin accessible for TF-binding (3,9-11). The recruit-
ment and activation of mediator complexes, which in turn
bring Pol I1 into contact with the target gene promoter then
results in gene transcription (12).

Traditionally, enhancer prediction methods focus on
computationally matching TF-binding motifs, following
the logic that TFs bind to their preferred sequences (13-17).
However, the relationship between TF-binding and DNA
motifs is not fully understood and results in inaccurate pre-
dictions. Typically only a small fraction of all motifs in a
genome is bound by the corresponding TF in a given cell-
type, which can in part be explained by context specificity
and the dependency on other proteins (18).

The ChIP-seq technique can reveal the genomic locations
of specific histone modifications and TF-binding events in
specific tissues and has therefore been used intensively for
enhancer prediction (19-21). However, a major issue with
enhancer prediction through ChIP-seq is the substantial
proportion of the detected regions that are not associated
with enhancers, as TF-binding also occurs abundantly out-
side known functional contexts. Similarly, the detection of
an enhancer-associated histone modification at a certain ge-
nomic site cannot always be correlated to function. Often a
single ChIP-seq dataset already contains in the order of a
100 000 peaks that may or may not represent an enhancer.

The activity of regulatory DNA elements typically re-
quires a characteristic combination of modification and oc-
cupation. This will result in a signature of overlapping sig-
nals when the respective functional genomic datasets are
interrogated. This principle is the main working hypothe-
sis upon which the EMERGE approach, that will be pre-
sented in this paper, is based. Following this logic, overlap
analysis of multiple datasets can be used to narrow down
the number of likely regulatory DNA candidate regions.
The complexity of such overlap analyses quickly increases
upon adding more datasets (Figure 1). To address this prob-
lem, EMERGE allows users to select and combine the var-
ious types of functional genomic datasets that they con-
sider informative and then enables them to systematically
score DNA co-modification and occupation; the program
can then be used to visualize this overlap using an integrated
genome browser (Figure 2B).

The overlap principle has been used with varying suc-
cess by several other enhancer prediction methods. One
approach, CSI-ANN, applies pattern recognition to chro-
matin signatures using artificial neural networks, reporting
65.5% sensitivity and 66.3% positive predictive value (ppv)
for enhancer prediction (22). Other programs using epige-
netic states reported better performances: a Hidden Markov
model approach reached a ppv of 80% (23), whereas a sup-
port vector machine (SVM) approach, dubbed Chroma-
GenSVM, recovered 88% of experimentally validated en-
hancers (24). However, all aforementioned methods limit
their scope to histone states and miss the freedom to interro-
gate specific TF-pathways or to include cues from evolution.
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EnhancerFinder, another SVM-based program, uses mul-
tiple enhancer identification approaches, including evolu-
tionary conservation, TF-binding, chromatin modifications
and DNA-sequence motifs (25). The publication comes
with a set of predicted enhancers, based on the data then
available. However, the flexibility of the approach is limited
as the EnhancerFinder program is not publicly available.

Existing research has mostly focused on transcriptional
enhancers alone, thereby largely neglecting the complexity
of gene regulation and the other classes of regulatory ele-
ments that are involved. The flexibility of EMERGE makes
the program especially helpful for the identification of dif-
ferent classes of regulatory DNA regions, because the user
can select the relevant datasets. The user can manually as-
sign weights to the individual datasets, allowing for (re-
search question driven) focus on specific marks of inter-
est. Furthermore, using appropriate sets of validated func-
tional genomic elements, a logistic regression model can be
applied to maximally separate active regulatory sites from
non-(active) regulatory sites. The program then automati-
cally determines an optimal combination of dataset weights
to predict active sites. The resulting overall prediction sig-
nal can be exported for use in external tools, such as the
UCSC genome browser (Figure 2C). Currently, only en-
hancer screening efforts have generated sufficiently large ref-
erence libraries to base a modelling approach on. Therefore,
we validated the automated approach of EMERGE by pre-
dicting enhancer sites, using an integrated mix of functional
cues, including evolutionary conservation, DNase hyper-
sensitivity and ChIP-seq datasets. The prohibitive costs of
large scale in vivo functional reporter assays makes that this
study is restricted to receiver operating characteristic (ROC)
curve analysis. We used experimentally validated enhancers
from human, mouse and Drosophila as training sets (6,26).
In the results section we show that EMERGE only requires
a limited number of datasets to reach highly reliable en-
hancer prediction with ROC curves that show area under
the curve (AUC)-values of above 0.8 and even 0.9, outper-
forming commonly used approaches that solely use p300
and/or H3K27ac as enhancer markers. Comparison of the
performances of different enhancer predicting approaches
is difficult because the reported performances are obviously
dependent on the included datasets. Overall, our method
performs similar to EnhancerFinder (25), the only other
method of enhancer prediction that used the VISTA en-
hancer database (6) to validate their data. EMERGE stands
out through the flexibility in its approach; the users are free
to include whichever datasets they consider relevant and,
equally important, are free to use their preferred set of val-
idated regulatory DNA elements.

