
RESEARCH ARTICLE

Immunoproteomic analysis of a Chikungunya

poxvirus-based vaccine reveals high HLA class

II immunoprevalence

Elena Lorente1☯, Alejandro Barriga1☯, Eilon Barnea2, Concepción Palomo1, Juan Garcı́a-

Arriaza3, Carmen Mir1, Mariano Esteban3, Arie Admon2, Daniel LópezID
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Abstract

Background

Efficient adaptive antiviral cellular and humoral immune responses require previous re-

cognition of viral antigenic peptides bound to human leukocyte antigen (HLA) class I and II

molecules, which are exposed on the surface of infected and antigen presenting cells,

respectively. The HLA-restricted immune response to Chikungunya virus (CHIKV), a mos-

quito-borne Alphavirus of the Togaviridae family responsible for severe chronic polyarthral-

gia and polyarthritis, is largely unknown.

Methodology/Principal findings

In this study, a high-throughput mass spectrometry analysis of complex HLA-bound peptide

pools isolated from large amounts of human cells infected with a vaccinia virus (VACV)

recombinant expressing CHIKV structural proteins was carried out. Twelve viral ligands

from the CHIKV polyprotein naturally presented by different HLA-A, -B, and -C class I, and

HLA-DR and -DP class II molecules were identified.

Conclusions/Significance

The immunoprevalence of the HLA class II but not the HLA class I-restricted cellular immune

response against the CHIKV structural polyprotein was greater than that against the VACV

vector itself. In addition, most of the CHIKV HLA class I and II ligands detected by mass

spectrometry are not conserved compared to its closely related O’nyong-nyong virus.

These findings have clear implications for analysis of both cytotoxic and helper immune

responses against CHIKV as well as for the future studies focused in the exacerbated T

helper response linked to chronic musculoskeletal disorders in CHIKV patients.
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Author summary

Using a high-throughput immunopeptidomics analysis from human cells infected with a

vaccine candidate and humanized mice models, the first twelve natural HLA ligands and

epitopes from Chikungunya virus (CHIKV), a re-emerging pathogen, have been identi-

fied. The results reported reveal that the immunoprevalence of helper but not cytolytic

immune response against CHIKV was greater than the virus vector. This has implications

for immune response studies and for the analysis of the exacerbated helper response

linked to chronic disorders in CHIKV patients.

Introduction

Chikungunya virus (CHIKV) is a mosquito-borne virus, member of the Alphavirus genus of

the Togaviridae family, causing acute febrile illness in affected people that can develop to

chronic debilitating polyarthralgia and polyarthritis. This arboviral pathogen, that was identi-

fied in the former Tanganyika territory in 1952 [1,2], caused repeated epidemics in Africa and

Asia from the 1960s–1980s [3,4]. The following decades were of relative inactivity, but CHIKV

re-emerged in 2005 causing in the French overseas department of Reunion and other Indian

Ocean islands a fiery epidemic with more than 700,000 patients and 250 deaths [4]. The next

year, in another massive outbreak in India, several million people were affected by CHIKV [5].

In the last years, this virus has spread quickly [6], causing numerous outbreaks in both tropical

and subtropical countries around the world with increasing severity [7,8]. In addition, several

CHIKV outbreaks in Europe, mainly in Italy, have been reported recently [9]. Therefore, infec-

tion by this virus is a serious threat to global health, and CHIKV is at present considered a

high priority emerging pathogen [10].

CHIKV is an enveloped virus with a positive-sense, 12kb single-stranded RNA genome that

encodes two large polyproteins [11]. The first is the nonstructural P1234 precursor, where the

C-terminal domain of the nonstructural protein 2 (nsP2) releases the four multifunctional

nonstructural proteins. In contrast, in the maturation of the structural polyprotein three differ-

ent proteases are involved: first, the capsid is autocatalytically released, and later the endoplas-

mic reticulum (ER) signal peptidase and furin proteases from the host generate 6K

transmembrane and the three E1, E2, and E3 envelope proteins [11].

Although the immune mechanisms involved in the control of CHIKV disease are not fully

characterized, CHIKV-infected humans show different timing of CD4+ and CD8+ T cell

responses in the acute phase of infection. CHIKV-specific cytolytic CD8+ T lymphocyte-medi-

ated immune response displays a peak at the first day post-illness onset [12], while the corre-

sponding CD4+ T lymphocytes is increased around the end of the acute phase [12]. Abundant

activated CD8+ T lymphocytes, responsible for destruction of the infected cells [13], can be

detected in blood samples from patients two months postinfection [14]. In addition, the pro-

duction of cytokines by CD4+ T helper lymphocytes stimulates the cell-mediated and antibody

immune responses against CHIKV.

The human leukocyte antigen (HLA) class I and II antigen processing pathways are the key

elements to trigger adequate antiviral CD8+ and CD4+ T lymphocyte functions, respectively.

Proteolytic degradation by cytosol proteinases, mainly proteasomes, of the newly synthesized

viral or cellular proteins, some of which are defective in synthesis or folding, generates peptides

8–10 residues long. These short peptides, after translocation to the ER lumen by transporters

associated with antigen processing, bind to the newly synthesized HLA class I molecules.

These stabilized HLA class I/peptide complexes are then exported to the surface of all
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nucleated cells for cytolytic CD8+ T cell recognition [15]. Moreover, antigen presenting cells

synthesize HLA class II molecules that, after insertion in the ER, are later transported to endo-

somal compartments without binding antigenic peptides. Next, these organelles fuse with late

endosomes, which can contain exogenous protein material as viral particles and/or extracellu-

lar host proteins that were previously engulfed by endocytosis, phagocytosis or pinocytosis.

These exogenous proteins can be processed by the different lysosome-resident cathepsins,

yielding cellular and viral peptides of different lengths by molecular mechanisms currently

controversial (reviewed in [16]). These peptides, up to 30 residues long, stabilize the HLA class

II molecules and then, these HLA class II/peptide complexes are transported to the cell mem-

brane where they are exposed for CD4+ T helper cell recognition [17]. In absence of appropri-

ate HLA class I and II-restricted T cell recognition both cellular and humoral immune

responses cannot be efficiently activated and thus, the infective virus could spread within the

whole organism with fatal results for the host.

The insertion of CHIKV structural genes inside the vaccinia virus (VACV) genome

(rVACV-CHIKV) has been proposed as a vaccine candidate for this mosquito-borne virus,

due to the high antiviral efficacy against CHIKV challenge [18]. Previously, the characteriza-

tion of their immunogenicity profile and efficacy in the BALB/C mice model was carried out

[18]. This recombinant virus was utilized, in addition to other different vaccine candidates

including DNA-launched RNA replicon, soluble recombinant p62-E1 CHIKV protein and

attenuated CHIKV, in several prime-boost protocols of immunization and virus challenge

studies in a nonhuman primate model [19]. Moreover, to date, only one study using one of

these vaccine candidates in humanized in vitro models has been carried out [20]. By selection

of potential HLA class I ligands based on an HLA class I binding prediction algorithm [21],

and subsequent analysis of peptide-specific IFNγ-secreting cells from rVACV-CHIKV-immu-

nized HLA-A�0201 transgenic mice, three epitopes from the short (60 residues) 6K protein

were identified [20]. However, no natural HLA class I or class II ligands for neither CHIKV

natural infection nor CHIKV vaccine candidates has been described so far. In this work, using

an immunopeptidomics analysis of HLA ligands which were isolated from large amounts of

human cells infected with rVACV-CHIKV, we describe several natural CHIKV ligands and

epitopes restricted by different common HLA class I and II molecules.

Methods

Mice and ethics statement

HLA-B�07:02 [22], and HLA-DRB1�04:04 [23] transgenic mice were bred in the animal facili-

ties at Centro Nacional de Microbiologı́a, Instituto de Salud Carlos III, in strict accordance

with the recommendations in the Guide for the Care and Use of Laboratory Animals of the

Spanish Comisión Nacional de Bioseguridad of the Ministerio de Medio Ambiente y Medio

Rural y Marino (accreditation n˚ 28079-34A). The protocol was approved by the Research Eth-

ics and Animal Welfare Committee of the Carlos III Health Institute (permit n˚: PI-283). All

surgery was performed under isoflurane anesthesia, and all efforts were made to minimize

suffering.

Cell lines

Two different Epstein–Barr virus (EBV)-immortalized B cell lymphoblastoid lines were used.

The homozygous human HOM-2 cell line expresses HLA-A�03:01, -B�27:05, and -C�01:02

class I molecules and HLA-DR B1�01:01, and HLA-DP B1�04:01 chains. The human JY cell

line expresses HLA-A�02:01, -B�07:02, and -C�07:02 class I molecules and four HLA-DR

chains: B1�04:04, B4�01:01, B1�13:01, and B3�01:01 and two HLA-DP chains: B1�02:01, and
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B1�04:01. Both human cell lines were cultured in RPMI 1640 supplemented with 7% fetal

bovine serum.

