

Received 25 October 2016 Accepted 4 November 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; iridium(III) complex; *C*,*N*-bidentate ligand; *fac*- C_3N_3 coordination set; π - π stacking interactions.

CCDC reference: 1515004

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of *fac*-[2-(4-methyl-5-phenyl-pyridin-2-yl)phenyl- $\kappa^2 C^1$,*N*]bis[2-(pyridin-2-yl)-phenyl- $\kappa^2 C^1$,*N*]iridium(III)

Chi-Heon Lee,^a Suk-Hee Moon,^b Ki-Min Park^{c*} and Youngjin Kang^{a*}

^aDivision of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea, ^bDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, and ^cResearch Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea. *Correspondence e-mail: kmpark@gnu.ac.kr, kangy@kangwon.ac.kr

In the title compound, $[Ir(C_{11}H_8N)_2(C_{18}H_{14}N)]$, the Ir^{III} ion adopts a distorted octahedral coordination environment defined by three *C*,*N*-chelating ligands, one stemming from a 2-(4-phenyl-5-methylpyridin-2-yl)phenyl ligand and two from 2-(pyridin-2-yl)phenyl ligands, arranged in a facial manner. The Ir^{III} ion lies almost in the equatorial plane [deviation = 0.0069 (15) Å]. In the crystal, intermolecular π - π stacking interactions, as well as intermolecular C-H··· π interactions, are present, leading to a three-dimensional network.

1. Chemical context

Cyclometallated iridium(III) complexes with the chelating ligand 2-phenylpyridine (C^N) are of great interest in phosphorescence organic light-emitting diodes (OLEDs) due to their high quantum efficiency and easy tuning emission energy (Kang et al., 2013). In general, iridium(III) complexes with chelating C^{\N} ligands can be divided into two groups, homoleptic and heteroleptic complexes, according to the coordination environment of the central Ir^{III} atom. The structural characteristics involving other chemical/electronic properties for both homoleptic $Ir(C^{\wedge}N)_3$ and heteroleptic $Ir(C^N)_2(L^X)$ complexes, where L^X is a monoanionic O^O or N^AO ligand, have been well explored over the past two decades (Chi & Chou, 2010). However, reports of the molecular and crystal structures of heteroleptic Ir^{III} compounds with the same chelating modes, *viz*. $Ir(C^{\wedge}N)_2(C^{\wedge}N)'$, are very scarce compared to those for $Ir(C^N)_2(L^X)$ (Jung *et al.*, 2012; Natori et al., 2013). Herein, we describe the structure of the title Ir^{III} complex, fac-{2-[(4-phenyl-5-methyl)pyridine-2-yl]phenyl- $\kappa^2 C^1$,N}bis[2-(pyridine-2-yl)phenyl- $\kappa^2 C^1$,N]iridium(III), which was synthesized by the reaction of $[(C^N)_2 Ir(\mu - Cl)]_2$ and 4-methyl-2,5-diphenylpyridine in the presence of Ag^I.

2. Structural commentary

In the title compound, the asymmetric unit comprises of one Ir^{III} ion, two 2-phenylpyridine ligands, and one 4-methyl-2,5diphenylpyridine ligand (Fig. 1). The Ir^{III} ion is six-coordinated by the three *C*,*N*-bidentate ligands, giving rise to a distorted octahedral coordination environment with bond angles falling in the range 79.27 (12) to 97.37 (13)°. As shown in Table 1, the Ir-C and Ir-N bond lengths in the title

Table 1			
Selected	geometric parameters	(Å,	°).

Ir1-C14	2.006 (3)	Ir1-N1	2.117 (3)
Ir1-C36	2.010 (3)	Ir1-N2	2.122 (3)
Ir1-C11	2.010 (3)	Ir1–N3	2.125 (3)
$C_{14} - Ir_{1} - C_{36}$	94.78 (13)	C11 - Ir1 - N2	88.63 (11)
C14-Ir1-C11	97.37 (13)	N1-Ir1-N2	96.33 (11)
C36-Ir1-C11	95.40 (13)	C14-Ir1-N3	86.75 (11)
C14-Ir1-N1	174.67 (11)	C36-Ir1-N3	79.51 (13)
C36-Ir1-N1	89.78 (12)	C11-Ir1-N3	173.73 (12)
C11-Ir1-N1	79.41 (12)	N1-Ir1-N3	96.81 (10)
C14-Ir1-N2	79.27 (12)	N2-Ir1-N3	96.80 (11)
C36-Ir1-N2	173.22 (11)		

compound are within the ranges reported for similar Ir^{III} compounds (Jung *et al.*, 2012). The pyridyl N atoms of the three ligands are arranged in a *fac*-configuration around the octahedrally coordinated Ir^{III} ion. The equatorial plane is defined by the N1/N3/C14/C11 atoms, the mean deviation from the least-squares plane being 0.081 Å. The Ir^{III} ion lies almost in the equatorial plane with a deviation of 0.0069 (15) Å. Within the 2-(pyridine-2-yl)phenyl ligands, the dihedral angles between the aromatic rings are 5.6 (2) (between rings N1/C1–C5 and C6–C11) and 5.9 (2)° (between rings N3/C30–C34 and C35–C40). Within the 2-[(4-phenyl-5-methyl)pyridine-2-yl]phenyl ligand, the dihedral angles between the central pyridine ring and the phenyl rings at either end are 1.3 (2) and 43.84 (12)° for the C13–C18 and C22–C27 rings, respectively.