MATERIALS AND METHODS
EMERGE

To start EMERGE, the user needs an inventory of predic-
tor datasets in BED format, commonly used to denote spe-
cific genomic regions of interest (https://genome.ucsc.edu/
FAQ/FAQformat.html). These predictor datasets can, for
example, be peaks called in ChIP-seq experiments, DNasel
hypersensitivity (DHS) assays, evolutionary conservation,
etcetera. The latest version of EMERGE and source code
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Figure 1. The EMERGE approach. UCSC browser view of the Hopx locus. The wealth of functional genomic data available for the heart generates a
complex landscape of peaks, making it difficult to pinpoint enhancer locations. EMERGE calculates dataset overlap and collapses the signal into an
overall (heart enhancer) prediction. The highlighted region denotes a strong peak in the prediction signal which coincides with a validated heart enhancer.

are available from http://download.hfrc.nl. The version of
the program as described in this paper is available as Sup-
plementary File 1.

The most basic way of combining predictor datasets
in EMERGE is to apply a ‘Merge’. With this option
EMERGE creates a union of the identified genomic regions
resulting in the maximum spanning regions of the partially
overlapping datasets (Supplemental Figure S1). This op-
tion can be useful when a limited number of datasets is
used and the region density in each dataset is relatively low.
A more advanced way of merging, which is preserving the
original resolution of the datasets, is the ‘Split merge’ func-
tion. This function splits up the overlapping regions and
thus annotates the presence of an identified region in each
dataset at the exact location. This function, the default way
of merging, is useful when relatively many or densely peaked
datasets are used (Figure 2A).

In addition, datasets can be added that ‘Only overlap
with’ the previously merged datasets. This option only adds
the presence of the dataset to the previously defined regions
and can be useful when the information in the dataset is not
specific for the tissue of interest but has to be considered in
the merge. One can think of data derived from cell lines or
genomic conservation.

Interacting genomic features can be arranged next to
each other on the genome, without sharing the exact same
position. Therefore, we provide the user the option to ex-
tend the marked regions in each dataset with a specified
length. This option ensures the detection of association of
features that are in close proximity.

When the datasets are merged, the integrated genome
browser shows an overview of the datasets (Figure 2B) at the

user-selected gene locations. At this stage the user can man-
ually change the weight of the individual datasets and in-
stantly see the effect of these changes in the genome browser.
The user can either view the overlap of the datasets exactly
as was determined or at a scale of 1 kbp bins, which bet-
ter resembles the size of regulatory elements. When dataset
weights are allocated manually, the values do not have to
conform to any predisposed model. The user is free to as-
sign any value to each dataset, according to the perceived
importance of the dataset in the performed study.

Alternatively, the program can determine the optimal
weight to each dataset in order to predict to occurrence of
a regulatory element at the site of overlap. This option re-
quires a training set, often referred to in diagnostic research
as a gold standard. This training set consists of a True Pos-
itive (TP) population and a True Negative (TN) population
of the regulatory element type of which the genomic loca-
tions have to be predicted. To determine the most optimal
dataset weights, their predictor coefficients, EMERGE uses
the elastic net logistic regression method (27).