Infection of the cell lines by VACV

The VACV Western Reserve strain expressing the CHIKV structural genes under control of a

strong synthetic early/late virus promoter (termed rVACV-CHIKV), previously described

[20], was utilized to infect 1x109 HOM-2 or JY cells at a multiplicity of infection of 3 plaque-

forming units/cell in 100 ml for 2 h at 37˚C, and then cells were washed with PBS, as previously

described [24]. These conditions were previously determined as the optimal to obtain infection

of all cells without impairing the cell viability. Next, the cells were cultured for 4 h at 37˚C and

stained with the Omnitope antiserum-FITC that recognizes VACV virions (ViroStat Inc.,

Westbrook, ME, USA). Samples were analyzed measuring fluorescence intensity by flow

cytometry to confirm VACV infection (1020 ± 87 mean fluorescence intensity [MFI] in

VACV-infected cells versus 422 ± 48 in non-infected cells stained with the anti-VACV antise-

rum). The cells were then frozen in the presence of phenylmethanesulfonylfluoride (PMSF)

until they were lysed.

HLA-bound peptide isolation

HLA-bound peptides were isolated from a total of 4 or 2x1010 uninfected or VACV-infected

HOM-2 or JY cell lines for 6 hours, respectively. The cells were lysed in 1% CHAPS (Sigma),

20 mM Tris/HCl buffer, and 150 mM NaCl, pH 7.5 in the presence of the cOmplete, Mini Pro-

tease Inhibitor Cocktail (Merck KGaA, Darmstadt, Germany). After centrifugation, the super-

natant was passed first through a control precolumn containing CNBr-activated Sepharose 4B

(GE Healthcare, Buckinghamshire, UK) to remove non-specific peptides and proteins. Next,

the HLA class I/peptide or HLA class II/peptide complexes were isolated sequentially via affin-

ity chromatography from the soluble cell extract fraction with PA2.1 (anti-HLA-A�02) [25],

ME1 (anti-HLA-B�07) [26], W6/32 (specific for a monomorphic pan-HLA class I determi-

nant) [27], L243 (HB55, specific for monomorphic pan-HLA-DR determinant) [28], or B7.21

(specific for monomorphic pan-HLA-DP determinant) [29] monoclonal antibodies (mAbs),

as shown in Fig 1. The HLA-bound peptides were eluted at 4˚C with 0.1% aqueous trifluoroa-

cetic acid (TFA), separated from the HLA molecules, and concentrated by ultra-filtration with

a Centricon 3 filter (Amicon, Beverly, MA), as previously described [30].

Electrospray-ion trap mass spectrometry analysis

Peptide mixtures recovered after the ultra-filtration step were concentrated using Micro-Tip

reversed-phase columns (C18, 200 μl, Harvard Apparatus, Holliston, MA) [30]. Each C18 tip

was equilibrated with 80% acetonitrile in 0.1% TFA, washed with 0.1% TFA, and then loaded

with the peptide mixture. The tip was then washed with an additional volume of 0.1% TFA,

and the peptides were subsequently eluted with 80% acetonitrile in 0.1% TFA. Lastly, the pep-

tide samples were concentrated to approximately 20 μl using vacuum centrifugation [24,30].

The HLA class I or II peptides recovered from immunoprecipitated HLA specific mAbs,

were analyzed by nanoLC-MS/MS using a Q-Exactive-Plus mass spectrometer that was fitted

with an Ultimate 3000 RSLC nanocapillary UHPLC (Thermo Fisher Scientific, Waltham,

MA), using the same parameters previously described [31]. The peptides were resolved on

homemade 3.5 micron Reprosil C18-Aqua (Dr. Maisch GmbH, Ammerbuch-Entringen, Ger-

many) capillary columns (75 micron ID and about 30 cm long [32] with a 5–28% acetonitrile

linear gradient for 2 h in the presence of 0.1% formic acid at a flow rate of 0.15 μl/min. The

dynamic exclusion was set to 20 sec and the automatic gain control value for the full MS was
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set to 3x106. The selected masses were fragmented from the survey scan of mass-to-charge

ratio (m/z) 300–1,800 AMU at resolution 70,000. The 10 most intense masses were selected for

fragmentation by higher-energy collisional dissociation (HCD) from each full mass spectrum.

No fragmentation was performed for peptides with unassigned precursor ion charge states or

charge states of five and above. MS/MS spectra were acquired with a resolution of 17,500 at m/

z 200. The target value of the MS/MS was set to 1x105 and the isolation window to 1.8 m/z.

The maximum injection time was set to 100 ms and normalized collision energy to 25 eV. The

peptide match option was set to Preferred.

Database searches

Raw mass spectrometry data were processed using Peaks 8.5 (Bioinformatics Solutions Inc.,

Waterloo, Canada) for peak-list generation from the nanoLC-MS/MS data. The peaks were

identified using the Peaks 8.5 software programs using the human, VACV, and CHIKV parts

of the UniProt/Swiss-Prot database (November 2017), which included 20267, 217, and 5 pro-

teins, respectively. The search was not limited by enzymatic specificity and both the peptide

mass and the fragment ion tolerances were set at 5 and 20 ppm, respectively. This search was

not limited by any methodological bias (e.g., individual protein selection or HLA consensus

scoring algorithm use). The following variable modifications were also analyzed: acetylation of

Fig 1. Diagram of the scheme of sequential immunoprecipitation. Uninfected or rVACV-CHIKV-infected JY or HOM-2 cells were lysed. HLA-peptide

complexes were isolated via affinity chromatography of the soluble fraction of cell extracts with the following mAbs, sequentially used as indicated in the Fig:

PA2.1 (anti-HLA-A�02), ME1 (anti-HLA-B�07, and -B�27), W6/32 (specific for a monomorphic pan-HLA class I determinant), L243 (HB55, specific for a

monomorphic pan-HLA-DR determinant), and B7.21 (specific for monomorphic pan-HLA-DP determinant). The HLA class I and II molecules expressed in each

human cell line is indicated in a box.

https://doi.org/10.1371/journal.pntd.0007547.g001
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N-terminal residue, cysteinilation (C), oxidation (M, P, H, F, Y, and W), methylation (N- and

C-terminus) and phosphorylation (Y, S, and T). The identified peptides were selected when

their -10logP score from Peaks 8.5 was> 21. In addition, the maximum false discovery rate

(FDR) was set to 1%. No viral peptides were found in a search of the reversed database. When

the MS/MS spectra fitted more than one peptide, only the highest scoring peptide was selected.

The mass spectrometry data have been deposited to the MassIVE repository (https://massive.

ucsd.edu) with the data set identifier MSV000082670.

In silico binding prediction of HLA class I and II ligands

The predicted binding of each peptide to HLA class I molecules was calculated using the artifi-

cial neural network-based alignment method NetMHCpan (version 4.0) (available in http://

www.cbs.dtu.dk/services/NetMHCIIpan/), and the MHC-I binding prediction from IEDB

(available in http://tools.iedb.org/mhci/). Similarly, the predicted binding of each peptide to

HLA-DR or -DP class II molecules was calculated using the artificial neural network-based

alignment method NetMHCIIpan (version 3.2) (available in http://www.cbs.dtu.dk/services/

NetMHCIIpan/), and the MHC-II binding prediction from IEDB (available in http://tools.

iedb.org/mhcii/).

HLA/peptide stability assays

The following synthetic peptides were used as controls in the HLA/complex stability assays:

VACV A3482-90 (LPRPDTRHL, HLA-B�07-restricted) [33], and CMV pp657-15 (RCPEMISVL,

HLA-C�01-restricted) [34]. The RMA-S HLA-B�07-transfected cells were incubated at 26˚C

for 16 h. This allowed for empty HLA class I molecule expression (without any peptide) at the

cell membrane that was stable at 26˚C but not at 37˚C. The cells were washed with FBS-free

culture medium and incubated for 2 h at 26˚C with various peptide concentrations in FBS-free

medium. Cells were maintained at 37˚C for additional 2 h incubation and then collected for

flow cytometry analysis. This method allowed for the empty HLA class I molecules to become

internalized, and thus we were able to discriminate between bound or unbound peptides.

HLA expression levels were measured using the mAb ME1 (anti-HLA-B�07), as previously

described [35]. Data were acquired on a FACSCanto flow cytometer (BD Biosciences, San

Jose, CA, USA) and analyzed using BD FACSDiva software, version 6 (BD Bioscience). The

cells that were incubated without peptides exhibited peak fluorescence intensities close to the

background staining that were observed with the secondary mAb alone. The fluorescence

index was calculated for each concentration point as the ratio of the mean peak channel fluo-

rescence of the sample to that of the control incubated without peptide. Peptide binding was

also expressed as EC50, which is the molar concentration of the peptide at 50% of the maxi-

mum fluorescence obtained in a concentration range of 0.01–200 μM.

