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The combination of synthetic anthelmintics and bioactive phytochemicals may be a

pharmacological tool for improving nematode control in livestock. Carvone (R-CNE) has

shown in vitro activity against gastrointestinal nematodes; however, the anthelmintic

effect of bioactive phytochemicals either alone or combined with synthetic drugs has

been little explored in vivo. Here, the pharmacological interaction of abamectin (ABM) and

R-CNE was assessed in vitro and in vivo. The efficacy of this combination was evaluated

in lambs naturally infected with resistant gastrointestinal nematodes. Additionally, the

ligand and molecular docking of both molecules to P-glycoprotein (P-gp) was studied

in silico. The presence of R-CNE produced a significant (p < 0.05) increase of Rho123

and ABM accumulation in the intestinal explants. After 60min of incubation, Rho123

incubated with R-CNE had a 67 ± 21% higher concentration (p < 0.01) than when

it was incubated alone. In the case of ABM, a significant increase in the intestinal

concentrations was observed at 15 and 30min after incubation with R-CNE. In the

in vivo assay, no undesirable effects were observed after the oral administration of

R-CNE. The coadministration of the natural compound prolonged ABM absorption in

lambs. ABM T½ absorption was 1.57-fold longer (p < 0.05) in the coadministered

group. Concentrations of R-CNE between 420 and 2,593 ng/mL were detected in the

bloodstream between 1 and 48 h posttreatment. The in vivo efficacy of ABM against

gastrointestinal nematodes increased from 94.9 to 99.8% in the presence of R-CNE, with

the lower confidence interval limit being >90%. In vitro/in vivo pharmacoparasitological

studies are relevant for the knowledge of the interactions and the efficacy of bioactive

natural products combined with synthetic anthelmintics. While ADMET (absorption,

distribution, metabolism, excretion, and toxicity) predictions and the molecular docking

study showed a good interaction between ABM and P-gp, R-CNE does not appear to

modulate this efflux protein. Therefore, the pharmacokinetic–pharmacodynamic effect
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of R-CNE on ABM should be attributed to its effect on membrane permeability. The

development of pharmacology-based information is critical for the design of successful

strategies for the parasite control.

Keywords: carvone, abamectin, drug-interaction, resistant nematodes, P-glycoprotein

INTRODUCTION

Gastrointestinal nematodes cause one of the main diseases
affecting livestock in grazing systems worldwide (1, 2). Despite
the diverse chemical groups available to control parasitic diseases
in ruminants, macrocyclic lactones (MLs) have been the most
widely used drugs during the last 30 years (3). The intensive and
injudicious use of these compounds has led to therapeutic failures
and the expansion of anthelmintic resistance (4). Considering
the high level of resistance to MLs, there is an urgent need to
search for novel strategies to extend the life span of antiparasitic
agents. One possibility of maintaining the use of already existing
drugs is by combining them with unusual compounds with
the aim to reduce the biochemical mechanisms of resistance
(5). Different plant-derived products were tested as potential
tools for the treatment of helminth infestations in ruminants
(6, 7), which can contribute with additive or synergistic effects
when interacting with antiparasitic drugs. R(-) carvone (R-CNE)
(5-isopropenyl-2-methyl-2-cyclohexenone) occurs naturally as
dextrorotatory (D-) and levorotatory (L-) enantiomers in several
food items such as mint and caraway. R-CNE is also used
as pesticide and, together with other active substances, as a
zootechnical feed additive (8). There is scarce information about
the anthelmintic use of this compound. The in vitro activity
of R-CNE has been shown, particularly against Haemonchus
contortus egg hatch. The 50% lethal concentration of CNE was
85µg/mL, and this effect was increased after the combination
with different phytochemicals (7). Moreover, the effect of the
long-term administration of encapsulated R-CNE was recently
evaluated in sheep, and a significant reduction in the fecal
egg count was obtained (9). These promissory observations
show the need for additional research on the potential of this
phytochemical compound as a pharmacological alternative to
treat gastrointestinal parasitic diseases of ruminants. Overall,
there is a need to gain further knowledge on the potential of
this phytochemical compound to increase the antiparasitic action
of synthetic anthelmintics upon their combined administration.
Thus, bioactive phytochemicals may contribute to an increase in
parasite control by pharmacokinetic and/or pharmacodynamic
interactions, enhancing the effect of existing anthelmintic drugs.