Elastic net logistic regression extends the least squares
minimization with a term that includes the values of the pre-
dictor coefficients, 8, in the minimization process. Elastic
net thus solves:

min (lNDeViance(ﬁo, B) + )»Pa(ﬁ)>

B0.8

1_
with P,(B) = ZLI <( . a)lgf +a|,3j|>

where;
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Figure 2. Overview of the EMERGE framework. (A) The EMERGE flowchart, including the collecting and merging of input BED files, the assignment of
dataset weights for prediction and the possibility to export the resulting prediction tracks. (B) Screenshot of the graphical user interface of the EMERGE
program, after the combination of the datasets shown in panel A. The build-in genome browser shows the accumulated signal at the Hopx locus. After
calculation of dataset overlap, weights can be assigned to determine each set’s contribution to enhancer prediction. (C) The resulting overall prediction
signal can be exported for use in external tools, such as the UCSC genome browser.



PAGE 5 OF 12

(1) Deviance is the squared deviance of the model fit from
the responses using intercept B0 and predictor coefficients
B. We used a 10-fold cross validation to estimate the de-
viance.

(i1) NV is the number of observations, p is the number of
predictors.

(ii1) Parameters By and B are scalar and p-vector, respec-
tively

(iv) We used an a of 0.1 (has to be between 0 and 1)

Elastic net regression assigns similar B-values to corre-
lated predictor datasets whereas normal regression would
assign all weight to just one of those sets. Elastic net thus
encourages a grouping effect, where strongly correlated pre-
dictors tend to be in or out of the model together. It ‘re-
moves’ datasets that have no predictive value by assigning
a low or zero weight. Moreover, this method is particularly
suitable when there is a relatively large number of predict-
ing datasets and a relatively small training set, a situation
that can occur when only a small number of enhancers is
validated for the tissue of interest.

The elastic net implementation of Matlab was used
in EMERGE. In comparison with other regression ap-
proaches that we tried on the data, elastic net logistic re-
gression showed the best performance (Supplemental Fig-
ure S2).

When the user is satisfied by the, manually or automati-
cally, assigned weights, the prediction track can be exported
in bedgraph format and then visualized and analysed in ex-
ternal tools such as the UCSC genome browser (Figure 2C).

Datasets for evaluation of EMERGE

To test enhancer prediction by EMERGE, we have selected
and combined a number of enhancer predictor datasets
(generated by varying techniques, such as ChIP-seq). For
an overview of these datasets, see Supplemental Table S1.
All the datasets that were used in this study can be down-
loaded as BED files from ‘http://download.hfrc.nl’ under
the ‘EMERGE BED files’ header. These files are ready to
be used in EMERGE and references to the source data are
attached.

ChIP-seq datasets used for enhancer prediction

All datasets were downloaded as Sequence Read Archives
(SRA) files and processed into FASTQ format using
the open source SRA Toolkit software package (http://
www.ncbi.nlm.nih.gov/books/NBK56560/). Subsequently,
Bowtie (version 1.1.2) (28) was used to map reads to the
appropriate reference genome assembly (mm9 for mouse,
hgl9 for human and dm3 for Drosophila melanogaster). To
prevent genomic repeats from confounding the analysis, the
‘-m’ parameter was set to 1 (all alignments for a read are
suppressed if more than 1 reportable alignment exists across
the genome). For the remaining parameters the default set-
tings were used. Peaks were called on the resulting Sequence
Alignment Map (SAM) files with OccuPeak (29) using the
default settings, resulting in a BED file. For some large
datasets the threshold was manually adjusted to limit the
number of peaks to 150 000 for the mouse genome and 30
000 for the Drosophila genome. The identified peaks were
imported into EMERGE for enhancer prediction.

Nucleic Acids Research, 2016, Vol. 44, No. 5 e42

Additional datasets used for enhancer prediction

DHS datasets for target tissues were downloaded from EN-
CODE and modENCODE (7,30,31). The downloadable
NARROWPEAK files were used.

Evolutionary conservation of genomic sequence has
been a useful property for enhancer identification (32). As
such, PhastCon files for mm9 and hgl9 were downloaded
from the UCSC genome browser database (PhastConsEle-
ments100way).

ChIP-on-ChIP datasets on D. melanogaster mesoderm
tissue were downloaded from the Furlong laboratory web-
site (http://furlonglab.embl.de/data/download) (33). The
peaks called by the authors were directly used for EMERGE
enhancer prediction.