3. Supramolecular features

Intermolecular π - π stacking interactions $[Cg1\cdots Cg1^{i} = 3.838 (2) \text{ Å}; Cg1 \text{ is the centroid of the C22-C27 ring;} symmetry code: (i) <math>-x$, -y + 2, -z] occur in the crystal structure of the title compound (Fig. 2). In addition, weak intermolecular C-H··· π interactions (Table 2) contribute to the stabilization of the crystal structure.

Table 2		
Hydrogen-bond geometry	(Å,	°).

Cg1 and Cg2 are the centroids of the C22–C27 and N1/C1–C5 rings, respectively.

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C29-H29A\cdots Cg1^{i}$	0.98	2.89	3.589 (4)	136
$C39-H39\cdots Cg2^{ii}$	0.95	2.89	3.796 (5)	160

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z - \frac{1}{2}$; (ii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$.

4. Synthesis and crystallization

The ligand 4-methyl-2,5-diphenylpyridine was synthesized according to a literature procedure (Zhou *et al.*, 2013). The title Ir^{III} complex was also prepared according to a literature protocol (Jung *et al.*, 2012). Crystals of the title complex were obtained by allowing a dichloromethane/hexane solution to evaporate slowly at room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. A reflection affected by the beamstop (100) was omitted from the final refinement. All H atoms were positioned geometrically and refined using a riding model, with d(C-H) = 0.95 Å for Csp^2-H , and 0.98 Å for methyl H atoms. For all H atoms, $U_{iso}(H) = 1.2U_{eq}$ of the parent atom.

Figure 1

View of the molecular structure of the title compound, showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

research communications

Figure 2

Packing plot of the molecular components in the title compound. Red and black dashed lines represent intermolecular π - π stacking interactions and C-H··· π interactions, respectively. H atoms not involved in intermolecular interactions have been omitted for clarity.

Acknowledgements

This study was supported by a 2016 Research Grant from Kangwon National University (No. 520160312).

References

- Brandenburg, K. (2010). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chi, Y. & Chou, P.-T. (2010). Chem. Soc. Rev. 39, 638-655.
- Jung, N., Lee, E., Kim, J., Park, H., Park, K.-M. & Kang, Y. (2012). Bull. Korean Chem. Soc. 33, 183–188.
- Kang, Y., Chang, Y.-L., Lu, J.-S., Ko, S.-B., Rao, Y., Varlan, M., Lu, Z.-H. & Wang, S. (2013). J. Mater. Chem. C. 1, 441–450.

Tabl	е	3	
Expe	eri	mental	details.

$[Ir(C_{11}H_8N)_2(C_{18}H_{14}N)]$
744.87
Monoclinic, $P2_1/c$
173
19.8293 (3), 8.6464 (1), 18.1551 (3)
106.715 (1)
2981.21 (8)
4
Μο Κα
4.51
$0.30 \times 0.25 \times 0.17$
Bruker APEXII CCD
Multi-scan (SADABS; Bruker, 2013)
0.521, 0.746
27408, 6855, 6080
0.033
0.651
0.026, 0.062, 1.02
6855
397
H-atom parameters constrained
1.77, -0.71

Computer programs: *APEX2* and *SAINT* (Bruker, 2013), *SHELXS97* and *SHELXTL* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015) and *DIAMOND* (Brandenburg, 2010).

- Natori, I., Natori, S., Kanasashi, A., Tsuchiya, K. & Ogino, K. (2013). Polym. J. 45, 601–605.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Zhou, Q., Zhang, B., Su, L., Jiang, T., Chen, R., Du, T., Ye, Y., Shen, J., Dai, G., Han, D. & Jiang, H. (2013). *Tetrahedron*, **69**, 10996–11003.

supporting information

Acta Cryst. (2016). E72, 1768-1770 [https://doi.org/10.1107/S2056989016017618]

Crystal structure of *fac*-[2-(4-methyl-5-phenylpyridin-2-yl)phenyl- $\kappa^2 C^1$,*N*]bis-[2-(pyridin-2-yl)phenyl- $\kappa^2 C^1$,*N*]iridium(III)

Chi-Heon Lee, Suk-Hee Moon, Ki-Min Park and Youngjin Kang

Computing details

Data collection: *APEX2* (Bruker, 2013); cell refinement: *SAINT* (Bruker, 2013); data reduction: *SAINT* (Bruker, 2013); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 2010); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

fac-[2-(4-Methyl-5-phenylpyridin-2-yl)phenyl- $\kappa^2 C^1$, N]bis[2-(pyridin-2-yl)phenyl- $\kappa^2 C^1$, N]iridium(III)