IFN-γ-secreting CD4+ and CD8+ T cell detection by ELISPOT

ELISPOT assays were performed as previously described [36] to detect antigen-specific T cell

activation. Briefly, purified rat anti-mouse IFN-γ antibody (clone R4-6A2, BD Pharmingen,

San Diego, CA, USA) was coated on 96-well MultiScreen HTS HA plates (Millipore, Billerica,

MA, USA). The plates were incubated overnight at room temperature and were blocked with

medium that was supplemented with 10% fetal bovine serum for 2 h at 37˚C. Duplicate cul-

tures of erythrocyte-depleted spleen cells were prepared from HLA class I or II-transgenic

mice at 7 days (acute response) post intraperitoneal (i.p.) infection infection with 1x106 pfu of

sucrose-purified rVACV-CHIKV at different dilutions with 10−5 M peptide. The plates were

incubated overnight at 37˚C in a 5% CO2 atmosphere and were then washed with PBS-T (PBS
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0.05% Tween-20). The plate wells were incubated for 2 h at room temperature with biotiny-

lated anti-mouse IFN-γ mAb clone XMG1.2 (BD Pharmingen, San Diego, CA, USA), washed

with PBS-T, and incubated for 1 h at room temperature with horseradish peroxidase-conju-

gated streptavidin. The plates were additionally washed before adding 3,3’-diaminobenzidine

substrate (Sigma, St. Louis, MO, USA) in 50 mM Tris buffer pH 7.4 that contained 0.015%

hydrogen peroxide. To enumerate the IFNγ responses, spots were counted and wells were pho-

tographed using a Leica EZ4 HD stereo microscope and LAS EZ software (Leica Microsystems,

Germany). Additionally, the percentage of CD4+ or CD8+ T cells was determined by flow

cytometry after staining spleen cells with FITC-conjugated anti-mouse CD4 (clone GK1.5,

Miltenyi Biotec, Bergisch Gladbach, Germany) and CD8 (clone KT15, Proimmune, England,

UK) antibodies, respectively. Events were acquired on a FACSCanto flow cytometer (BD Bio-

sciences, San Jose, CA, USA) and analyzed using BD FACSDiva software, version 6 (BD

Bioscience).

Experimental design

Several previous analyses have shown that 2x1010 virus-infected human cells are enough to

identify HLA-bound viral peptide pools [24,30,37–39]. A precolumn was utilized to remove

non-specific binding proteins and peptides. Similar amounts of uninfected human cells were

used as negative control to discriminate viral and cellular peptides (included in proteome data-

bases as well as unknown peptides, whose parental proteins may not be included in current

human databases) and to exclude erroneous assignments of viral peptides. In addition both

human and VACV databases were used to identify non-CHIKV peptides. The CHIKV struc-

tural genes, inserted into the VACV genome, encode for 1248 amino acids. The proteome of

VACV with 56795 residues is 40-fold greater than the CHIKV structural protein. Moreover,

the human database utilized is 100-fold greater than the corresponding VACV database. Thus,

the probability of erroneous CHIKV assignments is statistically insignificant. Also a maximum

false discovery rate (FDR) of 1% was estimated by searching against the database with the

reversed viral and human sequences. No viral peptides were found in the search of the reversed

database utilized. Moreover, several synthetic peptides were purchased from Peptide 2.0

(Chantilly, VA, USA) and their MS/MS spectra were used to confirm the assigned sequences.

A schematic representation of experimental design is shown in Fig 1. To analyze the statistical

significance of the assays, non-parametric non-parametric Mann–Whitney U test was used. P
values< 0.05 were considered to be statistically significant.

Results

Physiological processing in human rVACV-CHIKV-infected cells generates

a canonical high affinity HLA-B�07:02 epitope from CHIKV capsid protein

Different HLA class I-bound peptide pools were isolated from large numbers of either unin-

fected or rVACV-CHIKV-infected cells from the human cell line JY (Fig 1). These peptide

mixtures were subsequently separated by capillary reversed-phase HPLC and were analyzed

on-line using tandem mass spectrometry. No CHIKV peptides were identified after immuno-

precipitation of HLA-A�02:01 molecules. By means of bioinformatics tools, one fragmentation

spectrum detected in the virus-infected HLA-B�07:02-bound peptide pools (but absent from

control uninfected pool), was resolved with high confidence parameters as CHIKV structural

polyprotein-derived peptide. This ion peak, with an m/z of 375.2, was assigned to the viral

amino acid sequence RPWTPRPTI, spanning residues 17–25 of the capsid protein (CP) of

CHIKV (Table 1 and S1 Fig). This theoretical assignment was confirmed by high similarity
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with the MS/MS spectrum of the corresponding synthetic peptide (S2 Fig). Additionally, a

database search using human and VACV proteomes failed to identify this spectrum as human

or VACV protein fragment, supporting the CHIKV origin of the fragment protein.

The classical anchor motif for HLA-B�07:02 binding, Pro at position 2 (P2) and aliphatic C-

terminal residues (SYFPEITHI database: http://www.syfpeithi.de [40]), were present in the

CHIKV CP17-25 ligand. In addition, the prediction of peptide binding using two different

computational approaches, the NetMHCpan neural network-based alignment method and the

IEDB prediction software, suggested that this CHIKV peptide could be a HLA-B�07:02 high

affinity ligand (Table 1). Later, HLA/peptide complex stability assays performed using TAP-

deficient RMA-S cells transfected with the HLA-B�07:02 molecule showed that the CHIKV

CP17-25 ligand bound to HLA-B�07:02 class I molecules with EC50 values in the range com-

monly found among other natural high affinity ligands, such as VACV A3482-90 (Fig 2).

To study in vivo the physiological relevance of the identified CHIKV CP17-25 ligand, HLA

class I-B�07:02 transgenic mice were infected by the i.p route for 7 days with rVACV-CHIKV.

Later, a physiological measurement of the functional ex vivo activity of T cells against this viral

ligand was carried out. Spleen cells of infected mice specifically recognized cells that were

pulsed with the CHIKV CP17-25 peptide (Fig 3, upper panel).

Collectively, these results indicate that the CHIKV CP17-25 nonamer is a canonical high

affinity HLA-B�07:02 epitope generated in the cellular immune response against the CHIKV

structural polyprotein expressed from a rVACV-CHIKV vaccine candidate.

Table 1. Summary of the CHIKV ligands that were detected by MS/MS analysis in the rVACV-CHIKV infected cells.

Experimental mass a ΔMass b z Sequence c Length Protein d Position HLA Cell line IEDB e NetMHCpan f IFNγ response

1122,630 -0.7 3+ RPWTPRPTI 9 CP 17–25 B�07:02 JY 0.2 0.01 +

1814,957 0.1 2+ YEHVTVIPNTVGVPYK 16 E1 1–16 C�07:02 JY 3.6 0.9

1814,957 0.8 2+ YEHVTVIPNTVGVPYK 16 E1 1–16 A�03:01 HOM-2 3.55 3.27

YEHVTVIPNTVGVPYK 16 E1 1–16 C�01:02 HOM-2 0.69 0.37

1518,842 3.1 4+ PPVIGREKFHSRP 13 E2 133–145 DRB1�04:04 JY - - +

PPVIGREKFHSRP 13 E2 133–145 DRB1�13:01 JY 0.27 0.23

PPVIGREKFHSRP 13 E2 133–145 DRB4�01:01 JY - -

PPVIGREKFHSRP 13 E2 133–145 DRB3�01:01 JY - -

1296,698 0.5 4+ FKYWLKERGA 10 E1 240–249 DRB1�01:01 HOM-2 8 5

1208,619 2.8 2+ RPGYYQLLQA 10 E3 44–53 DRB1�01:01 HOM-2 0.01 0.15

1407,751 -3.7 2+ RPGYYQLLQASL 12 E3 44–55 DRB1�01:01 HOM-2 0.01 0.15

1731,796 -2.6 3+ RPGYYQLLQASLTC� 14 E3 44–57 DRB1�01:01 HOM-2 0.01 0.15

1915,881 -0.1 2+ RPGYYQLLQASLTC�SP 16 E3 44–59 DRB1�01:01 HOM-2 0.01 0.15

2051,956 3.1 2+ RPGYYQLLQASLTC�SPH 17 E3 44–60 DRB1�01:01 HOM-2 0.01 0.15

2208,057 1.1 4+ RPGYYQLLQASLTC�SPHR 18 E3 44–61 DRB1�01:01 HOM-2 0.01 0.15

1814,957 4.3 2+ YEHVTVIPNTVGVPYK 16 E1 1–16 DPB1�04:01 HOM-2 - -

1020,539 3.5 2+ HPHEIILY 8 E2 351–358 DPB1�04:01 HOM-2 14 -

1697,826 0.0 2+ IILYYYELYPTM�T 13 E2 355–367 DPB1�04:01 HOM-2 0.56 -

a The monoisotopic ion mass in amu.
b The difference between nominal and experimentally detected monoisotopic ions in ppm.
c Asterisks indicate oxidation of Met or cysteinylation of Cys. The minimal core for binding of E1 1–16 ligand to respective HLA class I molecule is bolded.
d CP: capsid protein; E, envelope protein.
e and f Theoretical affinity to HLA of the CHIKV ligands calculated as percentile rank from the Immuno Epitope Database (IEDB) or the NetMHCpan servers,

respectively. (-), no binding.