RESULTS
Training data

We have used experimentally validated enhancers from hu-
man, mouse and Drosophila (6,26) to both train and val-
idate the enhancer prediction by EMERGE. In the pub-
licly available enhancer screening depositories, the tested ge-
nomic enhancer regions are annotated according to their
activity per tissue. To test enhancer prediction, we defined
a TP enhancer as a genomic region that has (reproducibly)
been shown to display reporter gene activity within the tis-
sue of choice (e.g. heart). The definition of a TN is less
straightforward because TN populations can be defined in
three different ways:

(1) Regions that tested negative in a validation study.

(i1) Validated enhancers that are not active in the target
tissue.

(iii)) Random genomic DNA regions of 1 kb (back-
ground).

Each of these TN classes has its own implicated strengths
and weaknesses, from both theoretical and practical points
of view. We discuss the pros and cons of each TN class in
more detail in the discussion section of this paper.

To determine the performance of the predictive model of
EMERGE, receiver operating characteristic (ROC)-curves
were generated, by repeatedly fitting (25 times on a random
selection of 75% of the training set and testing on the re-
maining 25%). The final weights are determined by fitting
on the complete training dataset.

Integrating datasets improves enhancer prediction

EMERGE predicts enhancers by integrating and assign-
ing weights to datasets generated with the purpose to iden-
tify enhancers (see Supplemental Table S1 for an overview
of the datasets used). We have evaluated the performance
of EMERGE by determining how accurately the program
can distinguish TPs from TNs through the assignments of
weights to each dataset (Figure 3A). To this end, the AUC
for ROC curves was computed (Figure 3B-F).

A powerful AUC of 0.91 was reached when EMERGE
was given all the available mouse datasets for enhancer pre-
diction (Figure 3B). These results were reached using mouse
heart enhancers as TP and other enhancers (class B) as
TNs. EMERGE still reached a respectable AUC of 0.78
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Figure 3. Benchmarking EMERGE performance with ROC curves. Populations of validated tissue-specific enhancers were split into training and testing
data. EMERGE assigns the optimal dataset weights through modelling with an elastic net logistic regression approach on the training data. These weights
are subsequently tested on the testing data. (A) Scatterplot of the modelled weights assigned to validated heart enhancers and enhancers active in other
tissues, showing clearly separated distributions. This same data served to construct an ROC curve in panel B (purple line). (B-F) Plotted ROC curves of
EMERGE enhancer prediction using the training data as indicated and explained in the text. Area under the curve (AUC) values are given for each ROC
curve. The number of true positive training regions is indicated above the organ and species icons. The number of true negative (TN) training regions is
indicated per category. (B and C) Performance of mouse enhancer prediction by EMERGE on heart (B) and brain (C) tissue. (D) Performance of Drosophila
enhancer prediction by EMERGE. Regions tested negative in validation assays were used as TN reference data. (E and F) Performance of human enhancer

prediction by EMERGE on heart (E) and brain (F) tissue.

when validated negatives (class A TNs) were used to train
the prediction. However, an almost perfect AUC of 0.97
was found when heart enhancer prediction was performed
against genomic background (class C) TNs. Despite the fact
that fewer brain-specific ChIP-seq datasets were available,
similar AUCs were found when brain enhancers were used
as TPs (Figure 3C).

Despite the scarcity of human heart ChIP-seq datasets
(Supplemental Table S1), EMERGE?’s prediction of human
heart enhancers showed a similar good performance, with
AUCs reaching 0.86 or higher for all TN classes (Figure 3E).
In contrast, human brain enhancer prediction was less suc-
cessful, but still adequate at AUC values of 0.68 and 0.64
(Figure 3F). This decrease possibly reflects the quality of the
individual human brain ChIP-seq datasets or the high diver-
sity of enhancer-types and -signatures present in this organ
(6,34). Again, when using the random genome regions as
the TN population, near perfect prediction was observed
(Figure 3F).

