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Root-rot disease caused by Fusarium oxysporum is a growing problem in agriculture
for commercial cultivation of Panax notoginseng. Diverse microbes colonize plant
roots, and numerous earlier studies have characterized the rhizospheric microbiome
of P notoginseng; nevertheless, the function of probiotic consortia on the rhizospheric
microbiome against the root-rot disease remain elusive. We have compared and
described the rhizospheric microbiome of lightly and severely diseased P notoginseng
as well as the interactions of the probiotic consortia and rhizospheric microbiome, and
their function to alleviate the plant diseases were explored by inoculating probiotic
consortia in bulk soil. From the perspective of microbial diversity, the rhizospheric
dominant bacterial and fungal genera were utterly different between lightly and severely
diseased plants. Through inoculating assembled probiotic consortia to diseased plant
roots, we found that the application of probiotic consortia reshaped the rhizosphere
microbiome, increasing the relative abundance of bacteria and fungi, while the relative
abundance of potential pathogens was decreased significantly. We developed a
microcosm system that provides a preliminary ecological framework for constructing
an active probiotic community to reshape soil microbiota and restrain the disease.
Microbial community structure differs between lightly and seriously diseased plants. The
application of probiotic consortia changes the imbalance of micro-ecology to a state of
relative health, reducing plant mortality. Plant disease suppression may be achieved by
seeking and applying antagonistic microbes based on their direct inhibitory capability or
by restructuring the soil microbiome structure and function.

Keywords: Panax notoginseng, probiotic consortia, community composition, rhizosphere, microbiome structure
and function
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INTRODUCTION

Sangi ginseng [Panax notoginseng (Burk.) F. H. Chen], a member
of the Araliaceae family, holds a prominent position in traditional
Chinese medicine in China and is high in demand (Lv et al,,
2019). It grows at an altitude of 400-800 m above sea level
under the shades of forests and at the slopes of mountains. It
has several vital functions, including being hemostatic, blood
stasis dissipating, and discutient, exhibiting acesodyne effects
and antihypertensive, antithrombotic, anti-atherosclerotic, and
neuroprotective actions (Yang et al., 2010, 2019; He et al., 2012;
Guo et al, 2020). With the over-exploitation and predatory
activities of wild ginseng, the available resources have become
scarce. Therefore, the cultivation of P. notoginseng has gradually
become the mainstream of the market. In China, the commercial
cultivation of P. notoginseng began more than 200 years ago.
However, the cultivation of P. notoginseng plants was hindered
by replanting problems (Tan et al., 2017).

Panax notoginseng is a perennial plant, and if planted in a
fixed plot for several years, it will reduce the quality and yield of
tubers (Dong et al., 2013). Root-rot disease is the foremost hurdle
of P. notoginseng due to its continuous cropping, the yield and
quality of P. notoginseng are profoundly affected by this disease
(Ma et al., 2013; Tan et al,, 2017). Replanting of P. notoginseng
has also failed due to low germination, poor seedling growth,
and high seedling death rates (Yang et al, 2015). Soil-borne
disease, nutrients deficiency, auto-toxicity, and the retrograde
soil physicochemical properties are the factors that affect the
replanting of P. notoginseng seedlings (Yang et al., 2019). Root-rot
caused by the pathogen Fusarium oxysporum is a severe disease
that inhibits the replantation of P. notoginseng plants (Dong
et al., 2016). Many measures, such as chemical fungicides, soil
modification practices, soil fumigation, and fertilizer application,
are used to alleviate the replanting problem, but the results have
not been satisfactory (Ou et al., 2012; Li et al., 2019).

Recently, using microbial antagonists as biological control
agents has become an effective method to reduce the abundance
of plant pathogens due to their non-toxic characteristics (Zheng
et al., 2011). Bacillus subtilis XF-1 was inoculated into the
clubroot affected Chinese cabbage rhizosphere, resulting in
changing disease-suppressive microbial communities that can
inhibit the abundance of Plasmodiophora brassicae Woron
(Liu C.M. et al.,, 2018). The application of biocontrol bacteria
could effectively alleviate the occurrence of root-rot. The
P. notoginseng death rate and Fusarium abundance decreased
by 63.3 and 46.1%, respectively, after inoculation with B. subtilis
50-1, which revealed that biocontrol uses microbial antagonists
to alleviate replanting mortality (Dong et al., 2018). High
bacterial diversity was associated with increased resistance to
pathogen invasions and plant infestation, and the application of
biofertilizers could also control the disease because biofertilizers
contain beneficial microbes (Hu et al, 2016; Xiong et al,
2017). However, these studies have not reported the use of
probiotic consortia containing several clear and simple strains
to study the root microbiome and root-rot disease biocontrol
on P. notoginseng. We selected the three most dominant
genera (Bacillus, Lysobacter, and Pseudomonas) that have been