https://doi.org/10.1371/journal.pntd.0007547.t001
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An unusual CHIKV ligand was endogenously presented by HLA-C�07:02

class I molecules in human rVACV-CHIKV-infected cells

After sequential immunoprecipitation of HLA-A�02:01 and -B�07:02 class I molecules, the

HLA-C�07:02-bound peptide pool was obtained from JY cells (Fig 1). One fragmentation spec-

trum from the rVACV-CHIKV-infected W6/32-bound pool, but absent in its control unin-

fected pool, was determined as a CHIKV-derived peptide (Table 1). Furthermore, the human

and VACV proteome database searches also failed to identify this spectrum as a proteic

fragment of these organisms, sustaining the CHIKV origin of this HLA-bound peptide. The

ion peak, with an m/z of 908.5, was assigned to the viral amino acid sequence YEHVT-

VIPNTVGVPYK, which spans residues 1–16 of the CHIKV E1 envelope protein. S1 Fig shows

Fig 2. HLA-B�07:02 stabilization with CHIKV CP17-25 synthetic peptide. The stability of HLA-B�07:02-peptide

complexes on the surface of transfected RMA-S cells was measured by flow cytometry. Top panel, the indicated

peptides were used at 200 μM. The CMV pp657-15 and VACV A3482-90 peptides were used as negative and positive

controls, respectively. The mAb ME1 was used for staining. The results, calculated as fluorescence indexes, are shown

as the mean ± SD of four independent experiments. Bottom panel, titration curves for the indicated synthetic peptides

with HLA-B�07:02. Results are shown as mean values ± SD from four independent experiments. Calculated EC50

values (μM; mean ± SD) are shown in the left panel insert. Significant p values with a non-parametric Mann–Whitney

U test: ���, p<0.001 versus negative peptide control (CMV pp657-15, top panel) or between CHIKV CP17-25 and

VACV A3482-90 viral peptides (bottom panel) are indicated.

https://doi.org/10.1371/journal.pntd.0007547.g002
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the experimentally obtained MS/MS spectra and the respective assignments. In addition, the

experimental fragmentation spectrum of CHIKV E11-16 was absent in HLA-A�02:01 and

-B�07:02 peptide pools, and thus this viral peptide was most likely a HLA-C�07:02 ligand.

HLA-C�07:02 class I molecules preferentially binds, as other HLA-A, -B, and -C class I

proteins, peptides of 8 to 11 residues long (SYFPEITHI database [40]). The YEHVTVIP

NTVGVPYK peptide is a 16mer and thus, must be a noncanonical HLA class I ligand.

The MHC binding prediction by IEDB bioinformatic tool showed that the 11mer sequence

TVIPNTVGVPY would bind with relatively high affinity to HLA-C�07:02 molecule (Table 1).

Moreover, the 9mer with sequence TVIPNTVGV obtain a high affinity score using the

NetMHCpan software for HLA-C�07:02 binding (Table 1). Thus, these binding prediction

analyses suggest that the CHIKV E11-16 peptide, identified by mass spectrometry, is an unusual

HLA class I ligand that interacts with HLA-C�07:02 molecules by a central core and their N-

and C-terminal residues probably protruded out of the HLA-C�07:02 binding groove.

Fig 3. Immunogenicity of CHIKV-derived HLA-B�07:02, and DRB1�04:04-restricted peptides in HLA transgenic

mice. HLA-B�07:02 (top panel), or -DRB1�04:04 (bottom panel) target cells that were pre-pulsed with the indicated

CHIKV-synthetic peptides (CP17-25 and E2133-145) were analyzed by ELISPOT for CD8+ or CD4+ T cell activation with

CHIKV-specific splenocytes obtained from HLA-B�07:02 (top panel), or -DRB1�04:04 (bottom panel) transgenic mice

7 days (acute response) post rVACV-CHIKV immunization (1x106 pfu). The results are calculated as mean of seven

independent experiments ± SD. Significant P values with a non-parametric Mann–Whitney U test: ��, p<0.01; and
���, p<0.001 versus negative controls (no peptide) are indicated.

https://doi.org/10.1371/journal.pntd.0007547.g003
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The CHIKV E11-16 peptide was also presented by both HLA-A�03:01 and/or

HLA-C�01:02 class I molecules in human rVACV-CHIKV-infected cells

Similarly to JY cells, sequential immunoprecipitation of HLA class I molecules was performed

using the soluble fraction of cell extracts from the HOM-2 cell line (Fig 1). No CHIKV peptides

were identified after immunoprecipitation of HLA-B�27:05 molecules. In contrast, the same

fragmentation spectrum corresponding to CHIKV E11-16 ligand, previously identified bound

to HLA-C�07:02 was obtained from the rVACV-CHIKV-infected W6/32-bound pool of

HOM-2 cells. As previous, this spectrum was absent in its control uninfected pool and the ear-

lier immunoprecipitation of HLA-B�27:05 molecules (Table 1). Thus, the CHIKV E11-16 pep-

tide was endogenously processed and presented by HLA-A�03:01 and/or HLA-C�01:02 class I

molecules in rVACV-CHIKV-infected cells.

Theoretical binding affinity and allele assignment of the CHIKV E11-16 peptide was carried

out by IEDB and NetMHCpan servers. Both computational approaches predict the 9mer sequence

TVIPNTVGV (the same core for HLA-C�07:02 binding) as a high affinity ligand for HLA-

C�01:02 class I molecules (Table 1). Moreover, using the same bioinformatic tools, the 10mer

sequence IPNTVGVPYK ranks with a moderate score for binding prediction to HLA-A�03:01

class I molecule (Table 1). Thus, these results suggest that CHIKV E11-16 peptide was most likely a

non-canonical HLA-C�07:02 ligand, and even an HLA-A�03:01-bound peptide too.

Multiple VACV ligands were naturally presented by six different HLA class

I molecules in human rVACV-CHIKV-infected cells

Moreover, in addition to the three fragmentation spectra resolved as CHIKV structural poly-

protein-derived peptides, other 69 fragmentation spectra present in any of the five virus-

infected HLA class I-bound peptidic pools obtained (Fig 1), but absent in their respective con-

trol uninfected pool, were resolved with high confidence parameters as peptides derived from

40 different VACV proteins. In addition, the human proteome database searches also failed to

identify these spectra as a human protein fragments, backing the viral origin of these HLA-

bound peptides. These ion peaks were assigned to the VACV amino acid sequences described

in Table 2. Thus, 6, 4, 12 and 15 peptide sequences were obtained bound to HLA-A�02:01,

-B�07:02, -B�27:05, and -C�07:02 molecules respectively (Table 2). 36 of these 37 VACV pep-

tides were predicted as ligands for the respective HLA class I molecule by one or both compu-

tational approaches utilized (Table 2). In contrast, IEDB and NetMHCpan algorithms failed to

predict B�07:02-binding for the VACV A375-15 ligand (Table 2). This peptide with Pro in P1,

but not in P2 position as usual in B�07:02 ligands (SYFPEITHI database: http://www.syfpeithi.

de [40]), would then be a non-canonical ligand for this HLA class I molecule.

The other 32 sequences were obtained from the virus-infected W6/32-bound pool of the

HOM-2 cells and thus, these peptides could be presented by HLA-A�03:01 and/or HLA-

C�01:02 class I molecules in virus-infected cells. Theoretical binding affinity and allele assign-

ment of these peptides was carried out by IEDB and NetMHCpan bioinformatics tools. 23 and

5 of these VACV sequences were assigned as HLA-A�03:01 and HLA-C�01:02-restricted

ligands, respectively (Table 2). In addition, the other 4 VACV sequences (D6595-603, D1299-111,

E5117-127, and E672-80) of this peptide pool were assigned as viral ligands with theoretical affin-

ity for both HLA-A�03:01 and -C�01:02 class I molecules (Table 2).