Crystal data [Ir(C₁₁H₈N)₂(C₁₈H₁₄N)] $M_r = 744.87$ Monoclinic, $P2_1/c$ a = 19.8293 (3) Å b = 8.6464 (1) Å c = 18.1551 (3) Å $\beta = 106.715$ (1)° V = 2981.21 (8) Å³ Z = 4

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{\min} = 0.521, \ T_{\max} = 0.746$
27408 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.062$ S = 1.026855 reflections 397 parameters 0 restraints F(000) = 1472 $D_x = 1.660 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9925 reflections $\theta = 2.3-27.5^{\circ}$ $\mu = 4.51 \text{ mm}^{-1}$ T = 173 KBlock, yellow $0.30 \times 0.25 \times 0.17 \text{ mm}$

6855 independent reflections 6080 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 27.6^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = -25 \rightarrow 25$ $k = -11 \rightarrow 11$ $l = -23 \rightarrow 23$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0283P)^2 + 4.5659P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.77 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.71 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ir1	0.29220 (2)	0.64276 (2)	0.04767 (2)	0.02005 (5)
N1	0.29261 (14)	0.8427 (3)	0.11505 (15)	0.0229 (6)
N2	0.19761 (13)	0.6951 (3)	-0.03909 (15)	0.0221 (5)
N3	0.36253 (15)	0.7274 (3)	-0.01184 (16)	0.0278 (6)
C1	0.32224 (19)	0.9782 (4)	0.10758 (19)	0.0292 (7)
H1	0.3448	0.9885	0.0682	0.035*
C2	0.3217 (2)	1.1028 (4)	0.1537 (2)	0.0364 (8)
H2	0.3427	1.1979	0.1459	0.044*
C3	0.2901 (2)	1.0878 (5)	0.2118 (2)	0.0390 (9)
Н3	0.2896	1.1721	0.2452	0.047*
C4	0.2595 (2)	0.9492 (4)	0.2208 (2)	0.0343 (8)
H4	0.2379	0.9371	0.2608	0.041*
C5	0.25996 (17)	0.8260 (4)	0.17116 (19)	0.0246 (7)
C6	0.22626 (17)	0.6753 (4)	0.17108 (19)	0.0241 (7)
C7	0.18657 (19)	0.6405 (4)	0.2211 (2)	0.0301 (8)
H7	0.1826	0.7142	0.2585	0.036*
C8	0.15301 (19)	0.4997 (5)	0.2166 (2)	0.0350 (8)
H8	0.1257	0.4762	0.2505	0.042*
C9	0.1596 (2)	0.3924 (4)	0.1620 (2)	0.0342 (8)
Н9	0.1371	0.2947	0.1589	0.041*
C10	0.19868 (18)	0.4272 (4)	0.1123 (2)	0.0299 (7)
H10	0.2020	0.3525	0.0751	0.036*
C11	0.23371 (16)	0.5691 (4)	0.11465 (17)	0.0231 (6)
C12	0.17645 (17)	0.5849 (4)	-0.09425 (18)	0.0244 (7)
C13	0.22309 (17)	0.4510 (4)	-0.08479 (18)	0.0233 (6)
C14	0.28203 (16)	0.4536 (4)	-0.01860 (18)	0.0233 (7)
C15	0.32853 (18)	0.3276 (4)	-0.0099 (2)	0.0275 (7)
H15	0.3689	0.3247	0.0336	0.033*
C16	0.31741 (19)	0.2077 (4)	-0.0626 (2)	0.0310 (8)
H16	0.3504	0.1253	-0.0550	0.037*
C17	0.2591 (2)	0.2069 (4)	-0.1257 (2)	0.0312 (8)
H17	0.2515	0.1237	-0.1613	0.037*
C18	0.21153 (19)	0.3280 (4)	-0.13697 (19)	0.0280 (7)
