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1  | INTRODUC TION

Transposable elements (TEs) are stretches of DNA that copy them-
selves within host genomes. They have been found in almost all 
eukaryotes and in most bacteria investigated so far (Biémont & 
Vieira, 2006; Wicker et  al., 2007). TEs are important mutagens, 
which generate novel phenotypic variation; e.g., in Drosophila 

melanogaster an estimated 50%–80% of the observed mutations are 
due to TEs (Ashburner, Golic, & Hawley, 2005; Drake, Charlesworth, 
Charlesworth, & Crow, 1998). Transposons have been impli-
cated in diverse phenomena such as human disease (Burns, 2017; 
Kazazian et al., 1988; Narita et al., 1993), environmental adaptation 
(Casacuberta & González, 2013; Schrader & Schmitz, 2019), genome 
evolution (Kazazian, 2004), quantitative variation (Mackay, Lyman, & 
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Abstract
Transposable elements (TEs) are selfish DNA sequences that multiply within host ge-
nomes. They are present in most species investigated so far at varying degrees of 
abundance and sequence diversity. The TE composition may not only vary between 
but also within species and could have important biological implications. Variation 
in prevalence among populations may for example indicate a recent TE invasion, 
whereas sequence variation could indicate the presence of hyperactive or inactive 
forms. Gaining unbiased estimates of TE composition is thus vital for understanding 
the evolutionary dynamics of transposons. To this end, we developed DeviaTE, a tool 
to analyse and visualize TE abundance using Illumina or Sanger sequencing reads. Our 
tool requires sequencing reads of one or more samples (tissue, individual or popula-
tion) and consensus sequences of TEs. It generates a table and a visual representation 
of TE composition. This allows for an intuitive assessment of coverage, sequence di-
vergence, segregating SNPs and indels, as well as the presence of internal and terminal 
deletions. By contrasting the coverage between TEs and single copy genes, DeviaTE 
derives unbiased estimates of TE abundance. We show that naive approaches, which 
do not consider regions spanned by internal deletions, may substantially underesti-
mate TE abundance. Using published data we demonstrate that DeviaTE can be used 
to study the TE composition within samples, identify clinal variation in TEs, compare 
TE diversity among species, and monitor TE invasions. Finally we present careful vali-
dations with publicly available and simulated data. DeviaTE is implemented in Python 
and distributed under the GPLv3 (https​://github.com/W-L/deviaTE).
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Jackson, 1992) and domestication of important crops (Studer, Zhao, 
Ross‐Ibarra, & Doebley, 2011). Understanding TE biology is thus of 
vital interest for many different research fields.

Depending on the TE family and the host species, copy num-
bers can range from a few to hundreds of thousands of insertions 
(Biémont & Vieira, 2006; Pritham & Feschotte, 2007). Although 
defence mechanisms against these selfish elements have emerged 
(Brennecke et al., 2007; Yang, Wang, & Macfarlan, 2017), TEs have 
proven to be highly successful invaders. Hence, most genomes con-
tain large fractions of TEs. In maize, for example, TEs account for a 
striking 85% of the genome (Schnable et al., 2009).

TE composition varies substantially among and within spe-
cies (Bargues & Lerat, 2017; Bergman, Han, Nelson, Bondarenko, 
& Kozeretska, 2017), which could have important biological con-
sequences. Variation in TE abundance among populations may 
be the hallmark of a recent TE invasion (Anxolabéhère, Kidwell, & 
Periquet, 1988; Kofler, Hill, Nolte, Betancourt, & Schlötterer, 2015) 
and may even drive speciation (Serrato‐Capuchina & Matute, 2018). 
Furthermore, some TEs exist as internally deleted variants, which 
act as suppressors of the full‐length TE (Black, Jackson, Kidwell, & 
Dover, 1987). The abundance of such internal deletions may vary 
among populations (Bergman et al., 2017), hence also the strength 
of TE repression may differ among populations. Variations of the 
sequence can highlight activity differences among samples, as base 
substitutions and indels within TEs could lead to elevated or reduced 
transposition rates (Beall, Mahoney, & Rio, 2002). Finally, terminally 
deleted insertions are likely immobilized (Marin et al., 2000), there-
fore variation in the prevalence of such terminal deletions may allow 
for identification of samples with inactive copies.