Thus, collectively these data indicate that all analyzed HLA class I molecules bound viral

ligands. In addition, up to 73 different natural HLA class I-VACV peptide complexes (6 with

HLA-A�02:01, 27 with HLA-A�03:01, 4 with HLA-B�07:02, 12 with HLA-B�27:05, 9 with

HLA-C�01:02, and 15 with HLA-C�07:02) can be presented in the two virus-infected cell lines.
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Table 2. Summary of the VACV ligands that were detected by MS/MS analysis in the rVACV-CHIKV infected cells.

Experimental mass a ΔMass b z Sequence c, d Length Protein Position HLA d Cell line IEDB e NetMHCpan f

1041,659 2,7 2+ ALFGIKLPAL 10 A3 238–247 A�02:01 JY 0.44 0.39

998,674 -0,9 2+ SLLKSLLLL 9 A47 145–153 A�02:01 JY 0.7 0.17

1087,610 4 2+ YLLMHLVSL 9 B6 163–171 A�02:01 JY 0.2 0.91

1132,595 0 2+ KLFTHDIM�L 9 D12 62–70 A�02:01 JY 1 0.03

1070,674 -1 2+ LLFIPDIKL 9 K1 192–200 A�02:01 JY 3.4 0.19

970,654 -0,3 2+ KLVGKTVKV 9 K3 57–65 A�02:01 JY 1.3 0.03

1207,660 1,5 2+ PVFGISKISNF 11 A37 5–15 B�07:02 JY - -

1116,541 1,6 2+ SPRPTASSDSL 11 I3 12–22 B�07:02 JY 0.2 0.01

1049,707 -0,1 3+ LPRIALVRL 9 I8 227–235 B�07:02 JY 0.3 0.03

1029,622 0,9 2+ KPITYPKAL 9 K6 17–25 B�07:02 JY 0.4 0.18

1019,602 3,3 1+ YIIGNIKTV 9 A35 34–42 C�07:02 JY - 0.54

1159,555 1,7 2+ NYVDYNIIF 9 B14 137–145 C�07:02 JY 0.38 0.08

1148,539 -0,3 1+ KVDDTFYYV 9 C7 74–82 C�07:02 JY - 0.76

1198,646 0,6 2+ IPRSKDTHVF 10 D9 26–35 C�07:02 JY 3.2 2.57

1132,595 0 2+ KLFTHDIM�L 9 D12 62–70 C�07:02 JY - 0.72

1174,602 -0,3 2+ RVYEALYYV 9 D12 251–259 C�07:02 JY 7.7 0.37

1183,671 0,8 3+ RIISYNPPPK 10 F8 56–65 C�07:02 JY - -

958,570 2,2 1+ SLKDVLVSV 9 G5.5 27–35 C�07:02 JY - 0.15

1116,541 1,6 2+ SPRPTASSDSL 11 I3 12–22 C�07:02 JY - 0.95

1087,555 1,6 1+ NLLENEFPL 9 K1 57–65 C�07:02 JY 2.87 0.06

1070,674 -1 2+ LLFIPDIKL 9 K1 192–200 C�07:02 JY - 2.17

957,590 1,8 2+ LFIPDIKL 8 K1 193–200 C�07:02 JY 8.9 2.68

970,654 -0,3 2+ KLVGKTVKV 9 K3 57–65 C�07:02 JY - 2.5

1029,622 0,9 2+ KPITYPKAL 9 K6 17–25 C�07:02 JY - 0.97

1130,601 2,7 1+ YKPVYSYVL 9 N2 146–154 C�07:02 JY 6.6 0.48

1016,565 1 2+ GRLPLVSEF 9 A5 96–104 B�27:05 HOM-2 0.4 0.01

1038,593 -1,4 3+ NRTHAIISK 9 A51 228–236 B�27:05 HOM-2 1.1 0.45

1060,639 -1,7 3+ SRFANLIKI 9 A51 80–88 B�27:05 HOM-2 0.4 0.04

1192,708 1,4 3+ YRFLVINRL 9 B1 96–104 B�27:05 HOM-2 0.2 0.01

1174,646 1,1 2+ IRNDIRELF 9 C10 22–30 B�27:05 HOM-2 1.4 0.04

1202,591 1 3+ TRFYFNMPK 9 C10 323–330 B�27:05 HOM-2 0.4 0.3

1276,624 2,4 2+ GRFGYVPYVGY 11 D13 82–90 B�27:05 HOM-2 1.0 0.02

1096,534 1 2+ SRNPSKM�VY 9 E5 130–138 B�27:05 HOM-2 4.8 0.12

1173,687 -0,4 3+ IRILVEERF 9 E5 178–186 B�27:05 HOM-2 1.5 0.89

925,546 0,4 3+ GRIAPRSGL 9 F2 61–69 B�27:05 HOM-2 0.8 0.04

1321,704 -0,7 3+ HRFGLYRLNF 10 K2 121–128 B�27:05 HOM-2 0.28 0.04

1283,706 0,5 3+ GRLYKELMKF 10 K7 51–60 B�27:05 HOM-2 1.1 0.07

888,455 0 2+ GLAESSTPK 9 A4 10–18 A�03:01 HOM-2 0.34 0.12

GLAESSTPK 9 A4 10–18 C�01:02 HOM-2 - -

1107,676 0,1 3+ RLHEILTVK 9 A24 45–53 A�03:01 HOM-2 0.25 0.01

RLHEILTVK 9 A24 45–53 C�01:02 HOM-2 - -

1129,722 0,3 2+ IIIKKQFIQ 9 A24 758–766 A�03:01 HOM-2 - 4.7

IIIKKQFIQ 9 A24 758–766 C�01:02 HOM-2 - -

1212,713 -0,3 2+ KIFYKHIHK 9 A29 63–71 A�03:01 HOM-2 0.11 0.01

KIFYKHIHK 9 A29 63–71 C�01:02 HOM-2 - -

1332,693 1,6 2+ SVLC�VKKFYK 10 A34 159–168 A�03:01 HOM-2 0.21 0.2

SVLC�VKKFYK 10 A34 159–168 C�01:02 HOM-2 - -

(Continued)
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Table 2. (Continued)

Experimental mass a ΔMass b z Sequence c, d Length Protein Position HLA d Cell line IEDB e NetMHCpan f