reported as plants growth-promoting rhizobacteria (PGPR) or
biocontrol bacteria and are frequently found in the rhizosphere
of different crops (Postma et al., 2008; Postma and Schilder,
2015). For instance, Bacillus velezensis and Lysobacter antibioticus
species are active antagonists of plant pathogens and are
potential candidates as biocontrols for phytopathogens (Hayward
et al., 2010; Xu et al.,, 2016; Martinez-Raudales et al., 2017).
L. antibioticus produces lytic enzymes, a toxic compound that
inhibits the growth of Phytophthora capsici and also restrains
the DNA synthesis of the pathogen by producing a chemical
named Myxin (Ko et al.,, 2009; Chowdhury et al., 2011). The
growth of phytopathogenic Oomycetes (Plasmopara viticola
and Phytophthora infestans) can be restricted by the secondary
metabolites produced by Lysobacter capsici AZ78 (Puopolo et al.,
2014, 2015). Pseudomonas spp. of bacteria is suitable for the
colonization of plant roots, and many strains exhibit the activity
of promoting plant growth or inhibiting the growth of various
plant pathogenic bacteria (Liu K. et al., 2018).

Soil biodiversity is affected by the continuous cropping
system, which implements a negative effect on soil health
and productivity. Moreover, we can increase the impact of
biodiversity by the introduction of rhizosphere microbial
communities into the soil by adopting different methods (Berg
and Smalla, 2009; Xiao et al., 2016). It is therefore important
to understand the significance of soil microbial diversity for the
continuous cropping of P. notoginseng. A study was carried out
to investigate the response of rhizosphere and root endophytic
bacteria under continuous cropping of P. notoginseng, and the
highest bacterial diversity was found under healthy cropping
system as compared to disease affected crops (Tan et al., 2017).
A total of 279 bacteria were isolated through pure-culture
methods from the rhizosphere soil of P. notoginseng plants, and
it was revealed that 88 bacteria have an antagonistic activity to
control root-rot disease (Fan et al., 2016). However, these studies
only discussed the population and structure of the rhizosphere
microbe of P. notoginseng without any microbiological treatment;
this has thus sparked the hypothesis that changes in disease
suppression are the joint effect of the application of microbes
into the soil to inhibit the activity of pathogens or to balance the
rhizosphere microbial diversity in the P. notoginseng cropping
system (Vale et al., 2016). The bacterial community composition
and diversity have been reported, and these have been found to be
associated with disease suppression (Hamid et al., 2017; Mwaheb
etal., 2017; Hussain et al., 2018).

To investigate this hypothesis, we used the root-rot of
P. notoginseng caused by the soil-borne pathogens as a
subject study. Therefore, we amended 3 years of continuous
cropping field soil of P. notoginseng with probiotic consortia
containing Bacillus, Lysobacter, and Pseudomonas, and we
compared these treatments with no microbial inoculation
(control) and biopesticide. We observed the impact of the four
probiotic consortia on biocontrol efficacy, measured the growth
characteristics and the quality (saponin contents and Sanqi
root weight) of P. notoginseng, and also analyzed the bacterial
and fungal community of P. notoginseng rhizosphere soil by
Mlumina MiSeq sequencing. These data provide an effective
soil bioremediation method to alleviate the replanting failure of
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P. notoginseng. The results of this study also demonstrate how
the probiotic consortia affect the rhizosphere soil microbiome
for disease suppression. The aim of this study was to provide
theoretical and experimental information to improve the
structure and function of microbial communities to reduce the
root-rot disease for continuous cropping of P. notoginseng.

MATERIALS AND METHODS

Assembly and Study of Probiotic

Consortia

P. notoginseng was used as a host plant to investigate the
bacterial community associated with roots, using the biocontrol
bacteria resources accumulated in the early stage of the
laboratory. To evaluate the effectiveness of biocontrol bacteria,
we selected previously verified pathogenic F. oxysporum as
the target pathogen and tested their antagonistic activity
against the mycelial growth of F. oxysporum on the potato
dextrose agar (PDA) medium. We used 13 bacterial strains
(Supplementary Table S1) to obtain four simplified probiotic
consortia (Supplementary Table S2). Before the experiments, a
single colony of each strain was selected and grown overnight
in nutrient agar (NA: glucose or sucrose 10 g; peptone 5 g; beef
extract 3 g; yeast extract 1g; agar 18 g; distilled water 1000 ml; pH
7.0). Each bacteria strain culture mixture (500 ml) was obtained
by shaking the culture after 3 days in King’s medium B (KB:
proteose peptone No.3 20 g; glycerin 10 ml; K;HPO4-3H,O
1.5 g; MgSO4-7H,0 1.5 g; agar 18 g; distilled water 1000 ml;
and pH 7.0) with 160 rpm at 28°C, and it was adjusted to an
optical density of ODgpp = 0.5 using a spectrophotometer (GE
Uitrospec 2100 pro).