MLs such as abamectin (ABM) are well-known substrates
and/or inhibitors of the ATP- binding cassette (ABC)
transporters, such as P-glycoprotein (P-gp) (10, 11). This
transmembrane protein is able to pump out several unrelated
endobiotics and xenobiotics from mammal and parasite
cells through an ATP-dependent process (12). Many natural
compounds from plant sources inhibit P-gp and increase the
effectiveness of conventional chemotherapy without undesirable
toxicological effects (13). It has been also well documented that
phytochemicals may affect intestinal absorption, with further

effects on the pharmacokinetics of different compounds through
several mechanisms (14). In this context, it is necessary to assess
whether the combined administration of R-CNE and ABM
increases the anthelmintic effect and if a beneficial drug–drug
interaction occurs. Thus, this work assessed in vitro and in vivo
the pharmacological interaction of ABM and R-CNE. The
efficacy of this combination was evaluated in lambs naturally
infected with resistant gastrointestinal nematodes. Additionally,
the ligand and molecular docking of both molecules to P-gp was
studied in silico.

MATERIALS AND METHODS

Animal procedures and management protocols were carried out
according to internationally accepted animal welfare guidelines
(15) and approved by the Animal Welfare Committee of
the Faculty of Veterinary Medicine, Universidad Nacional del
Centro de la Provincia de Buenos Aires, Tandil, Argentina
(Internal Protocol: FCV-UNCPBA 11/2018; approval date:
August 27, 2018).

In vitro Evaluation of Intestinal
Accumulation
The modulation of intestinal accumulation by R-CNE was
assessed using the intestinal explant model. Cattle ileum samples
were obtained from a local slaughterhouse (Mirasur SA, Tandil,
Argentina) located 16 km away from the laboratory facilities.
Ileum samples were obtained from Aberdeen Angus/Hereford
crossbreed steers of approximately 350 kg in weight; immediately
after extraction, samples were rinsed gently with ice-cold KCl
1.15% and Euro-Collins solution (0.19M glucose; 15.43mM
KH2PO4; 42.48mM K2HPO4; 15.02mM KCl; 10mM CO3HNa),
and conserved in Euro-Collins solution at 4◦C during transport
to laboratory facilities. The incubation process was started
immediately after obtaining the tissue. Intestinal explants were
prepared as described below, at 0–4◦C. Cylindrical explants
(average weight 211.2 ± 56.1mg, 1-cm diameter) were obtained
from the ileum tissue and cultured in well plates containing 6mL
of Williams’ medium E (WME). The plates were incubated in
an orbital shaker (Ferca, Buenos Aires, Argentina) set at 60 rpm
and maintained at 37◦C under a humidified atmosphere of 95%
O2:5% CO2. During preparation, explants were preincubated
for 20min to slough off any dead cells. During this period,
ileum explants were preincubated in the presence or absence of
3.33mM of R-CNE or 0.5µM of ivermectin (IVM), which was
used as positive control because IVM is a potent P-gp inhibitor
(16, 17). After the preincubation period (t = 0), WME was
completely replaced with fresh medium fortified with 0.5µM
of Rhodamine 123 (Rho123) or 0.05µM of ABM as substrates.
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Thus, both substrates were incubated alone (control assays) or in
the presence of R-CNE or IVM. The plates were incubated for 15,
30, 45, or 60min. After the incubation period, the explants were
removed, carefully washed with NaCl 0.9%, dried, weighed, and
immediately stored at−20◦C until analysis.