1093,617 2,7 2+ KLFPVFTDK 9 B19 532–540 A�03:01 HOM-2 0.12 0.01

KLFPVFTDK 9 B19 532–540 C�01:02 HOM-2 - -

1182,695 1,8 3+ KVM�FVIRFK 9 C5 158–166 A�03:01 HOM-2 0.12 0.05

KVM�FVIRFK 9 C5 158–166 C�01:02 HOM-2 - -

948,564 0 2+ KVFDKSLL 8 D6 595–602 A�03:01 HOM-2 - 5.7

KVFDKSLL 8 D6 595–602 C�01:02 HOM-2 1.8 1.18

1111,628 0,9 1+ KVFDKSLLY 9 D6 595–603 A�03:01 HOM-2 0.26 0.04

KVFDKSLLY 9 D6 595–603 C�01:02 HOM-2 1.4 1.12

1239,723 0,2 3+ KVFDKSLLYK 10 D6 595–604 A�03:01 HOM-2 0.06 0.01

KVFDKSLLYK 10 D6 595–604 C�01:02 HOM-2 - -

1459,851 1,7 2+ VVADLSARNKLFK 13 D12 99–111 A�03:01 HOM-2 0.34 1.32

VVADLSARNKLFK 13 D12 99–111 C�01:02 HOM-2 2.3 -

963,550 -0,7 3+ SARN�KLFK 8 D12 104–111 A�03:01 HOM-2 5 5.2

SARN�KLFK 8 D12 104–111 C�01:02 HOM-2 - -

975,587 -0,4 3+ SLFKNVRL 8 D12 174–181 A�03:01 HOM-2 - -

SLFKNVRL 8 D12 174–181 C�01:02 HOM-2 3.1 2.3

1088,671 2,4 2+ SLFKNVRLL 9 D12 174–182 A�03:01 HOM-2 - 5.3

SLFKNVRLL 9 D12 174–182 C�01:02 HOM-2 0.17 0.15

1216,766 0 2+ SLFKNVRLLK 10 D12 174–183 A�03:01 HOM-2 0.11 0.05

SLFKNVRLLK 10 D12 174–183 C�01:02 HOM-2 - -

1016,649 -2,6 3+ FKNVRLLK 8 D12 176–183 A�03:01 HOM-2 11.25 11.87

FKNVRLLK 8 D12 176–183 C�01:02 HOM-2 - -

1049,576 2 1+ KLFSDISAIG 10 E5 117–126 A�03:01 HOM-2 - -

KLFSDISAIG 10 E5 117–126 C�01:02 HOM-2 0.47 -

1177,671 0,6 1+ KLFSDISAIGK 11 E5 117–127 A�03:01 HOM-2 0.47 0.67

KLFSDISAIGK 11 E5 117–127 C�01:02 HOM-2 5.58 0.01

789,423 0 2+ SDISAIGK 8 E5 120–127 A�03:01 HOM-2 - 11.17

SDISAIGK 8 E5 120–127 C�01:02 HOM-2 - -

1007,613 0,3 2+ TLNHVLALK 9 E6 32–40 A�03:01 HOM-2 0.13 0.03

TLNHVLALK 9 E6 32–40 C�01:02 HOM-2 - -

1113,629 -0,1 2+ KVYEAVLRH 9 E6 72–80 A�03:01 HOM-2 0.7 0.9

KVYEAVLRH 9 E6 72–80 C�01:02 HOM-2 - 0.01

972,492 0,7 1+ ALYSYASAK 9 E9 677–685 A�03:01 HOM-2 0.11 0.01

ALYSYASAK 9 E9 677–685 C�01:02 HOM-2 6.5 -

912,539 -0,6 2+ IAPRSGLSL 9 F2 63–71 A�03:01 HOM-2 - 8.8

IAPRSGLSL 9 F2 63–71 C�01:02 HOM-2 0.02 8.6

1183,671 0,8 3+ RIISYNPPPK 10 F8 56–65 A�03:01 HOM-2 0.21 0.24

RIISYNPPPK 10 F8 56–65 C�01:02 HOM-2 - -

1015,607 1,5 2+ IVFNLPVSK 9 G8 65–73 A�03:01 HOM-2 0.18 0.01

IVFNLPVSK 9 G8 65–73 C�01:02 HOM-2 9 9.3

991,618 0,2 2+ HIGIPISKK 9 H4 197–205 A�03:01 HOM-2 0.51 0.05

HIGIPISKK 9 H4 197–205 C�01:02 HOM-2 - -

1069,624 0,1 3+ TTPRKPAATK 10 H5 55–64 A�03:01 HOM-2 1.17 0.5

TTPRKPAATK 10 H5 55–64 C�01:02 HOM-2 - -

1028,577 0,1 2+ AVYGNIKHK 9 I3 116–124 A�03:01 HOM-2 0.3 0.01

AVYGNIKHK 9 I3 116–124 C�01:02 HOM-2 - -

911,544 1,6 2+ KVSPPSLGK 9 I8 72–80 A�03:01 HOM-2 0.13 0.01

(Continued)
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The immunoprevalence of the HLA class I-restricted cellular immune

response against CHIKV structural polyprotein was similar to that against

the VACV vector

In this study, four different natural HLA class I-CHIKV peptide complexes, each one restricted

by the HLA class I molecules HLA-A�03:01, HLA-B�07:02, HLA-C�01:02, and HLA-C�07:02,

were found (Table 1). The CHIKV structural genes, inserted into the TK locus of the VACV

genome, encode for 1248 amino acids. Thus, the ratio was one HLA class I-CHIKV peptide

complexes per 312 residues. Similarly, we found other 73 natural HLA class I-VACV peptide

complexes and the proteome of the WR strain of VACV contains 56795 residues and thus,

their ratio was one HLA class I-VACV peptide complexes per 778 residues. Although the ratio

is a little more than double in CHIKV than in VACV proteins, however this difference was not

statistically significant. Moreover, if only the two different HLA class I CHIKV ligands

detected by mass spectrometry are considered, the CHIKV ratio was one HLA class I Iigand

per 624 residues. Similarly, with the 69 fragmentation spectra from VACV proteome the

equivalent ratio was one HLA class I-VACV ligand per 823 residues. Thus, the ligands to

which HLA class I antigen processing and presentation are addressed to, that is, the immuno-

prevalence of the HLA class I-restricted cellular immune response against CHIKV structural

polyprotein was comparable with a well-established poxvirus vaccine.

One CHIKV ligand was presented by HLA-DRB1�04:04 class II molecules

in human rVACV-CHIKV-infected cells and recognized by specific T cells

in virus-infected HLA-DRB1�0404 transgenic mice

Similarly to HLA class I, the HLA-DR-bound peptide pools were isolated from either uninfected

or VACV-infected JY cells. The ion peak with an m/z of 381.0, absent in the HLA-DR-uninfected

pool, was assigned to the viral amino acid sequence PPVIGREKFHSRP, which spans residues

133–145 of the CHIKV E2 envelope protein. (Table 1 and S1 Fig). Furthermore, the database

searches with human and VACV proteome also failed to identify this mass spectrometry spec-

trum, supporting the CHIKV origin of this HLA class II-bound peptide. This theoretical assign-

ment was confirmed by identity with the MS/MS spectrum of the corresponding synthetic

peptide (S3 Fig). The JY cell line expresses four HLA-DRB1 chains: B1�04:04, B1�13:01, B3�01:01

and B4�01:01. Thus, prediction analysis of HLA binding of the CHIKV E2133-145 ligand was

Table 2. (Continued)

Experimental mass a ΔMass b z Sequence c, d Length Protein Position HLA d Cell line IEDB e NetMHCpan f

KVSPPSLGK 9 I8 72–80 C�01:02 HOM-2 - -

1005,622 1,3 3+ TILKSLGFK 9 I8 239–247 A�03:01 HOM-2 0.17 0.12

TILKSLGFK 9 I8 239–247 C�01:02 HOM-2 - -

948,510 -0,3 1+ IIGPMFSGK 9 J2 9–17 A�03:01 HOM-2 0.4 0.1

IIGPMFSGK 9 J2 9–17 C�01:02 HOM-2 - -

1081,567 -0,7 2+ KIYEGAKHH 9 VACWR036 11–19 A�03:01 HOM-2 2.7 0.27

KIYEGAKHH 9 VACWR036 11–19 C�01:02 HOM-2 - -

a The monoisotopic ion mass in amu.
b The difference between nominal and experimentally detected monoisotopic ions in ppm.
c Asterisks indicate oxidation of Met. The minimal core for binding of D12 99–111 ligand to respective HLA class I molecule is bolded.
d HLA-A�03:01 and/or HLA-C�01:02 assignments (calculated as percentile rank < 5) are bolded.
e and f Theoretical affinity to HLA of the CHIKV ligands calculated as percentile rank from the Immuno Epitope Database (IEDB) or the NetMHCpan servers,

respectively. (-), no binding.

https://doi.org/10.1371/journal.pntd.0007547.t002
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carried out. The two bioinformatics methods utilized predicted high affinity values for

DRB1�13:01 chain binding but not for other three HLA-DR chains from JY cell line (Table 1). As

at the present day, these bioinformatics tools are not totally accurate in their predictions, especially

to detect the non-canonical ligands, HLA-DRB1�04:04 transgenic mice were infected with

rVACV-CHIKV; other HLA class II-transgenic mice were not available. Later, a physiological

measurement of the functional ex vivo activity of T cells against the CHIKV E2133-145 ligand was

carried out. Spleen cells of immunized mice specifically recognized cells pulsed with this peptide

as part of the acute response to the vaccine utilized (Fig 3, bottom panel).

In summary, the CHIKV E2133-145 protein fragment was presented and recognized as an

epitope bound to DRB1�04:04, and probably could be presented by DRB1�13:01 chain as well.

Physiological processing generated seven CHIKV HLA-DRB1�01:01

ligands in human rVACV-CHIKV-infected cells

Similarly to JY cell line, the HLA-DR-bound peptide pools were isolated from either unin-

fected or rVACV-CHIKV-infected HOM-2 cells (Fig 1). In this experiment, seven different

fragmentation spectra presented in the virus-infected HLA-bound peptide pool, but absent

from the control uninfected pool, were determined as CHIKV E1, and E3 protein peptides

(Table 1 and S1 Fig). Additionally, both human and VACV proteome database searches failed

to identify any of these spectra, consistent with the CHIKV origin of these peptides.

The ion peak, with an m/z of 325.18 was assigned to the viral sequence FKYWLKERGA, which

spans residues 240–249 of the CHIKV E1 protein (Table 1 and S1 Fig). In addition a nested set of

six viral ligands with the same core and various C-terminally extended residues were found. The

first ion peak, with an m/z of 605.31, was assigned to the viral 10-mer sequence RPGYYQLLQA,

which spans residues 44–53 of the CHIKV E3 protein (Table 1 and S1 Fig). Five additional ion

peaks with m/z of 704.88, 578.27, 958.94, 1026.98, and 553.02 were assigned to different viral

amino acid sequences of the same CHIKV E3 protein that included the 44–53 minimal core with

2, 4, 6, 7, and 8 C-terminally extended residues, respectively (Table 1 and S1 Fig).

The homozygous HOM-2 cell line expresses HLA-DR B1�0101 chains. Both IEDB and

NetMHCpan algorithms predicted high affinity binding to this HLA-DR chain for the six pep-

tides included in the nested set of CHIKV E3 ligands identified by mass spectrometry

(Table 1). The CHIKV E1240-249 peptide showed more moderate affinity values with both bio-

informatics tools (Table 1).