Despite this importance of TE variation, few tools exist that allow 
for the quantification of TE composition within and between species. 
Some tools for the analysis and visualization of TEs have been pub-
lished, but most of them require a reference assembly and do not 

allow for a quantification of variation in sequence composition of the 
TE (Tempel & Talla, 2015; You et al., 2013). However, a high quality 
assembly is so far only available for a few species (e.g., 25 eukaryotic 
species; Lewin et al., 2018). Additionally, even if a reference assembly 
is available, resulting estimates of TE diversity may be biased because 
repetitive structures pose a significant challenge to assembly algo-
rithms (Sohn & Nam, 2018), such that the variation and abundance of 
TEs will not be well captured in the resulting contigs. We therefore 
aimed to circumvent the need for a reference assembly and reasoned 
that aligning sequencing reads directly to consensus sequences of 
TEs will allow to infer accurate estimates of TE composition.

We implemented this approach in our novel program DeviaTE, 
a tool for an assembly‐free analysis of TE diversity. DeviaTE may be 
used to visualize and quantify TE abundance, single nucleotide poy-
lmorphisms, indels and both internal and terminal deletions for mul-
tiple TE families and samples. It solely requires consensus sequences 
of TEs and sequencing reads (Sanger or Illumina) from one or more 
samples. DeviaTE may be used to study the TE composition of sam-
ples, assess TE divergence among species, monitor the progression 
of TE invasions and study clinal variation of TEs. Although DeviaTE 
was mainly designed for TEs, we note that it may also be used to 
analyse the composition of other genomic elements such as genes, 
gene families, viruses, bacteria and mtDNA.

2  | MATERIAL S AND METHODS

DeviaTE enables the analysis and visualization of the abundance as 
well as the genetic diversity of TE families. As input our tool requires 
consensus sequences of TE families and sequencing reads (Sanger or 
Illumina) from at least one sample, where samples could be individu-
als, pooled populations and tissues. DeviaTE provides quantitative 
estimates as well as a visual overview of TE diversity, which includes 

F I G U R E  1   Example of the visualization of TE diversity with DeviaTE using burdock from D. melanogaster. Sequencing coverage is shown 
separately for unambiguously (dark grey) and ambiguously (light grey) mapped reads. Fixed differences and polymorphic sites are shown as 
coloured bars, with the height of the bar corresponding to the frequency of the SNP. The reference allele is not shown in the visualization. 
Internal deletions are displayed as arcs, where the width of the arcs scales with the abundance of the deletion. Terminal deletions are shown 
as dashed lines, with their opacity indicating the abundance of the deletion (darker lines indicate higher abundance). An annotation of the TE 
is shown at the bottom. Note that ambiguously mapped regions coincide with the long LTRs of burdock. Data are from a D. melanogaster line 
caught in the Netherlands (Grenier et al., 2015) [Colour figure can be viewed at wileyonlinelibrary.com]
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the coverage of ambiguously as well as unambiguously mapped reads, 
fixed and segregating polymorphisms (SNPs and indels) and internal 
and terminal deletions (Figure 1). Furthermore, the abundance of TEs 
is estimated if at least one single copy gene is included in the analysis.