Field Experiment of Panax notoginseng

and Soil Collection

The field experiment was conducted in July, 2017 at a
P. notoginseng commercial farm located in Hexi Town,
Tonghai County of Yunnan Province, China (102.75° = E,
24.12° = N, 1899.8 m Alt.), and field experiment layout
(Supplementary Figure S1) samples were collected in September
2017 from different plots in the same field with arid continental
climate and laterite soil. P. notoginseng was cultivated strictly
according to standard operating procedures established by the
Good Agriculture Practices (Heuberger et al., 2010) and was
consecutively grown for 3 years. A ridge cultivation pattern was
used, with ridges approximately (1.3 m x 15 m). The experiment
was conducted as a block design with three replicates; three plots
per treatment served as replicates, the area of each replicate plot
was (1.3 m x 1.5 m), and the root-rot plants plot and death plants
plot (as control 1 and control 2, respectively) were (1.3 m x 3 m)
under the same management. P. notoginseng was cultivated in the
soil for the first time, and, after the cultivation of P. notoginseng,
no other crop was grown. Each treatment has about 145-170
plants of P. notoginseng, and the probiotic consortia root was
irrigated one time for every 7 days. The treatment was continuous

for three times, and each plant was irrigated with 150 ml probiotic
consortia culture mixture (5 x 10° CFU/ml).

A collection of P. notoginseng rhizosphere soil was made, and
samples were taken from a depth of 20 cm using a shovel. In
this experiment, four treatment groups (A, B, C, and D) and two
control groups (JKT and BT) were designed. Treatments A, B,
C, and D represent four probiotic consortia, probiotic consortia
A (three strains of Lysobacter communities), probiotic consortia
B (one strain of Lysobacter, one strain of Pseudomonas, and
two strains of Bacillus communities), probiotic consortia C (four
strains of Bacillus communities) and probiotic consortia D (eight
strains of Bacillus communities). E represents the biopesticide
(Shandong Kaoshan Biotechnology Co., Ltd., China), and JKT
represents light diseased P. notoginseng (control) treated with
water. BT represents severe diseased P. notoginseng (control)
treated with water. We collected rhizosphere soil of groups
of A, B, C, D, E, JKT, and BT (a region of the soil, about
1 mm surrounding roots) (Lundberg et al., 2012). Samples of
P. notoginseng rhizosphere soil were placed in 50 ml sterile
centrifuge tubes, stored at —80°C Ultra-low temperature freezer
immediately, and then sealed in a dry ice box and sent to OE
Biotech Co., Ltd. (Shanghai, China).

Evaluation of Control Efficiency and the

Quality of Panax notoginseng

We applied three applications (7 days interval) of probiotic
consortia in July, and a survey was conducted at harvesting
time at the end of November to evaluate the death rate of
P. notoginseng plants from each treatment and the total number
of plants from each plot. The death rate was calculated for each
plot as the number of dead P. notoginseng plants divided by
the total number of P. notoginseng plants in each plot. The
mean value of the fresh weight, dry weight, and root length of
P. notoginseng were calculated in each treatment.

We assessed the ginsenoside contents of five major saponins
(R1, Rgl, Re, Rb1, and Rd) in the crude ginseng saponin fraction
from P. notoginseng root powder for each treatment (Yang et al.,
2015). We used standard curves to quantify the concentration of
ginsenoside in samples that the linear relationships between the
peak areas and the concentrations. The ginsenoside contents of
the samples were calculated by using the following formula:

Content of ginsenoside in roots or soil(pg/g) =
1000 x (m x V)/W;

where “m” is the ginsenoside content of sample extract as
determined from a standard curve (mg/ml); “V” is the methanol
volume (ml) to dissolve the dry residue of sample extract; and
“W;” is the weight of the sample (g).