H18	0.1709	0.3276	-0.1803	0.034*
C19	0.11442 (18)	0.6060 (4)	-0.1549 (2)	0.0294 (8)
H19	0.1004	0.5301	-0.1942	0.035*
C20	0.07314 (17)	0.7395 (4)	-0.15741 (18)	0.0259 (7)
C21	0.09467 (17)	0.8491 (4)	-0.09800 (19)	0.0239 (7)
C22	0.05436 (17)	0.9901 (4)	-0.09133 (17)	0.0249 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C23	0.08800 (19)	1.1305 (4)	-0.0697 (2)	0.0306 (8)
H23	0.1374	1.1375	-0.0614	0.037*
C24	0.0506 (2)	1.2615 (5)	-0.0599 (2)	0.0373 (9)
H24	0.0746	1.3565	-0.0448	0.045*
C25	-0.0211 (2)	1.2533 (5)	-0.0722 (2)	0.0394 (9)
H25	-0.0468	1.3428	-0.0661	0.047*
C26	-0.0557 (2)	1.1141 (5)	-0.0935 (2)	0.0367 (9)
H26	-0.1052	1.1082	-0.1022	0.044*
C27	-0.01834 (18)	0.9837 (5)	-0.10215 (19)	0.0305 (8)
H27	-0.0424	0.8882	-0.1156	0.037*
C28	0.15737 (17)	0.8197 (4)	-0.04181 (18)	0.0234 (7)
H28	0.1729	0.8943	-0.0021	0.028*
C29	0.00979 (19)	0.7602 (5)	-0.2259 (2)	0.0345 (8)
H29A	0.0048	0.6701	-0.2597	0.041*
H29B	-0.0324	0.7707	-0.2085	0.041*
H29C	0.0157	0.8535	-0.2540	0.041*
C30	0.3439 (2)	0.7941 (4)	-0.0815 (2)	0.0360 (8)
H30	0.2953	0.8109	-0.1062	0.043*
C31	0.3921 (3)	0.8394 (5)	-0.1188 (3)	0.0489 (11)
H31	0.3773	0.8862	-0.1682	0.059*
C32	0.4622 (3)	0.8150 (6)	-0.0825 (3)	0.0596 (14)
H32	0.4968	0.8455	-0.1066	0.072*
C33	0.4820 (2)	0.7464 (6)	-0.0116 (3)	0.0534 (12)
H33	0.5305	0.7304	0.0138	0.064*
C34	0.43158 (19)	0.7001 (4)	0.0236 (2)	0.0338 (8)
C35	0.44516 (19)	0.6172 (4)	0.0971 (2)	0.0337 (8)
C36	0.38503 (17)	0.5785 (4)	0.12033 (19)	0.0261 (7)
C37	0.3974 (2)	0.4950 (4)	0.1889 (2)	0.0350 (8)
H37	0.3584	0.4691	0.2072	0.042*
C38	0.4639 (2)	0.4488 (5)	0.2311 (2)	0.0471 (11)
H38	0.4701	0.3916	0.2772	0.057*
C39	0.5216 (2)	0.4860 (6)	0.2059 (3)	0.0525 (12)
H39	0.5674	0.4527	0.2344	0.063*
C40	0.5128 (2)	0.5708 (5)	0.1401 (3)	0.0483 (11)
H40	0.5526	0.5982	0.1236	0.058*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ir1	0.01823 (7)	0.02267 (7)	0.01843 (7)	0.00119 (5)	0.00394 (5)	-0.00203 (5)
N1	0.0223 (14)	0.0243 (14)	0.0211 (13)	0.0011 (11)	0.0049 (11)	-0.0029 (11)
N2	0.0186 (13)	0.0271 (14)	0.0206 (13)	-0.0020 (11)	0.0055 (11)	0.0004 (11)
N3	0.0306 (15)	0.0247 (15)	0.0309 (15)	-0.0012 (12)	0.0137 (13)	-0.0080 (12)
C1	0.0325 (18)	0.0304 (18)	0.0254 (17)	-0.0015 (15)	0.0093 (15)	-0.0016 (14)
C2	0.046 (2)	0.0267 (18)	0.037 (2)	-0.0028 (16)	0.0114 (18)	-0.0050 (15)
C3	0.050(2)	0.032 (2)	0.036 (2)	0.0037 (18)	0.0148 (18)	-0.0109 (16)
C4	0.042 (2)	0.036 (2)	0.0280 (18)	0.0034 (17)	0.0148 (16)	-0.0065 (15)
C5	0.0205 (16)	0.0303 (18)	0.0212 (16)	0.0049 (13)	0.0032 (13)	-0.0002 (13)