To determine Rho123 and ABM concentrations within
intestinal explants, samples were homogenized with 0.5mL
of methanol (Rho123) or 0.5mL of acetonitrile (ABM).
Homogenates were mixed with a high-speed shaker (Multi Tube
Vortex; VWR Scientific Products, West Chester, PA) at room
temperature for 15min. Then, the mixtures were centrifuged at
2,000 g at 4◦C for 10min, and the supernatant was manually
transferred to a clean tube. Samples of Rho123 were mixed with
2.5mL of NaCl 0.9% to reach a final volume of 3mL. Rho123
concentrations in intestinal explants (16 replicates per sampling
time) were determined in a fluorescent spectrophotometer
RF-5301PC (Shimadzu Corporation, Kyoto, Japan) set at an
excitation wavelength of 485 nm and an emission wavelength
of 520 nm (18). The ABM concentrations in explants (8–
14 replicates per sampling time) were determined by high-
performance liquid chromatography (HPLC), following the
technique described in section in vivo Pharmacokinetic and
Efficacy Study.

Tissue viability was assessed by estimating lactate
dehydrogenase (LDH) leakage. This enzyme activity was
measured both in the culture medium and in explants at each
incubation time in a spectrophotometer (T80+UV/Visible
Spectrometer; PG Instruments Limited, Lutterworth, England),
following the method described by Moldeus et al. (19).
Percentages of LDH leakage were calculated as follows:

LDH leakage (%):

=
Activity in culture medium

(Activity in culture medium+ activity in explant)
× 100

where enzyme activities in culture medium or in explants are
expressed as mmol of NADH oxidized per minute in the presence
of the sodium pyruvate as substrate.

In vivo Pharmacokinetic and Efficacy Study
The trial involved 28 Corriedale and Texel crossbreed lambs
(22–42 kg) naturally infected with resistant gastrointestinal
nematodes. The trial was conducted in a sheep experimental
unit (Estación Experimental INTA, Balcarce, Argentina) where
a parasite control program based on the intensive use of
antiparasitic drugs has been implemented during many years,
leading to anthelmintic resistance to MLs and benzimidazoles.
Animals were selected based on worm egg per gram counts
(epg), using the modified McMaster technique with a sensitivity
of 10 epg (20). Experimental animals had an average of 2,172
± 1,002 epg counts, ranging from 580 to 3,885. Animals were
placed in a paddock and fed hay ad libitum together with
commercial concentrate feed. All the animals had free access to
water. Lambs were assigned to three experimental groups. Group
A received ABM (Necaverm R©; Rosenbusch, Argentina) (single
dose of 0.2 mg/kg, orally) (n = 10). Group B received ABM
(single dose of 0.2 mg/kg, orally) coadministered with R-CNE

(Euma, Argentina) (100 mg/kg, four oral doses administered
every 24 h) (n = 10). The first dose of R-CNE was administered
20min before the single ABM administration, and then it was
repeated every 24 h until the dosing schedule was completed.
The lambs of group C included untreated controls (n = 8).
The efficacy of each treatment was characterized by collecting
fecal samples from all the lambs in each experimental group on
days −1 and 14 posttreatment for epg count estimation. For the
plasma disposition study (n= 8 in groups A and B), jugular blood
samples (2mL) were collected into heparinized Vacutainer tubes
before treatment and at 2, 4, 6, 8, 24, 28, 48, 52, 72, 76, 96, and
168 h posttreatment. Blood samples were centrifuged at 2,000 g
for 15min; the recovered plasma was kept in labeled vials and
stored at −20◦C until the analysis of ABM and R-CNE plasma
concentrations by HPLC.

ABM was extracted from plasma following the technique
described by Lifschitz et al. (21). Briefly, 0.5mL of plasma was
fortified with 20 ng/mL of the internal standard moxidectin.
ABM was extracted by adding 1mL of acetonitrile and then
mixed with a high-speed shaker (Multi Tube Vortex; VWR
Scientific Products, West Chester, PA) for 15min. The mixture
was centrifuged at 2,000 g at 4◦C for 10min, and the supernatant
was manually transferred to a clean tube, evaporated to dryness,
derivatized (22), and analyzed by HPLC. Fluorescent detection
was performed using a spectrofluorometric detector (RF-10;
Shimadzu) set at an excitation wavelength of 365 nm and
an emission wavelength of 475 nm. The mobile phase was
composed of 0.2% acetic acid (in water)–methanol–acetonitrile
(1.6:60:38.4; vol/vol/vol). The flow rate was set at 1.5 mL/min
through a reverse-phase C18 column (Kromasil; Eka Chemicals,
Bohus, Sweden).