DNA Extraction and Library Construction

Extraction of DNA was done from 0.5 g of soil; for DNA
extraction, we used a Power Soil® DNA isolation kit
(MO BIO Laboratories, Inc., Carlsbad, CA, United States)
following the manufacturer’s instructions, and extracted
DNA was stored at —80°C for future wuse. Bacterial

Frontiers in Microbiology | www.frontiersin.org

April 2020 | Volume 11 | Article 701


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Zhang et al.

Restructure Rhizosphere Microbiome for Root-Rot

A R1
600000 -

400000+

ppm

200000+

2500+

20004

1500

pm

2 10004

500+

4000+

*% i

3000+
S 2000+
Q.

1000

was used and at a p-value <0.05 marked as * and a p-value <0.01 marked as **.

FIGURE 1 | The significant difference between five major saponins (R1, Rg1, Re, Rb1, and Rd) in P notoginseng compared to severe diseased plants (BT). A, B, C,
and D represents four probiotic consortia; E represents biopesticide, JKT; and BT represents healthy plants and diseased plants without any treatment. LSD test
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diversity was analyzed by using V3-V4 variable regions
of 16S rRNA genes, and these were amplified with
universal  primers 343F  (5-TACGGRAGGCAGCAG-3')
and 798R (5-AGGGTATCTAATCCT-3). Fungal diversity
was analyzed by wusing ITS1 variable regions, and
these were amplified with universal primers 1743F (5'-
CTTGGTCATTTAGAGGAAGTAA-3') and 2043R (5-GCTGC
GTTCTTCATCGATGC-3') (Zhu et al., 2018).

By using gel electrophoresis, amplicon quality was visualized,
and purification was done with the help of AMPure XP beads
(Agencourt); PCR (Bio-rad, Cat. No. 580BR10905) was done for

amplicon. AMPure XP beads were run again for the purification
of amplicon, and quantification of the final amplicon was done
by using Qubit dsDNA assay kit (Life Technologies Cat. No.
Q328520). The same numbers of purified amplicons were pooled
for subsequent sequencing (Gao et al., 2018).

Bioinformatics Analysis

For DNA sequencing, raw data was collected in the FASTQ
format. The ambiguous base (N) was detected and deleted
by using the Trimmomatic software preprocessing the paired-
end reads (Bolger et al., 2014). It also cut off low-quality
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sequences with an average quality score below 20 by sliding
window trimming approach. After trimming, paired-end reads
were assembled using FLASH software (Reyon et al, 2012).
Parameters of the assembly were 10 bp of minimal overlapping,
200 bp of maximum overlapping, and 20% of maximum
mismatch rate. Sequences were performed for further denoising:
reads with ambiguous, homologous sequences or below 200 bp
were abandoned. Reads with 75% of bases above Q20
were retained. Then, reads with chimera were detected and
removed. These two steps were achieved using QIIME software
(Caporaso et al., 2010).

Clean reads were subjected to primer sequence removal and
clustering to generate operational taxonomic units (OTUs) using
UPARSE software with a 97% similarity cutoff (Edgar, 2013). The
representative read of each bacterial OTUs was selected using
the QIIME package. All representative reads were annotated and
blasted against Silva database (Greengenes) (16S rDNA) using
the RDP classifier for bacteria (confidence threshold was 70%)
(Wang et al., 2007; Chen et al., 2019). The representative reads
of each fungal OTUs were selected using the QIIME package. All
representative reads were annotated and blasted against the unite
database for fungi using blast (Altschul et al., 1990). All sequences
of ITS and 16S rRNA genes can be found in the Short Read
Archive (SAR) at NCBI under accession number PRJNA588201.

OTUs tables were used to calculate different alpha diversity
metrics, including observed OTUs, Chao 1, Shannon, and
Simpson indices using the QIIME. To understand variation
in the bacterial and fungal community structure across the
treatments, weighted UniFrac and unweighted UniFrac distances
were performed in QIIME. The relative abundance bar plots
and heatmap for both bacterial and fungal genera, and distance
heatmaps for seven soil samples were generated using R
scripts executed in Rv3.5.3. Analysis of variance (ANOVA) was
performed, showing the least significant difference (LSD) was
5% for these variables in all treatment replicated to analyze
the death rates. Data were analyzed statistically using ANOVA
(P < 0.05). The means were compared using Tukey’s test
(P < 0.05) (Dong et al., 2016).