An analysis of TE composition with DeviaTE proceeds in three 
steps (Figure S1). Reads first get quality‐filtered and aligned to a li-
brary of TE consensus sequences (FASTA format) using bwa‐sw (Li 
& Durbin, 2010). To obtain estimates of TE abundance, the sequence 
of one or more single copy genes may be added to the library of TE 
consensus sequences. Next, DeviaTE generates a table containing 
the abundance and diversity of TEs (coverage, SNPs, indels, inter-
nal and terminal deletions). Internally deleted TEs are inferred from 
subsequences of reads mapping to different reference positions (i.e., 
split‐reads). Initially, we evaluated the suitability of different map-
ping approaches to identify internal deletions. Interestingly, the local 
alignment algorithm bwa‐sw performed better than the two split‐
read mappers, gsnap and minimap2 (Figure S2; Li, 2018; Li & Durbin, 
2010; Wu & Nacu, 2010). Similarly to BLAST, bwa‐sw reports all pos-
sible local alignments, i.e., high‐scoring‐pairs (HSPs) of a read (Li & 
Durbin, 2010). These HSPs may be on different contigs, overlapping 
or separated by large gaps. To identify internal deletions it is thus nec-
essary to arrange these HSPs into a single best contiguous alignment. 
Therefore, DeviaTE first constructs all possible combinations of HSPs 
and then removes combinations with overlapping subsequences and 
inconsistent alignments; e.g., when large internal regions of reads are 
not aligned (Figure S3). Finally, DeviaTE solely retains the combina-
tion of HSPs with the largest fraction of the read aligned and replaces 
all of the HSPs of a read by this best combination of HSPs. Since raw 
frequency estimates of internal deletions show a small read length 
dependent bias, DeviaTE automatically applies a correction factor 
(Figure 3d). The reason for this bias is that bwa‐sw does not align sub-
sequences of reads that are shorter than 30 bp (by default). Hence, 
only internal deletions in central regions of reads can be detected.

To detect terminal deletions, DeviaTE utilizes soft clipped reads, 
i.e., reads for which a substantial fraction could not be mapped to 
any of the reference sequences. When the sequence of at least one 
single copy gene was provided, the tool also estimates the abun-
dance of TEs by contrasting the total coverage between a TE and the 
single copy gene(s).

Notably, DeviaTE considers both the base and the physical cov-
erage, i.e., the sequence spanned by split‐reads (Meyerson, Gabriel, 
& Getz, 2010). Such split‐reads may result from internally deleted 
TE insertions. This is important, as we found that a naive approach, 
which does not take the physical coverage into account, may lead to 
highly biased results (Figure S4).

Finally, the diversity of TEs is visualized with an illustration in-
spired by Sashimi plots, which are commonly used for quantitative 
visualization of splicing in RNA‐seq data (Katz et al., 2015). In our 
plots, internal deletions are shown instead of splicing events. The 
plots visualize the coverage of ambiguously and unambiguosly 
mapped reads, the frequency of SNPs, indels, internal deletions and 
terminal deletions (Figure 1). A panel showing features of the TE will 
be added at the bottom if a TE annotation is provided. In case several 

samples are analyzed, DeviaTE automatically arranges plots in a grid, 
in which different samples are aligned in rows and TE families in col-
umns. To enable a comparison of TE abundance among samples the 
coverage may be normalized either to a million mapped reads or to 
the coverage of single copy genes. Normalization with the coverage 
of single copy genes may be especially useful when comparing TE 
abundance among species. Whenever the genome size varies among 
samples, normalization to 1 million mapped reads will result in mis-
leading results, whereas normalization to single copy genes avoids 
this problem. The plots can be created in PDF or EPS format, which 
enables simple vector graphics processing.

DeviaTE is implemented in python (version 3.6+, Python Software 
Foundation, 2017) and distributed under the GNU GPLv3 License. It 
can be installed with the widely‐used pip python package manager. 
Additionally, a conda container‐type environment is available from 
the anaconda cloud. Conda sets up a separate environment and in-
stalls compatible versions of all dependencies of DeviaTE. Notably, 
the separate environment created by conda ensures that the instal-
lation does not interfere with other software and packages already 
present on the system. DeviaTE makes use of the python packages 
pandas version 0.23.4 (McKinney, 2010), pysam version 0.15 (Heger & 
Jacob, 2018) and samtools (Li et al., 2009). For visualization, DeviaTE 
uses r and the ggplot2 and cowplot packages (R Core Team, 2014; 
Wickham, 2016; Wilke, 2019).