The generation of an extensively tested enhancer library
for D. melanogaster by the Stark laboratory (26), provides
an excellent reference database for testing enhancer predic-
tion. Owing to the small genome size of Drosophila (~123
Mbp), its gene regulation modules are very compactly orga-
nized. This challenges the resolution of the ChIP-seq tech-
nique, making it harder to pinpoint enhancer locations. The
signal processing and subsequent enhancer prediction by
EMERGE solves this problem, effectively discriminating

ubiquitous enhancers (AUC 0.94) and mesoderm specific
enhancers (AUC 0.8) from tested negative regions (class A
TNs; Figure 3D).

Tissue-specific signatures of p300 and H3K27ac are com-
monly viewed as hallmarks for enhancer activity (10,35,36).
Therefore, typically, studies in which enhancer screens are
performed use p300 or H3K27ac ChIP-seq data as the sin-
gle identification marker. We have determined the predic-
tive value of heart-specific H3K27ac and p300 as single
datasets for mouse heart enhancer prediction (versus other
enhancers, TN class B) and compared this prediction to us-
ing a multitude of datasets with EMERGE (Figure 4 and
Table 1). Of the single datasets, H3K27ac of E14.5 mouse
hearts reached the highest AUC (0.80). The combination
of all datasets by EMERGE outperforms this, even when
p300 and H3K27ac are not included in the overall merge
(AUC scores 0of 0.91). As can be appreciated from the weight
parameters given in Supplemental Table S2, many datasets
are roughly equally contributing to enhancer prediction.
Furthermore, the combination of p300 and H3K27ac data
(using EMERGE) showed only a slight improvement over
the individual components. This result indicates that us-
ing solely p300 or H3K27ac for enhancer discovery is sub-
optimal. When a false positive rate of 0.1 is accepted in a
functional assay (vertical dotted line in Figure 4), the single
dataset prediction will only detect 50% of the TP elements.
Integrating all datasets in the prediction will increase this
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Figure 4. Combining datasets in EMERGE outperforms classical en-
hancer hallmarks p300 and H3K27ac. Performance of enhancer prediction
by EMERGE and heart H3K27ac and p300 ChIP-seq. Individual ChIP-
seq datasets were sorted on significance. The combination of H3K27ac
and p300 and EMERGE without these three datasets are also plotted. En-
hancers active in other tissue were used as negative control region reference
data. The dashed line indicates the fraction of reporter assays that will de-
tect a true enhancer when a false positive rate of 10% is accepted (see Table

).

Table 1. Combining datasets in EMERGE outperforms H3K27ac and
p300 based approaches at 10% false positive stringency threshold

% of
enhancers
Dataset(s) on heart tissue identified
p300 adult 40
H3K27ac adult 50
H3K27ac E14.5 53
p300 & H3K27ac combined (EMERGE) 53
All datasets minus p300 and H3K27ac (EMERGE) 73
All datasets (EMERGE) 76

Given per dataset (or combination of datasets) is the percentage of heart
enhancers identified at the same stringency threshold (see Figure 4, dashed
line for threshold). Enhancers active in other tissues were used as negative
control region reference data.

success rate to 75%, thus reducing the number of required
reporter assays (Table 1).

We compared the performance of EMERGE enhancer
prediction with those of CSI-ANN (22) and Chroma-
GenSVM (24), two methods that also use overlapping
functional genomic data for prediction. In the study that
presents ChromaGenSVM (24), a collection of histone-
methylation and -acetylation datasets in CD4+ T cells were
used to predict DNasel hypersensitive sites (DHSs) in the
same tissue. We ran EMERGE on the same data. The re-
sults of this comparison shows that EMERGE outperforms
CSI-ANN and has very similar predictive power to Chro-
maGenSVM (procedure details and results are given in Sup-
plemental Table S3).

In summary, EMERGE provides powerful enhancer pre-
dictions for different species and tissues of interest. We have
tested these predictions for mouse, human and Drosophila
genomes, but other genomes can be imported and analysed.

Nucleic Acids Research, 2016, Vol. 44, No. 5 e42

When EMERGE’s enhancer prediction is based on multiple
integrated datasets, it far outperforms the use of even the
best single datasets.