supporting information

C6	0.0200 (16)	0.0286 (17)	0.0225 (16)	0.0055 (13)	0.0041 (13)	0.0016 (13)
C7	0.0276 (18)	0.038 (2)	0.0260 (17)	0.0079 (15)	0.0090 (14)	0.0017 (14)
C8	0.0306 (19)	0.045 (2)	0.0321 (19)	0.0012 (17)	0.0142 (16)	0.0092 (16)
C9	0.0301 (19)	0.033 (2)	0.040 (2)	-0.0039 (15)	0.0112 (16)	0.0051 (16)
C10	0.0278 (17)	0.0333 (19)	0.0283 (17)	0.0003 (15)	0.0076 (14)	-0.0035 (15)
C11	0.0201 (15)	0.0285 (17)	0.0193 (15)	0.0060 (14)	0.0034 (12)	0.0048 (13)
C12	0.0264 (16)	0.0287 (17)	0.0194 (15)	-0.0038 (14)	0.0084 (13)	0.0006 (13)
C13	0.0246 (16)	0.0254 (17)	0.0211 (15)	-0.0030 (13)	0.0084 (13)	-0.0005 (12)
C14	0.0214 (15)	0.0269 (17)	0.0233 (16)	-0.0027 (13)	0.0093 (13)	-0.0009 (13)
C15	0.0264 (17)	0.0321 (19)	0.0236 (17)	0.0010 (14)	0.0068 (14)	-0.0015 (13)
C16	0.037 (2)	0.0231 (17)	0.036 (2)	0.0037 (15)	0.0158 (16)	-0.0016 (15)
C17	0.043 (2)	0.0247 (17)	0.0277 (18)	-0.0050 (16)	0.0133 (16)	-0.0093 (14)
C18	0.0310 (18)	0.0303 (18)	0.0228 (17)	-0.0074 (14)	0.0080 (14)	-0.0036 (13)
C19	0.0266 (18)	0.0332 (19)	0.0254 (17)	-0.0091 (14)	0.0027 (14)	-0.0098 (14)
C20	0.0232 (16)	0.0369 (19)	0.0178 (15)	-0.0037 (14)	0.0063 (13)	0.0024 (13)
C21	0.0198 (15)	0.0308 (18)	0.0214 (16)	-0.0021 (13)	0.0063 (13)	0.0040 (13)
C22	0.0209 (16)	0.0358 (19)	0.0167 (15)	0.0039 (14)	0.0034 (12)	0.0048 (13)
C23	0.0271 (18)	0.036 (2)	0.0272 (18)	0.0018 (15)	0.0056 (15)	0.0054 (14)
C24	0.045 (2)	0.035 (2)	0.031 (2)	0.0041 (17)	0.0082 (17)	0.0058 (15)
C25	0.044 (2)	0.043 (2)	0.031 (2)	0.0192 (19)	0.0109 (17)	0.0076 (17)
C26	0.0248 (18)	0.058 (3)	0.0265 (18)	0.0140 (17)	0.0066 (15)	0.0092 (17)
C27	0.0216 (17)	0.043 (2)	0.0251 (17)	0.0008 (15)	0.0045 (14)	0.0063 (15)
C28	0.0242 (16)	0.0267 (17)	0.0190 (15)	-0.0016 (13)	0.0057 (13)	-0.0016 (12)
C29	0.0263 (18)	0.049 (2)	0.0240 (18)	0.0034 (16)	0.0005 (14)	-0.0027 (15)
C30	0.046 (2)	0.0297 (19)	0.038 (2)	-0.0017 (17)	0.0203 (18)	-0.0042 (16)
C31	0.069 (3)	0.038 (2)	0.053 (3)	-0.006 (2)	0.039 (3)	-0.0018 (19)
C32	0.062 (3)	0.059 (3)	0.077 (4)	-0.012 (2)	0.051 (3)	-0.006 (3)
C33	0.034 (2)	0.061 (3)	0.072 (3)	-0.007 (2)	0.026 (2)	-0.012 (2)
C34	0.0279 (18)	0.0304 (19)	0.046 (2)	-0.0045 (15)	0.0156 (17)	-0.0129 (17)
C35	0.0236 (17)	0.034 (2)	0.041 (2)	0.0006 (14)	0.0042 (16)	-0.0131 (15)
C36	0.0227 (16)	0.0233 (16)	0.0291 (17)	0.0023 (14)	0.0021 (13)	-0.0104 (14)
C37	0.036 (2)	0.034 (2)	0.0280 (19)	0.0060 (16)	-0.0020 (15)	-0.0055 (15)
C38	0.045 (2)	0.045 (2)	0.036 (2)	0.011 (2)	-0.0133 (18)	-0.0080 (18)
C39	0.029 (2)	0.056 (3)	0.054 (3)	0.012 (2)	-0.0163 (19)	-0.012 (2)
C40	0.0219 (19)	0.054 (3)	0.063 (3)	0.0017 (19)	0.0020 (18)	-0.017 (2)

Geometric parameters (Å, °)

Ir1—C14	2.006 (3)	C18—H18	0.9500
Ir1—C36	2.010 (3)	C19—C20	1.408 (5)
Ir1—C11	2.010 (3)	C19—H19	0.9500
Ir1—N1	2.117 (3)	C20—C21	1.407 (5)
Ir1—N2	2.122 (3)	C20—C29	1.502 (5)
Ir1—N3	2.125 (3)	C21—C28	1.386 (5)
N1-C1	1.335 (4)	C21—C22	1.482 (5)
N1C5	1.363 (4)	C22—C23	1.386 (5)
N2-C28	1.333 (4)	C22—C27	1.399 (4)
N2—C12	1.359 (4)	C23—C24	1.393 (5)