RESULTS

Evaluation of the Growth Characteristics,
Death Rate, and Quality of Panax
notoginseng

The effect of probiotic consortia on P. notoginseng roots and its
potential beneficial impact on the host plants have been assessed.
The root microbiota is also beneficial to the growth and health
of host plants (Lee and Park, 2004). We compared the death
rate, fresh root weight, dry root weight, and root length of
the probiotic consortia treated plants. Compared to the control
BT, the death rate of P. notoginseng was significantly reduced
by probiotic consortia (A, B, and D) and the biopesticide (E)
(p < 0.05), and the mortality rate was decreased by 22.11, 24.12,
and 33.09%, respectively (Supplementary Table S3). The fresh
root weight increased significantly by use of probiotic consortia

(A and B) and the bio-pesticide (E) (p < 0.05); they weighed
19.33, 17.47, and 17.77, respectively. The weight of BT in the
control group was 10.50 g. However, the parameters of root
length and root dry weight exhibited no significant differences.
These data indicated that probiotic consortia as a potent inhibitor
was present in the rhizosphere soil of P. notoginseng, contributed
to increase root weight and reducing the death rate of root-rot
disease (Supplementary Table S4).

Besides these, five major saponins (R1, Rgl, Re, Rbl, and
Rd) in P. notoginseng roots were determined by HPLC, and
the results showed explicitly that five major saponins were the
significant difference between four probiotic consortia treatments
and the control (diseased plants) (Figure 1). Probiotic consortia
(B) treatment increased the three saponin contents the most
(Re, Rb1, and Rd). Probiotic consortia (C) treatment increased
saponins R1 the most. Probiotic consortia (D) treatment
increased saponins Rgl the most (Supplementary Table S5).
These results revealed that the successive inoculation of
probiotic consortia affected the assembly of bacterial and fungal
communities in the rhizosphere for disease suppression.

Effect of Probiotic Consortia on Diversity

and Structure of Microbial Community
The species richness (OTUs, 97%) and species diversity
(Chaol, Shannon, and Simpson index, 97%) are shown in
Supplementary Table S6. In all treatments, richness and diversity
exhibited no significant difference when compared to control
JKT. The Simpson index showed that there was no significant
difference for bacterial species diversity in all soil samples,
while (Chaol, Shannon) index expressed that species richness
among five treatments (A, B, C, D, and E), and species diversity
among four treatments (A, C, D, and E) showed a significant
difference compared to control BT. Bacterial richness and
diversity indices were highest in all five treatment soil samples
(Supplementary Table S6). We found that, after inoculation
with probiotic consortia, the treatment groups (A, B, C, and
D) were higher in bacterial and fungal OTUs than the control
BT (Supplementary Figure S2). Microbial diversity of most of
the bacterial and fungal genera was found to be a difference
in rhizosphere soil of different treatments as compared to
control. Compared to BT, four probiotic consortia treatments and
one biopesticide treatment all increased the relative abundance
of seven dominant bacterial genera (Figure 2A) and seven
dominant fungal genera (Figure 2B) in rhizosphere soil of
diseased plants. Moreover, four probiotic consortia treatments
and one biopesticide treatment all decreased the relative
abundance of 14 dominant bacterial genera (Figure 2C) and four
dominant fungal genera (Figure 2D) in rhizosphere soil.
Weighted UniFrac (based on abundances of taxa) and
unweighted UniFrac (sensitive to rare taxa) were used to distance
metrics to estimate 3-diversity. With the unconstrained principal
coordinate analysis (PCoA) of weighted UniFrac and unweighted
UniFrac distances showing that the majority of the variation in
microbial diversity across the four probiotic consortia treatments
and two controls could be attributed to the field (Figure 3). Both
weighted UniFrac and unweighted UniFrac distances revealed
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that the control BT (weighted UniFrac R*> > 0.20, unweighted
UniFrac R? > 0.59) were separated from the other soil samples
along with the first component (PC1) for both bacterial and
fungal communities, and the treatment soil samples and control
JKT were in the same direction (Figure 4). After treatment by
four probiotic consortia treatments (A, B, C, and D) and the
biopesticide (E), the results indicated that the microbe structure
of the rhizosphere soil of plants treated with probiotic consortia
was similar to healthy plants and differed from themicrobe
structure of diseased plants.