Interacting chromatin domains are enriched with predicted
enhancers

Enhancer-mediated activation of target gene promoters re-
quires these genomic elements to be in close proximity to
each other in 3D-space through chromatin looping (re-
viewed in (37)). The development of chromatin conforma-
tion capture (3C)-based technology and its genome-wide
derivatives have enabled the study of this spatial organi-
zation of DNA (reviewed in (38)). Recently, high resolu-
tion (1000 bp range) HiC data for several human cell lines
has become available (39). When EMERGE enhancer pre-
diction points to actual enhancer locations, we expect the
predicted regions to be predominantly located in interact-
ing chromatin domains. Furthermore, we expect this rela-
tion to hold across different tissue-types. Though chromatin
3D topology has been reported to be distinct between cell
types, for example through enhancer activation (40,41), it
has since been shown that the bulk of chromatin configura-
tions are conserved between tissue-types, in so-called per-
missive chromatin states (reviewed in (1)). Therefore, we
have studied the overlap between human heart enhancer
prediction by EMERGE and intergenic HiC signal in vari-
ous human cell lines (Figure 5 shows an example of a val-
idated enhancer on the human GATA4 locus co-localizing
with a significant HiC interaction). Although only 7% of the
validated enhancers overlap with HiC peaks, we found that
significantly interacting chromatin domains are enriched
with EMERGE-predicted human heart enhancers; more-
over we found this to be true for all cell lines that were ad-
dressed in the Rao study (Table 2).

DISCUSSION

We have tested the applicability of the EMERGE program
by combining a multitude of functional genomic datasets
and by assigning automated weights to these predictors.
The accuracy with which these weights discriminate be-
tween validated enhancers and TNs was captured by AUC
scores of ROC curves (Figure 3B-F). These scores show
that EMERGE is able to provide powerful enhancer pre-
dictions, for different species and tissues of interest, which
go beyond the power of single dataset approaches. Typi-
cally, p300 and/or H3K27ac signatures are used as the sole
markers for identification in enhancer screen studies. Our
data show that this is a sub-optimal approach when com-
pared to combining a multitude of relevant datasets using
EMERGE (Figure 4 and Table 1). This indicates that either
not all active enhancers are marked by H3K27ac and p300
(sub-optimal sensitivity) or that these markers are promis-
cuous and mark other regions of the genome (sub-optimal
specificity). An alternative explanation that cannot easily be
dismissed is that the ChIP-seq data does not perfectly reflect
the genomic profile of these marks. Regardless of which of
these explanations is correct, combining a number of rele-
vant datasets results in more reliable enhancer prediction.
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Table 2. EMERGE-predicted human heart enhancers are located in interacting chromatin domains as identified by HiC

HiC datasets (cell lines) # of intergenic HiC peaks Area Under the Curve
GM12878 11803 0.70
HeLa 4003 0.76
HMEC 7211 0.74
HUVEC 5004 0.76
K562 7074 0.73
KBM7 3403 0.77
NHEK 5923 0.71

EMERGE predicted enhancers were overlapped with intergenic HiC peaks. Heart enhancer prediction was done using validated human heart enhancers
as true positives (TPs) for training; enhancers active in other tissues than heart were used as TNs. We calculated overlap between the predicted enhancer
track and high resolution HiC peaks (Rao ez al. .) of various human cell lines. HICCUPS was used to call peaks on the HiC data (as detailed in Rao et al.).
All HiC peaks located at transcription start sites (TSS) were removed (—3000 bp +1000 bp of all known UCSC gene promoters (hgl9)). To construct ROC
curves, the weights of the EMERGE predicted enhancer track were used. HiC peaks were then used as TPs and a matching number of random genomic
regions were used as TNs. The Area Under the Curve (AUC) values of these ROC curves are given.
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We have used experimentally validated enhancers from
publicly available enhancer screening depositories as train-
ing data for EMERGE enhancer prediction. From a histor-
ical perspective, the genomic regions that are represented
in the VISTA enhancer depository were, in general, se-
lected for testing based on the presence of a single enhancer
marker. For example, the majority of mouse heart en-
hancers present in the VISTA depository (6) were screened
based solely on the presence of embryonic p300 ChIP-seq
signal. Obviously, the manner in which these regions were
selected results in a bias in the training data. For this reason,
we did not include this embryonic p300 dataset itself as a
predictor dataset in our analyses. Moreover, adult p300 data
on heart tissue was not among the top predictor datasets
(Supplemental Table S2). The robustness of EMERGE
prediction when several key datasets are removed (Figure
4), combined with the similar weights of many predictor
datasets (Supplemental Table S2), indicates that training
data bias does not confound the enhancer predictions pre-
sented in this paper. Moreover, for Drosophila a sufficiently
large portion (13.5%) of the genome has been screened with-
out selection bias (26). This makes this database particularly
suitable for enhancer prediction efforts, making for reliable
EMERGE prediction results.