Three HLA-DPB1�04:01 ligands were generated in rVACV-CHIKV-

infected cells

In addition, the HLA-DP-bound peptide pools were also isolated from either uninfected or

rVACV-CHIKV-infected JY and HOM-2 cell lines (Fig 1). No CHIKV peptides were identi-

fied after immunoprecipitation of HLA-DP molecules from JY cells. In contrast, from the

HOM-2 cells three different fragmentation spectra presented in the virus-infected HLA-DP-

bound peptide pool but absent from the control uninfected pool, were determined as CHIKV

E1, and E2 protein peptides (Table 1 and S1 Fig). Additionally, no human or VACV sequences

could be assigned to these MS/MS spectra using proteome database searches.

The ion peak, with an m/z of 908.48 was assigned to the CHIKV E11-16 peptide, the same

previously identified bound to HLA-A�03:01, HLA-C�01:02, and HLA-C�07:02 (Table 1 and

S1 Fig). In addition, the ion peaks with m/z of 511.00 and 849.92 were assigned to the partially

overlapping sequences HPHEIILY and IILYYYELYPTMT, which spans residues 351–358 and

355–367 of the CHIKV E2 protein (Table 1 and S1 Fig). The homozygous HOM-2 cell line

expresses HLA-DPB1�04:01 chains. IEDB, but not NetMHCpan, algorithm predicted high
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affinity binding to this HLA-DP chain only for the CHIKV E2351-358 peptide, and very low

score for the CHIKV E2355-367 peptide (Table 1).

The immunoprevalence of the HLA class II-restricted cellular immune

response against CHIKV structural polyprotein was greater than for the

VACV vector

In this study, 12 different natural HLA class II-CHIKV peptide complexes, restricted by four

HLA class II molecules, were identified (Table 1). As the CHIKV structural genes encode for

1248 residues, thus, the ratio was one HLA class II-CHIKV peptide complex per 104 residues.

Likewise, 30 natural HLA class II-VACV peptide complexes were previously identified in

the same rVACV-CHIKV-infected cells [41]. The source of ligands naturally bound to the

HLA class II molecules is mostly derived from proteins included in the viral particles and/or

from the extracellular medium, which were previously engulfed by endocytosis, phagocytosis,

or pinocytosis, and later processed by several resident cathepsins from lysosomes. Thus, about

half of the VACV WR strain proteome may be susceptible to entry in the HLA class II antigen

processing and presentation pathways according to the information available in the Uni-

ProtKB database (https://www.uniprot.org/help/uniprotkb). 30290 residues are included into

these 97 viral proteins and thus, the ligand/residues ratio was one HLA class II-VACV peptide

complex per 1010 residues. Moreover, if only the six different HLA class II core CHIKV

ligands detected by mass spectrometry are considered, the CHIKV ratio was one HLA class II

Iigand per 208 residues. Similarly, with the 23 different HLA class II core ligands from VACV

proteome the equivalent ratio was one HLA class II-VACV ligand per 1317 residues. These six

or ten-fold enrichments in HLA class II-restricted ligands from CHIKV proteins versus the

respective VACV proteins, that were statistically significant (P value< 0.001, Fisher’s exact

test), indicate a high immunoprevalence of the HLA class II-restricted cellular immune

response against CHIKV structural polyprotein in the vaccine construct.

Most of CHIKV HLA class I and II ligands detected by mass spectrometry

are not conserved compared to O’nyong-nyong virus

O’nyong-nyong virus is closely related to CHIKV, as long as mAbs specific for CHIKV recog-

nized most of O’nyong-nyong virus antigenic sites, albeit mAbs against O’nyong-nyong virus

do not recognized the CHIKV particles [42]. Thus, to evaluate the possible cross-reactivity at

cellular immune response level, an amino acid sequence comparison was carried out for the

HLA class I and II ligands, identified by mass spectrometry, from CHIKV with the representa-

tive Igbo Ora strain of O’nyong-nyong virus. Table 3 shows that only the E2351-358 ligand

sequence was conserved between both related alphaviruses. In addition, although the E11-16

ligand presents a change in P4 position versus the respective O’nyong-nyong virus sequence,

this mutation could not alter the predicted binding of this peptide to HLA class I molecules as

suggest from the bioinformatic tools (Tables 1 and 3). In summary, the HLA molecules mainly

binds not conserved peptides of CHIKV compared to O’nyong-nyong virus, in accordance

with the 86% of amino acid identity of proteins between both virus. Thus, this analysis suggests

that the crossreactivity of CHIKV HLA ligands from rVACV-CHIKV against homologous

proteins from O’nyong-nyong virus would be unlikely.

Discussion

Different issues about the nature of the HLA class I and II-specific response against CHIKV

can be derived from the results reported here.
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Natural HLA class I ligands have mostly 9–11 residues long and display the canonical

anchor residues (usually at position 2 and the C-terminus of the peptide ligand) for specific

MHC binding (SYFPEITHI database [40]). These canonical peptides include the CHIKV

CP17-25 epitope restricted by HLA-B�07:02 and 68 of the 69 VACV HLA class I ligands identi-

fied in the current report (Tables 1 and 2). Two exceptions were found: the CHIKV E11-16

ligand identified both JY and HOM-2 cells, and the VACV D1299-111 ligand from HOM-2 cell

line with 16 and 13 amino acid long, respectively. The existence of these viral ligands, with

bioinfomatically predicted 9 or 10 canonical cores for binding to their respective HLA class I

molecules, and N- and/or C-terminally extended residues that probably protruded out of the

corresponding HLA class I binding groove as described in other non-canonical HLA class I

ligands [43,44], can be explained for absence of the peptidase trimming. Usually, long peptides

generated by proteasome and other cytosolic proteases are trimmed by ERAP1 and/or ERAP2

aminopeptidases in the ER to 9–11 mer ligands [45]. ERAP1 binds long substrates for both ter-

minal residues, where the lateral chain of the C-terminus residue interacts with a hydrophobic

pocket away from the active site. Thus, the N-terminal residue is accessible to the active site

and then, this enzyme trims the longer precursors in a nonprocessive manner: the "molecular

ruler" mechanism [46] [47]. The presence of basic residues in the C-terminus of peptide sub-

strate prevents their interaction with ERAP1, and thus, removal of N-terminal residues is abol-

ished [46]. In both CHIKV E11-16 and VACV D1299-111 ligands the C-terminal residue is a Lys

and thus, these long peptides are protected from ERAP1 activity. In contrast, this hydrophobic

pocket is absent in the ERAP2 protease and thus, the C-terminal residue of substrate is not rel-

evant for the activity of this proteinase [48]. Nevertheless, the high preference of ERAP2 for

some amino acids in the N-terminal position, among which the Val and the Tyr amino acids

are not included [49,50], would explain the presence of CHIKV E11-16 and VACV D1299-111

ligands in virus infected cells. In addition, this absence of aminopeptidase trimming over these

two long viral ligands would allow the formation of five different HLA-peptide complexes in

the cell surface of infected cells, if the theoretical binding prediction by bioinformatics tools

showed in Tables 1 and 2 is accurate. In contrast, if these long ligands would have been sub-

strates of ERAP1 and/or ERAP2 proteases, the resulting 9-11mer products of trimming could

only have bound to HLA-A�03:01 molecules since the anchor motifs at position P2 for

HLA-C�01:02 and -C�07:02 would lack the binding. Thus, absence of aminopeptidase activi-

ties could, in some cases, increase the repertoire of HLA class I-peptide complexes exposed to

T cell recognition in the surface of the infected cell. These data reinforce the need to identify

the natural ligands versus other experimental strategies as is the analysis with synthetic

peptides.

Human MHC ligands from CHIKV are largely unknown, since only three 6K transmem-

brane protein-derived epitopes presented by the HLA class I molecule A�02:01 were previously

Table 3. Conservation of CHIKV HLA viral ligands in O'nyong-nyong virus.