3  | RESULTS

An analysis of TE abundance and diversity may be useful in many 
different research areas. DeviaTE may be used to study TE invasions 
(Figure 2), identify clinal variation in TE composition (Figure S6), es-
timate TE divergence within and among species (Figures S5, S7 and 
S8) and to estimate the proportions of internally deleted TEs. We 
demonstrate the utility of DeviaTE with a plot showing the composi-
tion of the long terminal repeat (LTR) retrotransposon burdock in 
a D. melanogaster population from the Netherlands (Figure 1: data 
from Grenier et al., 2015). This illustration visualizes the abundance 
as well as the diversity of burdock.

Further features of DeviaTE are demonstrated by using publicly 
available data of a P‐element invasion in experimentally evolving 
D. simulans populations (Figure 2: data from Kofler, Senti, Nolte, Tobler, 
& Schlötterer, 2018). The authors monitored a P‐element invasion for 
60 generations by sequencing the populations every 10 generations 
as pools. To allow for a comparison of the TE abundance among sam-
ples we normalized the coverage to 1 million mapped reads.

DeviaTE automatically arranged the data from multiple generations 
into a vertical grid. A legend is shown at the top and the TE annotation 
at the bottom (Figure 2). Note the SNP at position 2040, which is char-
acteristic for the D. simulans P‐element (Kofler et al., 2015; Yoshitake, 
Inomata, Sano, Kato, & Itoh, 2018). In agreement with Kofler et  al. 
(2018), we observe an increase of P‐element copy numbers during 
the invasion as well as a rapid emergence of internally deleted P‐ele-
ments (Figure 2). Using the coverage of the single copy gene rpl32 as 
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reference, we estimate that the P‐element abundance increased from 
0.95 insertions per haploid genome at the base population (G0) to 15.8 
at generation 60 (G60, Figure 2). This is consistent with the estimates 

of Kofler et al. (2018), who relied on a different approach to estimate 
P‐element abundance, i.e., extrapolating the fraction of reads mapping 
to the P‐element to the estimated genome size of D. simulans.

F I G U R E  2   An invasion of the P‐element in an experimental Drosophila simulans population visualized with DeviaTE (data from Kofler 
et al., 2018). We show the abundance and the diversity of the P‐element for four successive time points. The coverage was normalized to 
one million mapped reads and estimates of insertions per haploid genome (̂I) were calculated by relating the total coverage of the P‐element 
to the coverage of the gene rpl32. Note that the abundance of P‐elements as well as the number of internally deleted variants increases 
during the invasion [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  3   Validation of DeviaTE with simulated data. (a) Comparison between simulated and observed sequence divergence. DeviaTE 
accurately recovers simulated divergence of up to 15% for short reads (100 bp) and 22% for long reads (1,000 bp). Notably, the accuracy 
does not increase linearly with the read length. (b) Error of the estimated coverage dependent on the simulated divergence of reads. DeviaTE 
accurately reproduces the simulated coverage if the mismatch rate is smaller than 8% and 16% for short and long reads, respectively. Lower 
divergence levels are tolerated for indels. (c) Accuracy of allele frequency estimates dependent on the divergence. DeviaTE accurately 
reproduces allele frequencies of SNPs up to a divergence of 15%. (d) Accuracy of estimated frequencies of internal deletions. Since raw 
frequency estimates show a small bias (left), we implemented a read length dependent correction factor (right, inset), which substantially 
improves the accuracy of frequency estimates (right). Note that in a, c, and d a diagonal would indicate perfect agreement between expected 
and observed values [Colour figure can be viewed at wileyonlinelibrary.com]
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DeviaTE also allows to normalize the coverage of TEs to the cov-
erage of single copy genes. We demonstrate this feature by applying 
our tool to data from D.  melanogaster populations sampled across 
the North American cline on the East Coast (Figure S6; data from 
Bergland, Behrman, O'Brien, Schmidt, & Petrov, 2014). We investi-
gated whether copy numbers of the DNA transposon hobo exhibit 
clinal variation. Using the coverage of multiple single copy genes 
(rpl32, piwi and act5C) for normalization, we found a weak but non‐
significant relationship between latitude and hobo copy numbers 
(Figure S6).