In general, a tissue-specific enhancer is expected to be oc-
cupied by enhancer markers only in that specific cell-type.
We show that EMERGE enhancer prediction is able to han-
dle and exploit this modularity to a large extent (e.g. Figure
6). Although the brain enhancer on the Piml locus exem-
plified in Figure 6 is also marked by predictors indicative
for heart enhancer activity (such as a Tbx3 binding-site), a
number of other important predictors for heart enhancer
activity, such as Nkx2-5 and Gata4, are absent. This is in
agreement with the observed absence of heart enhancer ac-
tivity for this element. When prediction is based on heart
enhancers, datasets derived from heart tissue receive posi-
tive weights, whereas all brain-derived datasets are allocated
negative weights; the opposite is true when the location of
brain enhancers is to be predicted (Supplementary File 2).
Though this paper focuses on EMERGE as a predictive tool
for enhancers, EMERGE was designed so that it can be used
to predict any type of genomic feature that leaves a signa-
ture on the genome (and can be used in the form of predictor
data). One can think of the prediction of gene repressive el-
ements, topological domain boundaries, specific chromatin
states, etcetera.

Obviously, the modelling results are by definition de-
pendent on the quality of the predictor and the training-
datasets. When testing enhancer prediction, we defined a
TP as a genomic region that has shown (reproducible) re-
porter gene activity within the tissue of choice (e.g. heart).
For various reasons, the definition of a TN is more difficult.
Intuitively, the regions tested negative in a validation assay
are the easiest TN class to understand. This class includes
all regions that did not show reporter gene activity upon
testing. Although it is attractive to consider this class as the
ideal TN class, there are reasons to believe that this class is
contaminated with regions that should have been labelled
positive. Such contamination within the TN class will lead
to a negative bias in the specificity, which in turn leads to a
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ROC-curve that is skewed to the right and thus leads to a
decreased AUC.

Contamination of this TN may result from reporter gene
assays that have failed for technical reasons, such as trans-
genic DNA integrating in silenced genomic sites. Due to the
multiple embryos (and thus individual integration events)
tested per transgenic enhancer screen, we suspect that such
problems affect only a minor proportion of the assays. Sec-
ondly, a regulatory DNA region may have an enhancer-like
function of a type that would not become apparent with the
used screening method. For example, there are synergistic
enhancers described that will only lead to tissue-specific en-
hancer activity, or indeed any enhancer activity at all, when
their regulatory DNA partner region is also available for in-
teraction (42,43). Such a situation would not be mimicked
with the current enhancer screening methods. Despite these
limitations, we still expect that a large proportion of the ge-
nomic regions present within this TN class (A) is labelled
correctly. That is to say that most of the regions in this TN
class have no actual enhancer function in vivo. However, as
the extent of contamination is hard to estimate, we have
modelled with additional TN classes to obtain a more com-
plete picture.

The second class of TNs contains validated tissue-specific
enhancers that were shown to drive expression in another
tissue than the tissue of interest (e.g. limb enhancers that are
not active in heart). For this class of TNs, contamination is
less likely to occur since the validation procedure technically
worked and the presence of synergistic other enhancers is
less likely to be required. Therefore, we expect this TN class
to be contaminated to a lesser extent than the first class.
The generally higher AUC of the ROC-curves compared to
the class A TNs could indeed indicate that class A TNs are
contaminated with unobserved enhancers.