R-CNE analysis was performed according the technique
described by Tao and Pereira (23), with modifications. Aliquots
of plasma (0.25mL) were mixed with acetonitrile, agitated and
centrifuged. Supernatants were injected into the HPLC system
fitted with a Kromasil C18 column. The mobile phase was
water/acetonitrile (40/60) at an isocratic flow of 1.3 mL/min.
R-CNE was analyzed using a UV detector (Shimadzu, SPD-10A).

The fecal samples were analyzed to obtain the epg counts.
The coprocultures were prepared with 10 g of feces from a pool
of each experimental group obtained on days−1 and 14. The
nematode genera and species were identified through the third-
stage larvae recovered from the coprocultures (24). The fecal egg
count reduction test (FECRT) was calculated using the Abbott’s
formula (25), with modifications:

FECRT(%) = 100×(1−
T2

T1
×

C1

C2
)

where T1 and T2 are the arithmetic mean epg counts in the
treated group on days 0 and 14, respectively, and C1 and C2
are the arithmetic mean epg counts in the control group on
days 0 and 14, respectively. The 95% confidence intervals were
calculated following Coles et al. (26).
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In silico Evaluation of ABM and R-CNE
Interaction
The characteristics of the absorption, distribution, metabolism,
excretion, and toxicity (ADMET) prediction and drug-like
properties of the ligands ABMandR-CNEwere determined using
the preADMET online software tool [https://preadmet.bmdrc.kr/
adme/ (27)].

The binding of ABM and R-CNE to P-gp from Caenorhabditis
elegans (Cel-Pgp-1) (28) was assessed in silico by molecular
docking. The three-dimensional structures of R-CNE (CID
439570) and ABM (CID 6434889) were obtained from
PubChem (https://pubchem.ncbi.nlm.nih.gov/), in .sdf format.
The structures were optimized using force field MMFF94,
incorporated into a built-in geometry optimization algorithm of
MarvinSketch, ChemAxon© (https://chemaxon.com/products/
marvin). The cavity of Cel-Pgp-1 where ABM was predicted to
bind (29) was chosen for molecular docking of ABM and R-CNE.

The Cel-Pgp-1 structure, at a resolution of 3.40 Å, was
obtained from PDB (https://www.rcsb.org/structure/4F4C), in
.pdb format. As part of the preparation of the Cel-Pgp-1 file for
docking, the associated ligands were removed using Chimera,
version 1.13.1 (https://www.cgl.ucsf.edu/chimera/). The software
Autodock 4 (release 4.2.6) was used for molecular docking
experiments. The grid was built following David et al. (29),
with modifications. The size of the binding area was centered
in the inner cavity of Cel-Pgp-1 at the point x = −20.8, y =

6.9, z = −9.5 Å. The Lamarckian genetic algorithm was used
for docking simulation, and all the other parameters were set at
the default value (29). The 10 generated poses were assigned a
score calculated by AutoDock, which can be considered as the
estimated free energy of ligand binding. Results are expressed
in kcal/mol. The lowest-energy conformations of the ligands
are presented.

DATA ANALYSIS

Data are expressed as mean ± standard deviation (SD). Rho123
accumulation in ileum explants is presented as pg/mg of tissue;
in vitro accumulation rates of this P-gp substrate in gut wall are
shown as pg/min per mg of tissue. The plasma concentration-
vs.-time curves obtained after treatment of each animal were
fitted with the PK Solutions 2.0 (Ashland, OH, USA) software.
Pharmacokinetic parameters were determined using a non-
compartmental model method (30). The statistical analysis was
performed using the Instat 3.0 software (GraphPad Software, CA,
US). Depending on the experiment, Rho123, ABM, and R-CNE
concentrations; pharmacokinetic parameters; and epg counts
were statistically compared using Student t-test, Mann–Whitney
U-test or Kruskal–Wallis test. Differences were considered
statistically significant at p < 0.05.

RESULTS

In vitro Intestinal Accumulation
Tissue viability was assessed through LDH leakage. LDH activity
was monitored in the culture medium and in explants from

FIGURE 1 | Accumulation of Rhodamine 123 (Rho123) in bovine ileal explants

after incubation in absence or presence of R-carvone (R-CNE). The inserted

table shows the rates of accumulation of Rho123 (ρg Rho/min/mg tissue).