3.1 | Validation

We carefully validated our tool with simulated data. First, we ex-
plored up to which level of sequence divergence DeviaTE accurately 
reports the expected TE diversity. We simulated transposable ele-
ment landscapes with known levels of nucleotide and structural 
divergence using SimulaTE (Kofler, 2018). Briefly, we artificially 
inserted TEs into a nonrepetitive sequence, derived from chromo-
some 2R of D. melanogaster, and subsequently simulated sequencing 

reads of varying length from this template. We then tested the level 
of sequence divergence that is accurately reproduced by DeviaTE 
(Figure 3a). We found that our tool recovers divergence levels of up 
to 15% with short reads of 100 bp. An increase of the read length 
to 150 bp allows for the recovery of divergence levels up to 18%, 
whereas increasing read length further, results in less notable gains 
in accuracy (22% with 1,000 bp; Figure 3a). Next, we investigated 
the impact of diverged or erroneous sequences on the accuracy of 
the estimated coverage. We simulated TE insertions with known 
coverage and introduced various amounts of mismatches and in-
dels into the reads. For short reads (100 bp), 10% mismatches led 
to a coverage error of 16%, whereas for long reads (1,000 bp) 10% 
mismatches resulted in a coverage error of merely 0.7% (Figure 3b, 
left). Less divergence is tolerated when indels are simulated instead 
of mismatches (Figure 3b, right).

To test the accuracy of the allele frequency estimates we sim-
ulated a population with 20 haploid genomes (Figure 3c). We used 
two TE sequences that differed solely by a single SNP and varied 
the frequency of these sequences in the population. At a moder-
ate divergence (<10%) the allele frequency is reproduced faithfully 

TA B L E  1   Comparison of different tools for analyzing TE abundance. The required input, the resulting output, notable features and 
shortcomings are shown for each tool (RepeatMasker [Smit et al., 1996‐2010] RepeatExplorer [Novák et al., 2013], dnaPipeTE [Goubert 
et al., 2015], RepLong [Guo et al., 2017] and DeviaTE)

  DeviaTE RepeatMasker RepeatExplorer dnaPipeTE RepLong

Method Alignment of 
reads to TEs

Alignment of TEs 
to assembly

De novo assembly De novo assembly De novo assembly

Input Sequencing reads, 
TE sequences

Genome assembly, 
TE sequences

Sequencing reads, 
TE sequences

Sequencing reads (single‐end only), TE 
sequences, genome size estimate

Sequencing reads, 
genome size 
estimate

Output Variation within 
TE families, 
visualization of 
TEs, quantifica-
tion of variation, 
estimates of TE 
abundance

Annotation of 
repeats, masked 
query sequence, 
genome propor-
tion of repeat or-
ders, divergence 
to consensus

TE contigs, 
genome propor-
tion of TEs, 
abundance of 
contigs

TE contigs, genome proportions of 
TEs, estimates of relative age of TEs, 
abundance of contigs

TE contigs

Notable 
features

Divergence at 
nucleotide reso-
lution, short and 
long reads, de-
tects structural 
variants of TEs, 
container‐type 
installation, read 
preprocessing

Identify low 
complexity DNA, 
detect con-
tamination in as-
sembly, different 
search engines