Effect of Probiotic Consortia on Bacterial
Community Composition

The dominant bacterial phyla in all rhizospheric soil
were  Proteobacteria, Acidobacteria, and Bacteroidetes
(average abundance was 59.61, 17.11, and 10.29% of all
samples, respectively), followed by Actinobacteria (4.42%),
Gemmatimonadetes  (2.84%), Firmicutes (2.38%), and
Nitrospirae  (0.16%) (Figure 5A). Relative abundance
at the phylum level in bacterial communities of the
top 15 species revealed significant differences among
groups (Supplementary Table S7). Other phyla, such as
Verrucomicrobia,  Elusimicrobia,  Saccharibacteria, TMS6,
Chlorobi, Tenericutes, Chloroflexi, and Parcubacteria, were
found at <1% in relative abundance in all of the samples.
Proteobacteria was the most dominant phylum in all soil samples
and had a minimum frequency (48.03%). The proportion of
Actinobacteria was the lowest in the control of BT soil samples

(1.09%). Proteobacteria was the most abundant phylum in
the B, D, E, and BT soil samples, and Acidobacteria was the
most abundant phylum in the A, E, and JKT soil samples. The
proportion of Proteobacteria was the highest in the control of BT
soil samples (68.34%) (Supplementary Table S8).

Relative abundance analysis at the genus level showed that
healthy and diseased plants affected the microbial community
composition in rhizospheric soil. By classifying all OTUs into
taxonomic groups, we identified 27 bacterial genera (Difference
value of relative abundance >1.00%, Supplementary Table S9)
associated with rhizospheric soil of plants with light and over-
serious disease. The dominant bacterial genera in light diseased
plants (JKT) were Acidibacter, Bryobacter, Candidatus Solibacter,
Gemmatimonas, etc. The relative abundance was 2.34, 2.42,
3.20, and 3.00%, respectively. However, in the BT control
group, the richness was only occupied 0.25, 0.38, 0.39, and
0.15%, respectively. However, Chryseobacterium, Enterobacter,
Flavobacterium, and Pseudomonas, etc. were found to be the
dominant bacterial genera in rhizospheric soil of plants with the
over-serious disease (BT), and the relative abundance was 2.25,
5.61, 5.96, and 2.30%, respectively. It was completely different
from light diseased plants (JKT), where the richness was 0.01,
0.00, 0.05, and 0.09%, repectively.

Effect of Probiotic Consortia on Fungal

Community Composition
The dominant fungal phyla in all rhizospheric soil were
Ascomycota, Zygomycota, Unidentified, and Basidiomycota
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(average relative abundance 46.23, 33.94, 8.43, and 7.22%
of all samples, respectively), followed by Glomeromycota
(2.10%) and Rozellomycota (1.12%) (Figure 5B). Relative
abundance at the phylum level in fungal communities of
the top 10 species revealed significant differences among
groups (Supplementary Table S10). Other phyla, such as
Chytridiomycota, Cercozoa, Neocallimastigomycota, and
Blastocladiomycota, were found at <1% in relative abundance
in all samples. Ascomycota was the most abundant phylum in
the C, E, JKT, and BT soil samples, and Zygomycota was the
most abundant phylum in the A, B, and D soil samples. The
proportion of Ascomycota was the highest in the control of BT
soil samples (96.40%) (Supplementary Table S8).

Relative abundance analysis at the genus level showed that
healthy and diseased plants affected the microbial community

composition in rhizospheric soil. By classifying all OTUs into
taxonomic groups, we identified 11 fungal genera (Difference
value of relative abundance >1.00%, Supplementary Table S11)
associated with rhizospheric soil of plants with light and over-
serious disease. The dominant fungal genera in rhizospheric
soil of plants with the light disease (JKT) were Leptodontidium,
Mortierella, and Trichoderma, etc. The relative abundance was
3.67, 2.46, and 5.49%, repsectively; and richness was 0.10,
0.30, and 0.09%, respectively, thus being more abundant than
in diseased plants (BT). Clonostachys, Exophiala, Fusarium,
and Xylaria were, however, the more abundant genera in the
rhizospheric soil of plants with the severe disease. These four
genera accounted for 0.12, 0.47, 2.35, and 0.80% of the control
JKT, respectively. However, they also accounted for 62.73, 12.42,
13.11, and 11.47, respectively, in control BT.
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FIGURE 4 | Distance heatmap graph of seven soil samples. Weighted UniFrac and unweighted UniFrac analysis. The number in the grid is the coefficient of
dissimilarity between two samples. The smaller the coefficient of dissimilarity, the smaller the diversity of species. In the same grid, the upper and lower values
represent the distance between unweighted UniFrac and weighted UniFrac, respectively.