N3—C30	1.342 (5)	C23—H23	0.9500
N3—C34	1.356 (5)	C24—C25	1.376 (5)
C1—C2	1.367 (5)	C24—H24	0.9500
C1—H1	0.9500	C25—C26	1.383 (6)
C2—C3	1.379 (5)	C25—H25	0.9500
C2—H2	0.9500	C26—C27	1.382 (5)
C3—C4	1.375 (5)	C26—H26	0.9500
С3—Н3	0.9500	C27—H27	0.9500
C4—C5	1.396 (5)	C28—H28	0.9500
C4—H4	0.9500	C29—H29A	0.9800
C5—C6	1.465 (5)	C29—H29B	0.9800
C6—C7	1.395 (5)	C29—H29C	0.9800
C6-C11	1 415 (5)	C30-C31	1 377 (5)
C7-C8	1 379 (5)	C30—H30	0.9500
С7—Н7	0.9500	$C_{31} - C_{32}$	1 372 (7)
C_{8}	1 390 (5)	C31—H31	0.9500
C8—H8	0.9500	C_{32}	1 369 (7)
C_{0} C_{10}	1 383 (5)	$C_{32} = C_{33}$	0.9500
C_{9} H_{9}	0.9500	C_{32} C_{34}	1 301 (5)
C_{10} C_{11}	0.9300	C33 H33	0.0500
C10_H10	0.0500	C_{34} C_{35}	1 460 (6)
C_{10}	0.9300	$C_{34} = C_{35}$	1.409(0) 1.402(5)
C_{12} C_{13}	1.407 (3)	$C_{35} = C_{40}$	1.403(3)
C_{12} C_{13} C_{12} C_{18}	1.400(3)	$C_{35} - C_{30}$	1.413(3)
C13 - C18	1.399 (4)	$C_{30} - C_{37}$	1.399 (3)
C13 - C14	1.415 (4)	$C_{37} - C_{38}$	1.379(5)
	1.406 (5)	C37—H37	0.9500
C15—C16	1.385 (5)	C38—C39	1.388 (7)
CIS—HIS	0.9500	C38—H38	0.9500
	1.3/4 (5)	C39—C40	1.369 (7)
C16—H16	0.9500	C39—H39	0.9500
C17—C18	1.385 (5)	C40—H40	0.9500
С17—Н17	0.9500		
C14—Ir1—C36	94.78 (13)	C18—C17—H17	120.2
C14—Ir1—C11	97.37 (13)	C17—C18—C13	120.2 (3)
C_{36} -Ir1-C11	95.40 (13)	C17—C18—H18	119.9
C14—Ir1—N1	174.67 (11)	C13—C18—H18	119.9
C_{36} Ir1 N1	89 78 (12)	C12 - C19 - C20	1201(3)
C11—Ir1—N1	79 41 (12)	C12-C19-H19	120.0
C14—Ir1—N2	79.27 (12)	C20-C19-H19	120.0
C_{36} Ir1 N2	173.22(11)	$C_{21} - C_{20} - C_{19}$	118.8 (3)
C11—Ir1—N2	88 63 (11)	$C_{21} = C_{20} = C_{19}$	123 4 (3)
N1—Ir1—N2	96 33 (11)	C_{19} C_{20} C_{29}	1177(3)
C14—Ir1—N3	86 75 (11)	C_{28} C_{21} C_{20} C_{20}	1168(3)
C_{36} Ir1 N3	79 51 (13)	C_{28} C_{21} C_{20}	118.8 (3)
C11—Ir1—N3	173 73 (12)	C_{20} C_{21} C_{22}	1744(3)
N1_Ir1_N3	96 81 (10)	C_{23} C_{23} C_{23} C_{27}	127.7(3) 1178(3)
N2—Ir1—N3	96.80 (11)	C_{23} C_{22} C_{21}	1211(3)
···· ··· · ···	20.00 (11)		141.1 (2)