The third class of TNs consists of random genomic re-
gions. Technically speaking, these are not negatives, but the
genomic background. This background reflects the entire
genome, so it is expected to contain some randomly selected
enhancers. EMERGE consistently reached near perfect pre-
diction when this class of TNs was used in the analysis (Fig-
ure 3B, C, E, F; blue curves). The presence of any kind of
enhancer related signal on the genome, versus the absence
of this in a very large proportion of the complete genome,
makes this type of distinction easier to capture.

We have cross-referenced EMERGE enhancer predic-
tion with genome-wide chromatin conformation data. HiC
technology has undergone major improvements in the past
year(s), but its sensitivity and resolution are not yet suffi-
cient to identify each individual contact within a locus. The
number of real interactions between gene promoters and
distal regions is expected to be at least an order of mag-
nitude higher than the number of interactions observed in
the HiC datasets (38). Therefore, the sparse overlap between
validated enhancers and HiC peaks is not conclusive. Con-
trarily, where there is overlap, the presence of HiC peaks
can constitute powerful predictive support. To this end, we
have assessed the genome-wide enrichment of HiC peaks at
EMERGE predicted enhancer loci. We found that human
heart enhancer prediction by EMERGE is consistent with
human HiC data (39); frequently interacting chromatin do-



e42 Nucleic Acids Research, 2016, Vol. 44, No. 5

e

mm81

PAGE 10 OF 12

mm755

Scale 20 Kb}

{ mm9

chr17: | 29 570 000l 29-575 000 29 580 000| 29 585 000| 29 590 000| 29 595 000| 29 600 000| 24,605 000| 29 610 000| 29 615 000| 29 620 000| 29 625 000| 29 630 000|

validated-heart-enhancer
validated-brain-enhancer

23.456 -

EMERGE-heart-enhancer-prediction
0.046 _ A—u e

15.744 -

EMERGE-brain-enhancer-prediction
0113 __ua b e Lﬁ..._ - l __A_iL

Gata4_heart_adult_VC-lab
H3K27ac_heart_E14.5
H3K27ac_heart_adult
H3K27ac_r-atrium_adult
Nkx2-5_heart_adult| |
Pol2_heart_adult
TBX3_heart_adult
Tbx5_HL1
p300_heart_adult [ ]
H3K4me3_brain_E14.5
DHSs_brain_E18.5
Pol2_brain_E14.5
H3K4me1_brain_E14.5 Wi
chicken-conservation
phastCon_mouse |||

Pim1 {fl—+

-.I-I

[ | -II | |
I-I E = 1
#III Ili

Figure 6. EMERGE enhancer prediction is able to recognize and use tissue-specific signatures. Screenshot of the Pim! locus, containing a validated heart
and a validated brain enhancer located in close proximity. Using tissue-specific training data, the logistic regression approach of EMERGE is able to
discriminate between heart and brain enhancers on the basis of their genomic signatures. The images of the enhancer screened transgenic embryos are

taken from the Vista enhancer browser (reference in main text).

mains were found to be enriched with predicted enhancers
(Table 2).

Such chromatin conformation data can be utilized in the
EMERGE pipeline in several ways. The interacting regions
can be used as predictors, but they can also be used as a
TP training dataset. Following the logic that enhancers need
contact with their target gene promoter to function, inter-
acting regions can even be used as a filter on top of enhancer
prediction.

CONCLUSION

The activity of regulatory DNA elements is typically char-
acterized by the genomic co-localization of specific histone
marks and TF-binding sites (44,45). Therefore, functional
genomics data (e.g., ChIP-seq) are extensively used to iden-
tify regulatory DNA loci on the genome. Often a single
dataset already contains in the order of a 100 000 peaks that
may or may not represent a functional element. Therefore,
additional datasets are generally used to narrow down the
number of likely candidates. The complexity of such over-
lap analyses quickly increases upon adding more datasets.
With EMERGE we provide an easy-to-use solution to select
and combine various types of functional genomic datasets.
The results of the overlap analysis can be viewed in an inte-

grated genome browser. The user then has the option to in-
teractively assign weights to the individual datasets, allow-
ing for (research question driven) focus on specific marks
of interest. Furthermore, dataset weights can be automat-
ically assigned through a modelling approach using vali-
dated biological data for training. The research question
that one wishes to address dictates which predictor and
training datasets are to be used.
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