Microbial Community Composition and
Differentially Abundant Taxa

At the genus level, the 30 most abundant genera were selected
to construct the bacterial genera abundance map and the fungal
genera abundance map based on the clustering analysis of
genera species abundance differences, revealing the differences
in bacterial and fungal diversity (Supplementary Figures S3a,b).
Based on the bacterial genera present in the samples
(Supplementary Figure S3a), a cluster containing two or
three duplicate soil samples were considered to be clustered into
one category. All soil samples were clustered into four groups.
Control (BT) soil samples notably clustered into one group, while
soil samples (B) and soil samples (D) were clustered into another
group. Soil samples (E) clustered together, and soil samples (A)
and control (JKT) soil samples clustered together roughly.
Further, relatively high proportions of bacterial genera, such
as  Sphingobacterium,  Flavobacterium,  Chryseobacterium,
and Enterobacter, were found among the rhizospheric
soil of death plant (control BT) affected by root-rot
disease. Based on the fungal genera present in the samples
(Supplementary Figure S3b), a cluster containing two or three
duplicate soil samples wereconsidered to be clustered into one
category. So, all samples notably clustered into two groups.
Control (BT) soil samples notably clustered into one category,
while other soil samples were clustered into another group.
Additionally, relatively high proportions of fungal genera such as

Clonostachys, Fusarium, Xylaria, and Monographella were found
among the rhizospheric soil of root-rot disease plants.

DISCUSSION

Panax notoginseng herbaceous perennial plants that grow
in specialized surroundings are primarily cultivated in
artificial shade for several years. For consecutive cultivation
of P. notoginseng, seedling replanting is a significant issue,
which is made more difficult by multiple factors, such as soil-
borne pathogens accumulated in rhizosphere soil resulting in
P. notoginseng root-rot diseases (Mao et al., 2014). So, we need
to find a solution to root-rot by inoculating probiotics into the
roots of diseased plants. Here, we have studied the probiotic
bacterial community performance and its potential beneficial
effects in microbial diversity, and there is a precedent for the use
of microbial communities to study plant-microbe interactions
and microbe-microbe interactions (Santhanam et al., 2015).

Quality of P. notoginseng Improved with
the Inoculation of Probiotic Consortia

Microbial diversity is critical to maintaining soil health and
quality, and it serves as a sensitive bioindicator of soil health
as well. For example, microbial diversity and root disease
suppression are related. In recent years, there have been more
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and more studies conducted on the control of root-rot of ginseng
with microbial antagonists, but there are few studies on root-rot
of P. notoginseng (Ryu et al., 2014; Song et al., 2014). Therefore,
in the present study, we have assembled the probiotic consortia
and examined the mechanisms linking probiotic consortia with
suppression of root-rot disease. We screened four probiotic
consortia by using 13 antagonistic strains, and the 3-year-old
P. notoginseng field, which fell pray to serious root-rot disease,
was used as the primary research object. We observed that the

two probiotic consortia (A, B) treatments significantly increased
the fresh root weight, and three probiotic consortia treatments
(A, B, and D) significantly reduced the root-rot disease death
rate compared to the control (BT). However, no significant
difference in death rate between probiotic consortia C and
control (BT) was observed. Probiotic consortia B treatment
mostly increases the three saponin contents (Re, Rb1, and Rd),
probiotic consortia C treatment mostly increased saponins R1,
and probiotic consortia D treatment mostly increased saponins
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Rgl compared to the BT control. Moreover, four probiotic
consortia treatments significantly enhanced the major saponin
content compared to the BT control. Thus, applying the probiotic
consortia could not only be used for biological control of plant
disease but also the improvement of plant growth and quality
of P. notoginseng (Xia et al., 2017). The application of probiotic
consortia changes the imbalance of micro-ecology to the state of
relative health and reducing plant mortality.

Inoculation of Probiotic Consortia May
Indirectly Promote the Growth of Other

Beneficial Bacteria

Even though inoculated probiotic consortia B and probiotic
consortia C were not normally or significantly increased.
Pseudomonas, Bacillus spp., and Lysobacter spp. levels may have
increased other beneficial biocontrol bacteria indirectly just as
Pseudomonas spp. was increased by probiotic consortia A and
probiotic consortia D. The results of this study showed that the
introduced the microbes (Bacillus, Lysobacter, and Pseudomonas)
have a specific endurance capability and could improve the
nutritional status of plant rhizosphere; their abundance has a
significant effect on the diversity of F. oxysporum and also for
the suppression of root-rot disease (Qian et al., 2009; Verbon
and Liberman, 2016). The three probiotic consortia (A, B, and C)
treatments significantly decreased the abundance of F. oxysporum
as compared to control (BT), signifying that probiotic consortia
were able to develop a soil resistance against Fusarium root-rot
disease. F. oxysporum, which causes the Fusarium wilt of vanilla,
was significantly reduced by the application of biofertilizer
(Xiong et al., 2017). Inoculation of probiotic consortia may
indirectly promote the growth of other beneficial bacteria and
fungi, thereby suppressing root-rot. We found after sequencing
that the abundance of Trichoderma in treatments A, B, C,
and D gave better results as compared with control BT group;
Trichoderma has been reported to be a biocontrol fungus having a
wide range of antagonistic properties, and it can effectively inhibit
the growth of F. oxysporum and Fusarium solani (Luo et al., 2019;
Sallam et al., 2019). There was a negative relationship between
the probiotic consortia abundance and Fusarium abundance, and
inoculated probiotic consortia constrained Fusarium pathogen
density. We therefore cannot ignore the role of probiotics to
control plant diseases.