C1—N1—C5	119.1 (3)	C27—C22—C21	120.9 (3)
C1—N1—Ir1	125.9 (2)	C22—C23—C24	121.2 (3)
C5—N1—Ir1	115.0 (2)	С22—С23—Н23	119.4
C28—N2—C12	119.0 (3)	С24—С23—Н23	119.4
C28—N2—Ir1	126.3 (2)	C25—C24—C23	120.1 (4)
C12—N2—Ir1	114.6 (2)	C25—C24—H24	120.0
C30—N3—C34	119.3 (3)	C23—C24—H24	120.0
C30—N3—Ir1	125.8 (2)	C24—C25—C26	119.7 (4)
C34—N3—Ir1	114.8 (2)	C24—C25—H25	120.2
N1-C1-C2	123.3 (3)	C26—C25—H25	120.2
N1-C1-H1	118.4	C_{27} C_{26} C_{25}	120.2(3)
C^2 — $C1$ — $H1$	118.4	$C_{27} = C_{26} = H_{26}$	119.9
$C_1 - C_2 - C_3$	118.7 (4)	C_{25} C_{26} H_{26}	119.9
C1 - C2 - C3	120.7	$C_{25} = C_{20} = H_{20}$	117.5 121.0(4)
$C_1 = C_2 = H_2$	120.7	$C_{20} = C_{27} = C_{22}$	121.0 (4)
$C_3 = C_2 = H_2$	120.7	$C_{20} = C_{27} = H_{27}$	119.5
$C_4 = C_3 = C_2$	119.1 (5)	$N_2 = C_2^2 = C_2^2$	117.3 125.2(2)
$C_4 = C_3 = H_3$	120.5	$N_2 = C_{20} = C_{21}$	123.2(3)
$C_2 = C_3 = H_3$	120.5	$N_2 = C_{28} = H_{28}$	117.4
$C_3 = C_4 = C_5$	120.2 (3)	C21—C28—H28	11/.4
C3—C4—H4	119.9	C20—C29—H29A	109.5
C5—C4—H4	119.9	С20—С29—Н29В	109.5
NI-C5-C4	119.6 (3)	Н29А—С29—Н29В	109.5
N1	114.1 (3)	С20—С29—Н29С	109.5
C4—C5—C6	126.3 (3)	H29A—C29—H29C	109.5
C7—C6—C11	121.9 (3)	H29B—C29—H29C	109.5
C7—C6—C5	122.2 (3)	N3—C30—C31	122.9 (4)
C11—C6—C5	115.8 (3)	N3—C30—H30	118.5
C8—C7—C6	120.3 (3)	С31—С30—Н30	118.5
С8—С7—Н7	119.9	C32—C31—C30	118.1 (4)
С6—С7—Н7	119.9	С32—С31—Н31	120.9
C7—C8—C9	119.3 (3)	С30—С31—Н31	120.9
С7—С8—Н8	120.4	C33—C32—C31	119.7 (4)
С9—С8—Н8	120.4	С33—С32—Н32	120.2
C10—C9—C8	120.4 (3)	С31—С32—Н32	120.2
С10—С9—Н9	119.8	C32—C33—C34	120.5 (4)
С8—С9—Н9	119.8	С32—С33—Н33	119.8
C9—C10—C11	122.4 (3)	С34—С33—Н33	119.8
С9—С10—Н10	118.8	N3—C34—C33	119.5 (4)
C11—C10—H10	118.8	N3—C34—C35	114.3 (3)
C10—C11—C6	115.8 (3)	C33—C34—C35	126.1 (4)
C10-C11-Ir1	128.7(2)	C40-C35-C36	1213(4)
C6-C11-Ir1	115.5 (2)	C40-C35-C34	122.8 (4)
$N_2 - C_{12} - C_{19}$	1200(3)	$C_{36} - C_{35} - C_{34}$	122.0(1) 115.9(3)
$N_2 - C_{12} - C_{13}$	1147(3)	C_{37} C_{36} C_{35}	116.2 (3)
C19-C12-C13	125 2 (3)	C_{37} C_{36} Ir_{1}	128 3 (3)
C18 - C13 - C14	121.4 (3)	C_{35} C_{36} Ir_{1}	1155(3)
C_{18} C_{13} C_{12}	123.2(3)	C_{38} C_{37} C_{36}	1225(3)
C_{14} C_{13} C_{12}	125.2(3) 115 3 (3)	C_{38} C_{37} H_{37}	118.8
017 - 013 - 012	113.3 (3)	0.50-0.57-1157	110.0