Platform inde-
pendent Galaxy 
server, read 
preprocessing, 
protein domain 
search, identifi-
cation of novel 
repeats, suitable 
for low‐coverage 
sequencing

Identification of novel repeats, suitable 
for low‐coverage sequencing

Supports long‐reads, 
sensitive algorithm, 
suitable for low‐
coverage sequenc-
ing, no TE library 
required

Shortcomings No genomic posi-
tion of TEs, no 
novel repeats

No quantification 
of families, no 
novel repeats, 
susceptible to low 
assembly quality

No genomic posi-
tion of TEs, long 
runtimes

Installation requires RepBase subscrip-
tion, no genomic position of TEs, no 
direct quantification of families

No quantification of 
families, does not 
consider sequenc-
ing quality, no 
genomic position 
of TEs

Availability 
(Win/Mac/
Linux)

−/+/+ −/+/+ +/+/+ −/−/+ −/−/+
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(adj. r2 = 0.99 for 100 bp reads, adj. r2 = 0.97 for 1,000 bp reads), 
whereas for higher levels of divergence the accuracy diminishes 
(Figure 3c).

Next, we validated the frequency of internal deletions of TEs as 
estimated by DeviaTE. We simulated diverse internal deletions that 
varied in length, position within the TE, and population frequency. 
Raw frequency estimates show a read length dependent bias, which 
causes the frequency of internal deletions to be overestimated for 
long reads and underestimated for short reads (Figure 3d, left). To 
avoid these biases, DeviaTE automatically applies a correction factor 
that results in highly accurate frequency estimates (Figure 3d, right).

Finally we validated the performance of DeviaTE with publicly 
available data from the D. melanogaster strain ISO1. We annotated 
the assembly of this strain (r6.26) with RepeatMasker (Smit, Hubley, 
& Green, 1996‐2010) and estimated the TE abundance with DeviaTE 
using short read data (SRR8182349). The TE abundance estimated 
by DeviaTE correlates well with the number of insertions found by 
RepeatMasker and the number of insertions provided in the refer-
ence annotation (supplementary results; Figure S9).

3.2 | Comparison to other programs

Several tools for analysing the TE composition of genomic data 
exist. They may broadly be classified into approaches that require 
a genome assembly (e.g., RepeatMasker [Smit et  al., 1996‐2010], 
PoPoolationTE2 [Kofler, Gómez‐Sánchez, & Schlötterer, 2016]) 
and approaches that do not require an assembled genome. The 
latter category can be further divided into tools that perform a de 
novo assembly of reads (e.g., RepeatExplorer [Novák, Neumann, 
Pech, Steinhaisl, & Macas, 2013], dnaPipeTE [Goubert et al., 2015], 
RepLong [Guo et  al., 2017]) and tools that align reads to TE se-
quences (e.g., DeviaTE; Table 1). These tools have different strengths 
and weaknesses. RepeatMasker and DeviaTE estimate the abun-
dance of known TE families but may not identify novel TE families. 
On the other hand, de novo assembly based methods allow for the 
identification of novel families but the relationship between the re-
sulting TE contigs and known TE families may be difficult to resolve 
(due to a complex network of one‐to‐many relationships between 
contigs and TE families). This may make it challenging to estimate 
the abundance of the known TE families. As an important advantage, 
tools that require a genome assembly usually allow to estimate the 
genomic position of TE insertions. However, a genome assembly is 
not available for many organisms and an assembly of low quality may 
lead to erroneous estimates of TE abundance and the genomic loca-
tion of TEs (Table 1). To allow for a better overview of the strengths, 
weaknesses and applicability of different methods, we present a 
summary of the aforementioned programs in Table 1.