Soil Microbial Community Structure
Changes With the Inoculation of

Probiotic Consortia

After the application of probiotic consortia, unusual changes
were observed in the microbial community, and PCoA results
showed that all four probiotic consortia harbored distinct
microbial communities structurally. The rhizosphere soil was
treated by the different probiotic consortia and exhibited different
microbial communities, and these changes were associated with
observed patterns of Fusarium pathogen abundance and the
incidence of root-rot disease. The significant differences of
the bacterial community were found in the rhizosphere soil
of susceptible disease (control JKT) and dead P. notoginseng

(control BT); lower bacterial diversity was found in the
rhizospheric soil of dead P. notoginseng as compared to
susceptible diseased plants. The previous studies have supported
this view that continuous ginseng planting decreased the
bacteria diversity and aggravated root-rot disease (Mendes
et al., 2011; Santhanam et al, 2015). The application of four
probiotic consortia was a significant factor in reshaping the
soil community taxonomic composition, which was the same as
that observed in the application of two biofertilizers previously.
Because the limited read lengths of the Illumina MiSeq
sequencing do not allow for robust taxonomic characterization
to the species level, we focused our examination of microbial
composition changes at the genus level. Acidibacter, Candidatus,
Solibacter, Rhizomicrobium, and Gemmatimonas were over-
represented in the four probiotic consortia treatments. Some
taxa of the acido-bacteria have been found previously to be
more abundant in potato common scab disease-suppressive
soil as compared to conducive soil (Rosenzweig et al,
2012). However, the abundance of Flavobacterium, Clostridium,
Chryseobacterium, and Enterobacter genera was decreased. In our
study, we were tested about 10 strains isolated from diseased
P. notoginseng plants, which belonged to Chryseobacterium,
and Enterobacter genera, which caused P. notoginseng plants
death (unpublished data), suggested these genera were positively
correlated with plant death of P. notoginseng. Furthermore,
the genera of Aeromonas, Chryseobacterium, Clostridium sensu
stricto 1, Flavobacterium, Enterobacter, and Sphingobium showed
massive accumulation in the rhizosphere soil of dead plants
(control BT); four treatments, which are made of potential
pathogenic bacteria, cause aquaculture animals disease and
human and animal diseases (Wahli et al., 2005; Zhu et al.,
2010). So, these genera may be important bacterial pathogens
that positively contribute to the effects of P. notoginseng
plant death.

The microbial diversity and structure in the rhizosphere of
P. notoginseng and seedling growth, relieving the occurrence of
root-rot diseases, were affected by the application of probiotic
consortia. Our study provides strong evidence in support of
the hypothesis that inoculated probiotic consortia ameliorated
rhizosphere microflora to restrict disease outbreaks during
continuous P. notoginseng cropping. Due to the high complexity
of soil microorganisms, studies on the mechanism of soil
microbial community to protect plants from pathogen infection
are still limited. Therefore, further studies will need to identify
the role of beneficial bacteria and construct more groups of
probiotic consortia that can be applied in the rhizosphere against
root-rot of P. notoginseng. The role of probiotic consortia in
regulating the mechanism of P. notoginseng root-rot still needs
further exploration.

CONCLUSION

After this study, we came to the conclusion that probiotic
consortia in the form of different beneficial bacterial strains
positively affected the bacterial and fungal communities to
display some kind of disease suppressive through reshaping the
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function and structure of soil microbes. By introducing the
probiotic consortia could have a possible role in the direct or
indirect alleviation of P. notoginseng root-rot in the continuous
cropping soil. Moreover, additional groups of probiotic consortia
that showed positive synergism in the soil rhizosphere against
different diseases including root-rot disease must be considered.
So, the disease suppressive properties of such kinds of probiotic
consortia to control the devastating diseases of plants should not
be ignored in the future.
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