Virus a CP 17–25
b

(B�07:02)

E1 1–16
c (A�03:01,

C�01:02, C�07:02,

DPB1�04:01)

E1 240–249

(DRB1�01:01)

E2 133–145

(DRB1�04:04,

DRB1�13:01)

E2 351–358

(DPB1�04:01)

E2 355–367

(DPB1�04:01)

E3 44–61 (DRB1�01:01)

CHIKV RPWTPRPTI YEHVTVIPNTVGVPYK FKYWLKERGA PPVIGREKFHSRP HPHEIILY IILYYYELYPTMT RPGYYQLLQASLTCSPHR

O'nyong-
nyong

––––Q–––– –––A ––––––––––– ––––––K–– ––L---------- ––––––––– ––––––––––T– Q–––––––DSA–A––Q––

a Igbo Ora strain is representative of O'nyong-nyong virus.
b Protein and position of each ligand and in parenthesis the respective HLA presenting molecule.
c The residues predicted by informatics tools as HLA ligands are showed in bold.

https://doi.org/10.1371/journal.pntd.0007547.t003
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identified [20]. In the current report, using a high throughput immunoproteomic analysis

from human cells infected with a rVACV-CHIKV vaccine expressing the CHIKV C, E3, E2,

6K, and E1 structural genes we identified several CHIKV ligands and epitopes associated to

different HLA-A, -B, and -C class I molecules and HLA-DR, and -DP class II molecules, that

derived from the capsid protein and the three envelope viral proteins (E1, E2, and E3), featur-

ing the basis of both HLA class I and II antigen processing that trigger both cytotoxic and

helper T cell responses against this reemerging virus. In addition, in this report the immuno-

prevalence of the proteins encoded by the CHIKV gene inserted in the recombinant VACV

WR strain versus the VACV parental vector was also compared. In HLA class I, the abundance

(relative to length protein) of CHIKV ligands was comparable in numbers with the one

obtained from VACV proteins. In contrast, an enrichment in HLA class II-restricted ligands

from CHIKV structural proteins versus the respective VACV proteins was found and thus,

this high immunoprevalence of the HLA class II-restricted cellular immune response against

CHIKV ligands (a key element to trigger protective both cellular and humoral immune

responses) could mean that recombinant poxvirus-based vaccines against CHIKV could be

effective.

Although a robust T cell response against infection is generally desirable, a major issue

must be considered concerning CHIKV-related pathology. Vigorous adaptive immune

responses in chronic CHIKV patients who displayed higher viral loads during the acute phase

were previously found [51]. Remarkably, infiltrating CD4+ but not CD8+ T cells were found in

the injured synovial tissue of these chronic CHIKV patients [51], suggesting a role of these

lymphocytes in the chronic arthralgia/arthritis. More specifically, in the mice model these

CHIKV-specific CD4+ but not CD8+ T lymphocytes were strongly associated to the inflamma-

tion in the joints by an IFN-γ-independent mechanism [52]. In chronic disease, CHIKV

RNA and proteins are detected in musculoskeletal tissue, indicating that the immune response

of the host fails to eliminate the pathogen from some tissues [53]. In addition, transfer of

splenic CD4+ T lymphocytes from CHIKV-infected wild-type mice generated a severe joint

inflammation into recipient animals of these HLA class II-restricted T helper cells [54]. Thus,

an exacerbated T helper response causing chronic arthralgia and/or arthritis by the high

immunoprevalence of the HLA class II-restricted cellular immune response against CHIKV

structural polyprotein in the vaccine construct should be assessed and eventually ruled out in

later studies. However, the depletion of CD4+, but not CD8+ T cells, after vaccination with an

MVA-CHIKV vaccine expressing E2 and E3 CHIKV proteins in mice that were later infected

with CHIKV caused death of all animals analyzed, demonstrating the indispensable role of

CD4+ T lymphocytes in the protection [55]. Although MHC class II-/- mice are able to control

CHIKV viraemia, these MHC class II-deficient mice have 2.5 logs higher than normal mice

with a delay in viraemia control [56]. Thus, it is possible that specific CD4+ T cells induced by

MVA-CHIKV can help to effectively control the viral replication of CHIKV while minimizing

collateral tissue injury.

Antibody-mediated immune response against CHIKV seems to mainly target the envelope

glycoprotein E2 of CHIKV, although antibodies against E3, capsid and nsP3 proteins were also

detected during the course of the disease [57]. In addition, this humoral early immune

response is dominated by IgG3 antibodies specific mostly for a single linear epitope in the N-

terminus of the viral E2 protein [58]. Although the sequences of the B and T cell epitopes are

different, the immunoprevalence of the HLA class II ligands identified in the current report

were also mainly focused on the E2 and E3 proteins.

Despite our data support a highly immunogenic vaccine, according to the very limited con-

servation between the HLA class I and II ligands from CHIKV proteins and their correspond-

ing sequences in O’nyong-nyong virus, it is unlikely that the recombinant CHIKV vaccine
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may have some kind of cross-protective cellular immune response against this second alpha-

virus although mAbs specific for CHIKV recognized most of O’nyong-nyong virus antigenic

sites [42]. Our results also suggest that studies evaluating class I and class II responses against

alphaviruses should be carried out individually due to the scarce conservation between epi-

topes in different virus species.

To explain the generation of HLA class II ligands, two different models have been proposed.

The first, the “cut/trim first, bind later” model, suggests that the proteolytic activity of lyso-

somal proteases on the viral protein generates peptides of different length and later, these pro-

tein fragments bind to HLA class II molecules. Conversely, the “bind first, cut/trim later”

model assumes that first the HLA class II molecules interact with the exposed regions from

viral proteins, and later the lysosomal proteases trim the unprotected protruding ends of anti-

genic proteins to release the corresponding HLA class II/peptide complex. Some studies sup-

porting each of the two models are reviewed in [16]. For example, a recent study has shown

that different HLA class II-restricted epitopes from Zika virus are in outer regions of the virus

envelope proteins [59] and thus, exposed to allow the direct interaction with HLA class II mol-

ecules as suggest the “bind first, cut/trim later” model. In contrast, the X-ray crystallography

[60] shows that all HLA-DR and -DP class II ligands from CHIKV E1 and E2 envelope pro-

teins identified in the current study are located in the internal regions of these viral proteins

and thus, their generation would be compatible with the “cut/trim first, bind later” model.

Alternatively, the CHIKV HLA class II ligands would be accessible to direct interaction with

HLA class II molecules if the denaturative environment of the lysosomal compartment allows

first the unfolding of the viral proteins and thus, the non-exposed protein domains could be

displayed to HLA class II binding.

The different HLA class I and II molecules analyzed in this study are very common in the

different human ethnic groups. For example, HLA-A2 is the human MHC with higher allelic

frequency in human population. This allele together with the other HLA class I and II mole-

cules from the two human cell lines analyzed here represent about half of the human popula-

tion [61], indicating that the data obtained in this study may have great relevance in the study

of both CHIKV infection and in the context of the poxvirus-based vaccines that are currently

being developed against this emerging pathogen [62,63]. In addition the current report is also

relevant about the nature of HLA class II response. So far, it is a common assumption that

HLA-DP is less important in the immune response than other HLA class II molecules as -DR

or even -DQ proteins, because their lower cell surface expression level [64,65]. However,

although for example more than ten thousand T cell epitopes restricted by HLA-DR class II

molecules have been reported (Immuno Epitope Database, IEDB; http://www.iedb.org/), a

growing body of literature indicates that HLA-DP encodes fully functional molecules, restrict-

ing epitope responses in the context of cancer, allergy, and, of course, infectious diseases.

Thus, more than a hundred of viral ligands or epitopes restricted by HLA-DP class II mole-

cules have been collected in the IEDB database in the last years. In addition, as a presenting

molecule, HLA-DP shows two very interesting features: first, its limited polymorphism regard-

ing HLA-DR locus and second, the existence of a DP supertype that include >90% of the

human population [66], where about the three quarters of peptide repertoires are common to

four or five HLA-DP class II molecules included in this supertype [66]. In the current report,

one and seven CHKV HLA-DR ligands from JY and HOM-2 cells were identified, respectively.

In addition, other three CHIKV peptides from HOM-2 cells were also identified as

HLA-DPB1�04:01-restricted ligands, allele included in the HLA-DP supertype. Thus, in the

antigen presentation by HLA class II of some viral proteins, similar number of HLA-DP vs

-DR ligands can be obtained despite the higher cell surface expression of HLA-DR molecules

than HLA-DP proteins [64,65].
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Overall, this report has identified the CHIKV viral epitopes that bind to different HLA class

I and II molecules, as well as those triggered by the recombinant VACV vector, providing an

in depth characterization of the repertoire of HLA-restricted epitopes formed during infection

of human cells with a vaccine vector, information relevant to understand viral pathogenesis

and development of vaccines against pathogens. In addition, the natural CHIKV viral epitopes

identified in the current report open a new way of studying more specifically the role of both

CD4+ and CD8+ T lymphocytes in the infection as well as in the chronic pathology caused by

CHIKV.
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MS fragmentation spectra obtained from quadrupole ion trap mass spectrometry of the syn-

thetic RPWTPRPTI peptide corresponding to ion peak at 375.2 from the CHIKV-VACV-

infected cell extracts. The vertical axis represents the relative abundance of the parental ion

and each fragmentation ion detected. Ions generated in the fragmentation are detailed, and the

sequence deduced from the indicated fragments is shown in the upper left side of each panel.
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MS/MS fragmentation spectra obtained from quadrupole ion trap mass spectrometry of the

synthetic PPVIGREKFHSRP peptide corresponding to ion peak at 380.7 from the CHIKV-
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panel.
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