C15—C14—C13	116.0 (3)	C36—C37—H37	118.8
C15—C14—Ir1	127.9 (2)	C37—C38—C39	119.9 (4)
C13—C14—Ir1	116.0 (2)	С37—С38—Н38	120.0
C16—C15—C14	122.2 (3)	C39—C38—H38	120.0
C16-C15-H15	118.9	C40-C39-C38	12010 1201(4)
C_{14} C_{15} H_{15}	118.9	C40-C39-H39	120.0
C_{17} C_{16} C_{15}	120.6(3)	C_{38} C_{39} H_{39}	120.0
C_{17} C_{16} H_{16}	110.7	C_{39} C_{40} C_{35}	120.0 120.1(4)
$C_{17} = C_{10} = 110$	119.7	$C_{39} = C_{40} = C_{33}$	120.1 (4)
$C_{15} - C_{10} - 1110$	117.7	$C_{35} = C_{40} = H_{40}$	120.0
C1(-C17-U17)	119.0 (5)	C35—C40—H40	120.0
С10—С17—П17	120.2		
C5-N1-C1-C2	0.0.(5)	C_{12} C_{19} C_{20} C_{29}	176 5 (3)
$C_3 - N_1 - C_1 - C_2$	-170.0(3)	$C_{12} = C_{13} = C_{20} = C_{23}$	170.5(3)
$\frac{111}{11} - \frac{11}{11} - 1$	179.0(3) 1.2(6)	$C_{19} = C_{20} = C_{21} = C_{28}$	2.3(4)
N1 - C1 - C2 - C3	1.2(0)	$C_{29} = C_{20} = C_{21} = C_{28}$	-1/4.9(3)
C1 - C2 - C3 - C4	-0.9(6)	C19 - C20 - C21 - C22	-1/0.0(3)
$C_2 - C_3 - C_4 - C_5$	-0.5 (6)	$C_{29} = C_{20} = C_{21} = C_{22}$	6.2 (5)
CI - NI - C5 - C4	-1.5 (5)	$C_{28} = C_{21} = C_{22} = C_{23}$	42.5 (4)
IrI-NI-C5-C4	177.6 (3)	C20—C21—C22—C23	-138.7(3)
C1—N1—C5—C6	176.9 (3)	C28—C21—C22—C27	-133.6 (3)
lr1-N1-C5-C6	-4.0 (4)	C20—C21—C22—C27	45.3 (4)
C3—C4—C5—N1	1.7 (5)	C27—C22—C23—C24	-0.8(5)
C3—C4—C5—C6	-176.5 (4)	C21—C22—C23—C24	-177.0 (3)
N1—C5—C6—C7	-175.9 (3)	C22—C23—C24—C25	-0.4 (5)
C4—C5—C6—C7	2.4 (5)	C23—C24—C25—C26	0.7 (5)
N1—C5—C6—C11	1.3 (4)	C24—C25—C26—C27	0.2 (5)
C4—C5—C6—C11	179.6 (3)	C25—C26—C27—C22	-1.4 (5)
C11—C6—C7—C8	-0.1 (5)	C23—C22—C27—C26	1.7 (5)
C5—C6—C7—C8	176.9 (3)	C21—C22—C27—C26	177.9 (3)
C6—C7—C8—C9	0.4 (5)	C12—N2—C28—C21	-1.1(5)
C7—C8—C9—C10	-0.7 (6)	Ir1—N2—C28—C21	-178.0(2)
C8—C9—C10—C11	0.7 (6)	C20-C21-C28-N2	-1.4 (5)
C9—C10—C11—C6	-0.3(5)	C22—C21—C28—N2	177.5 (3)
C9—C10—C11—Ir1	-179.5(3)	C34—N3—C30—C31	-1.2(5)
C7—C6—C11—C10	0.1 (5)	Ir1—N3—C30—C31	-176.5(3)
C5-C6-C11-C10	-177.2(3)	N3-C30-C31-C32	-0.1(6)
C7-C6-C11-Ir1	179 3 (3)	C_{30} C_{31} C_{32} C_{33}	0.4(7)
C_{5} C_{6} C_{11} I_{r1}	21(4)	C_{31} C_{32} C_{33} C_{34}	0.1(7)
C_{28} N2 C_{12} C_{19}	2.1(4) 2.6(4)	C_{30} N3 C_{34} C_{33}	22(5)
$r_1 = r_2 = r_1^2 = r_1^2 = r_1^2$	2.0(4)	$I_{r1} N_{2} C_{34} C_{33}$	2.2(3)
$111 - N_2 - C_{12} - C_{13}$	179.9(2) -178.2(2)	111 - 105 - 054 - 055	-176.0(3)
$C_{20} = N_2 = C_{12} = C_{13}$	-1/8.2(3)	C_{30} N3 C_{34} C35	-1/0.1(3)
$M_{\rm N2} = 0.02 = 0.02$	-1.0(3)	111 - 103 - 0.34 - 0.35	-0.3 (4)
$N_2 - C_{12} - C_{13} - C_{18}$	-1/7.8(3)	C_{32} — C_{33} — C_{34} — N_{3}	-2.0(6)
U19 - U12 - U13 - U18	1.2 (5)	$U_{32} = U_{33} = U_{34} = U_{35}$	1/6.1 (4)
$N_2 - C_{12} - C_{13} - C_{14}$	1.9 (4)	N3-C34-C35-C40	1/6.4 (3)
C19—C12—C13—C14	-179.1 (3)	C33—C34—C35—C40	-1.8 (6)
C18—C13—C14—C15	1.5 (4)	N3—C34—C35—C36	-0.2 (5)
C12—C13—C14—C15	-178.2 (3)	C33—C34—C35—C36	-178.3(4)

C18—C13—C14—Ir1	177.8 (2)	C40—C35—C36—C37	1.3 (5)
C12—C13—C14—Ir1	-1.9 (3)	C34—C35—C36—C37	177.9 (3)
C13—C14—C15—C16	-0.2 (5)	C40—C35—C36—Ir1	-176.1 (3)
Ir1—C14—C15—C16	-176.0 (3)	C34—C35—C36—Ir1	0.5 (4)
C14—C15—C16—C17	-0.9 (5)	C35—C36—C37—C38	-1.6 (5)
C15—C16—C17—C18	0.7 (5)	Ir1—C36—C37—C38	175.4 (3)
C16—C17—C18—C13	0.5 (5)	C36—C37—C38—C39	0.4 (6)
C14—C13—C18—C17	-1.7 (5)	C37—C38—C39—C40	1.1 (7)
C12-C13-C18-C17	178.0 (3)	C38—C39—C40—C35	-1.4 (7)
N2-C12-C19-C20	-1.7 (5)	C36—C35—C40—C39	0.2 (6)
C13—C12—C19—C20	179.3 (3)	C34—C35—C40—C39	-176.2 (4)
C12-C19-C20-C21	-0.8 (5)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C22–C27 and N1/C1–C5 rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D···A	D—H…A
C29—H29 A ···Cg1 ⁱ	0.98	2.89	3.589 (4)	136
С39—Н39…Сg2 ^{іі}	0.95	2.89	3.796 (5)	160

Symmetry codes: (i) -*x*, *y*-1/2, -*z*-1/2; (ii) -*x*+1, *y*-1/2, -*z*+1/2.