Data are the mean (±SD) of 16 determinations. Significantly different from

control incubations (Rho123 alone) at *p < 0.05 and **p < 0.01.

bovine ileum during 90min of culture. Enzyme activities were
used to estimate mean percentages of LDH released by the
explant to the medium relative to the total enzyme activity. The
percentages of LDH released from the explants to the culture
medium were low, indicating a good viability of the explants
during the incubation period. Mean (±SD) percentages of LDH
leakage to the incubation medium were 2.13 ± 1.16% (15min),
6.16± 1.76% (45min), and 7.11± 2.37% (90 min).

The presence of R-CNE significantly increased Rho123
concentrations in the intestinal explants at all incubation times
(Figure 1). After 60min of incubation, Rho123 concentration
was 67 ± 21% higher (p < 0.01) in the explants incubated
with R-CNE. Thus, Rho123 accumulation rate was significantly
higher (p < 0.001) in the intestinal explants coincubated
with R-CNE. The presence of R-CNE increased the intestinal
concentration of the synthetic anthelmintic ABM at 15 and
30min of incubation (Figure 2A). At 30min of incubation, the
intestinal concentration of ABM was 28.1 ± 35.7% higher in the
presence of R-CNE than in the control. The modulation of the
ABM intestinal accumulation was also evaluated using a well-
known P-gp inhibitor, IVM (Figure 2B). The presence of IVM
significantly increased the accumulation of ABM in the intestinal
explants at all incubation times assessed (15, 30, 45, and 60 min).

In vivo Pharmacokinetic and Efficacy Study
In the in vivo assay, no undesirable effects were observed after
the oral administration of R-CNE. ABM was recovered from
plasma up to 7 days posttreatment in both treated groups. The
comparison of ABM plasma concentration profiles obtained after
ABM administration either alone or coadministered with R-CNE
in infected lambs is illustrated in Figure 3. The comparative
pharmacokinetic parameters obtained after the administration
of ABM or ABM+R-CNE are shown in Table 1. Concomitant
administration with R-CNE prolonged ABM absorption in
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FIGURE 2 | Effect of R-carvone (A, R-CNE) and ivermectin (B, IVM) on

abamectin (ABM) accumulation in bovine ileal explants. Data are the mean

(±SD) of 8–14 determinations and are expressed as the percentage of control

group (ABM alone). Significantly different from control incubations at *p < 0.05

and **p < 0.01.

lambs. ABM T½ ab (absorption half-life) was 1.57-fold longer
after the coadministration with R-CNE. A fast absorption and
elimination of R-CNE were observed after its oral administration
to lambs. The mean Cmax was 1792 ± 598 ng/mL and was
achieved at 2.75± 1 h after the administration of each dose.

The fecal egg counts obtained for all experimental groups,
including the results of the FECRT and upper and lower
confidence limits (95%), are shown in Table 2. The efficacy after
the ABM alone treatment was 94.9%, with the lower limit below
90%, and increased to 99.8% in the presence of R-CNE, with
the lower confidence interval limit >90%. The main genera
involved before the treatments were Haemonchus spp. (1%),

FIGURE 3 | Plasma concentration profiles of abamectin (ABM) after its oral

administration at 0.2 mg/kg (recommended dose) either alone or

coadministered with R-carvone (R-CNE) (four doses of 100 mg/kg each) to

lambs (n = 8) infected with resistant nematodes. Profile is shown up to 70 h

posttreatment to focus on the effect of R-CNE on ABM absorption phase.

TABLE 1 | Comparative plasma pharmacokinetic parameters for abamectin

(ABM), obtained after its oral administration (0.2 mg/kg) either alone or

coadministered with R-carvone (R-CNE, four doses of 100 mg/kg every 24 h)

to lambs.

Kinetic parameters ABM ABM + R-CNE

Cmax (µg/mL) 16.20 ± 10.2a 17.15 ± 8.43a

Tmax (h) 10.75 ± 9.6a 20.00 ± 8.82a

T½ ab (h) 4.12 ± 2.2a 6.48 ± 1.74b(p = 0.031)

T½ el (h) 28.04 ± 8.1a 24.53 ± 3.19a

AUC0−168h (µg h/mL) 815.67 ± 303.1a 909.37 ± 405.86a

Data are expressed as mean ± SD (n = 8 animals).