4  | DISCUSSION

Dependent on the length of the sequencing reads, DeviaTE allows to 
recover the abundance and diversity of TEs with divergence levels 

up to 22%. For very short reads (≈100 bp), the accuracy of DeviaTE 
suffers when the divergence of TEs exceeds 15% (Figure 3). This can 
potentially be an issue, as membership of TEs in a family depends on 
the sequence similarity. According to a TE classification proposed by 
Wicker et al. (2007), TEs belong to the same family if sequence simi-
larity is at least 80%, over 80% of the sequence for at least 80 bp.

For evolutionary old TEs, an analysis with DeviaTE may thus be 
limited to recent and less diverged insertions. Hence, only a subset 
of ancient and highly degenerated TEs, such as L1 and CRE (Malik, 
Burke, & Eickbush, 1999), may be analysed. Old TEs are often found 
in pericentromeric and heterochromatin‐rich regions of the genome 
(Lerat, Rizzon, & Biémont, 2003). Thus, DeviaTE may show a reduced 
accuracy for TEs located in these regions. Another potential source 
for a bias might be TEs with structures prone to mutations. For ex-
ample, Alu elements, which account for a staggering 11% of the 
human genome, contain an unstable A‐rich tail that rapidly shrinks 
during transposition and accumulates mutations (Deininger, 2011). 
However, some authors report the highest sequence divergence for 
purportedly highly‐divergent LINE and Alu element subfamilies to be 
17.8% and 15.1%, respectively (Khan, Smit, & Boissinot, 2006; Price, 
Eskin, & Pevzner, 2004). These elements may be perfectly suited for 
an analysis with DeviaTE using reads of short or medium length.

As high quality genome assemblies are currently solely available 
for 25 eukaryotic species (Lewin et al., 2018), assembly‐free meth-
ods to quantify TEs, such as DeviaTE, may be useful for many differ-
ent reasearch questions in model and non‐model organisms alike. 
DeviaTE, however, requires consensus sequences of TEs. Genomic 
reads are mapped to these consensus sequences and the TE abun-
dance and diversity is estimated. The best results may thus be ob-
tained with consensus sequences of high quality.

A comprehensive, high‐quality repository of repeat elements 
does not exist yet, but multiple efforts are pursued to achieve this 
goal. A widely‐used, standard database for sequences of repeti-
tive elements is Repbase Update (Bao, Kojima, & Kohany, 2015). It 
contains the largest collection of consensus sequences for TEs and 
other repetitive elements, with currently over 44,000 entries from 
more than one hundred species. Other resources include Dfam with 
4,150 entries (Hubley et  al., 2016) and TREP, which initially con-
tained TEs from Triticeae only, but was gradually extended with se-
quences from other plant and fungal species (Wicker, Matthews, & 
Keller, 2002; Wicker et al., 2007). Additionally, manually curated da-
tabases for diverse species or clades exist. These include collections 
for Drosophila (Bergman et al., 2018), conifers (Yi et al., 2018), fish 
(Shao, Wang, Xu, & Peng, 2018), and dioecious plants (Li et al., 2016). 
A comprehensive overview of available repositories is presented in 
Goerner‐Potvin and Bourque (2018).

However, if the sequence of a specific TE can not be found in 
any database, multiple tools for generating consensus sequences are 
available, e.g., RepARK, REPdenovo, RepeatScout, or RepLong (Chu, 
Pei, & Wu, 2018; Guo et al., 2017; Koch, Platzer, & Downie, 2014; 
Price, Jones, & Pevzner, 2005). These tools construct prototype 
sequences of repetitive elements from sequencing reads by assem-
bling high‐frequency repeat k‐mers.
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We hope that our novel tool DeviaTE will contribute to the in-
vestigation of TE dynamics in diverse species. Its strengths lie in the 
assembly‐free nature and wide applicability to sequencing reads of 
different technologies, lengths and from different sources, such as 
cells, tissues, individuals, and populations. DeviaTE is aimed to cat-
alyze future progress in the broad spectrum of processes in which 
TEs play a major role.
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