Cmax , peak plasma concentration; Tmax , time to peak plasma concentration; T½ ab,

absorption half-life; T½ el, elimination half-life; AUC0−168h, area under concentration vs.

time curve from time 0 to the last concentration detected.

Different lowercase letters between ABM and ABM+R-CNE treatments mean statistical

differences at p < 0.05.

The values without significant differences have the similar letter (a). In the case that exist

statistical differences the letters are different (a and b).

Teladorsagia spp. (40%), Trichostrongylus spp. (32%), Cooperia
spp. (12%), and Chabertia spp. (15%). After ABM treatment, the
proportion of the genera was 88% for Haemonchus spp. and 12%
for Teladorsagia spp. After the ABM+R-CNE administration, the
distribution was 52% forHaemonchus spp., 32% for Teladorsagia
spp., and 16% for Trichostrongylus spp.

In silico Evaluation of ABM and R-CNE
Interaction
The quantitative and qualitative results of the ADMET
predictions for ABM and R-CNE are presented in Table 3. The
binding energy/Gibbs energy (lowest-energy position identified)
for ABMandR-CNEwas−9.33 and−5.95 kcal/mol, respectively.
The main residues responsible for the binding and stability of
ABM were Tyr914, Arg916, Gly1032, Phe1033, Thr1035, and

Frontiers in Veterinary Science | www.frontiersin.org 5 December 2020 | Volume 7 | Article 601750

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Miró et al. Abamectin and Carvone Interaction

TABLE 2 | Mean (±SD) egg per gram (epg) counts and reduction of fecal egg

counts (FECR) obtained 14 days after the oral administration of abamectin (ABM)

given alone or combined with carvone (R-CNE) to naturally infected lambs.

Experimental group Mean epg counts FECR (LCL-UCL)

Day 0 Day 14 (%)

Control 1,858 ± 1,123 750 ± 607 —

ABM 2,193 ± 858 45 ± 121 94.9 (65.0-99.0)

ABM + R-CNE 2,401 ± 1,072 2 ± 6.32 99.8 (98.2-99.9)

LCL, lower confidence limit; UCL, upper confidence limit.

Pro1039. The key residues predicted for Cel-Pgp-1 interaction
with R-CNE were Leu25, Phe323, Gln327, Thr760, Ala761,
Gly764, Gly765, Ile767, Tyr768, Gln807, Cys810, Ser811, Met814,
Thr876, and Thr879 (Supplementary Figure S1).

DISCUSSION

After more than 30 years of intensive use of MLs, the
development of resistance is a seriously increasing problem
in ruminants (31, 32). Plant-derived products may contribute
to the improvement of parasite control by enhancing
the effect of existing anthelmintic drugs. However, after
a combined treatment, it is necessary to evaluate the
potential drug–drug interactions between the administered
compounds. As many bioactive phytochemicals may interact
with P-gp (13), the R-CNE modulation of the intestinal
accumulation of a known P-gp substrate was studied in the
current work.

Ileum explants are an integrated system that offers diverse
applications (33), such as evaluation of intestinal drug
accumulation and in vitro modulation of efflux proteins.
The methodology used here may be useful to establish an
in vitro/in vivo correlation. LDH leakage is one of the parameters
used to measure gut viability in in vitro experimental models
of xenobiotic metabolism, transport, and/or toxicity. Increased
extracellular LDH activity is expected after enterocyte plasma
membrane damage, mainly when the intestinal tissue is exposed
to potentially toxic drugs (34). Thus, LDH is a stable intracellular
enzyme that can be readily detected when cell membranes are
no longer intact (35, 36). Both extracellular and intracellular
LDH activities were measured in the current work. The
extracellular LDH activity accounted for <10% of the total
(intracellular plus extracellular) enzyme activity, suggesting that
the intestinal explants remain viable during the whole incubation
period (90min). Similarly, LDH leakage values <10% were
recorded after 120min of incubation of ileum explants from
chicken (37).

Different pharmacological strategies have been evaluated
to modify the pharmacokinetic behavior of the MLs and to
improve their clinical efficacy. The involvement of P-gp in the
excretion of ABM has been thoroughly investigated (10, 38, 39).
In vitro methodologies using intestinal tissue or enterocytes
demonstrated the influence of ABC transporters on the
absorption and excretion of MLs (18, 40). In the current trial, the

TABLE 3 | Predicted ADMET properties of compounds abamectin (ABM) and

R-carvone (R-CNE).

ID ABM R-CNE

Absorption

Caco-2 50.900 477.420

MDCK 0.043 975.458

HIA 95.35 100

Pgp inhibition Inhibitor No

PWS 0.1100 636.470

PPB 88.90 58.040

Skin permeability −2.630 −140.340

SKlogP value 5.106 2.599

Distribution

BBB 0.221 106.060

Metabolism

CYP 2C19 inhibition Inhibitor Inhibitor

CYP 2C9 inhibition Inhibitor Inhibitor

CYP 2D6 inhibition No No

CYP 2D6 substrate No No

CYP 3A4 inhibition Inhibitor No

CYP 3A4 substrate Substrate Substrate

Toxicity

Algae at 0.000 0.056

Ames test Non-mutagen Mutagen

Carcino mouse Positive Negative

Carcino rat Positive Positive

Daphnia at 0.003 0.222

hERG inhibition Ambiguous Low risk

Algae At, algae test; Ames test, Ames Salmonella; BBB, blood–brain barrier

(C.brain/C.blood); Caco-2, Caco2-cell model; CYP, cytochrome P450; Carcino M,

carcinogenesis test in the mouse; Carcino R, carcinogenesis test in rats; Daphnia At, test

on crustacean daphnia; hERG Inhib., hERG-controlled potassium channel inhibition; HIA,

human intestinal absorption model (HIA, %); MDCK, Madin–Darby canine kidney (nm/s);

PGP, P-glycoprotein; PPB, plasma protein binding (%); PWS, pure water solubility (mg/L);

Skin permeability, skin permeability (cm/h); SKlogP, calculated logP by SK atomic types.

influence of R-CNE on the intestinal accumulation of Rho123,
as specific P-gp substrate, was evaluated in ileum explants. The
presence of R-CNE significantly increased Rho123 intestinal
accumulation at all incubation times (Figure 1). After 60min
of coincubation, Rho123 concentration was 67% higher than
with its incubation alone. Similarly, the absorption of Rho123
in sheep intestine fixed in Ussing chambers was significantly
increased (69%) in the presence of IVM, a well-known P-gp
inhibitor (18).

As a forward step, R-CNE modulation of ABM intestinal
accumulation was studied. R-CNE significantly increased ABM
accumulation in ileum only at 15 and 30min of incubation
(Figure 2A). However, when the modulation was assessed with
the known P-gp inhibitor, IVM, intestinal concentrations of
ABM increased at all the analyzed times (Figure 2B). IVM has
shown high potency as P-gp inhibitor, equivalent to most potent
inhibitors such as valspodar (10, 17); therefore, it was used
as positive control in the intestinal explants assay. Although
the interaction of MLs with other ABC transporters, such as
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MRP (16, 41) and BCRP (42), may confuse the interpretation
of these results, it is clear that MLs are potent P-gp and rather
weak MRP and BCRP inhibitors. The IVM concentrations that
inhibited the activated ATPase activity by 50% were 2.5µM
for P-gp and between 9 and 40µM for MRPs (16). In a
different in vitro model, the concentrations of ABM necessary
to inhibit P-gp transport were 3-fold lower than the necessary
one to inhibit MRPs-mediated transport (41). In fact, using
transfected canine kidney cells, no significant MRP1 and MRP2
avermectin transport was found in the presence of functional
P-gp (43).

Although the P-gp–mediated transport of MLs is well-known,
the potential interaction of R-CNE and ABMwith P-gp should be
thoroughly evaluated. Determining the crystal structure of Cel-
Pgp-1 (28) is relevant to evaluate drug binding using molecular
docking. Molecular docking studies have played a crucial role
in computer-aided drug design (44). The interaction of both
molecules with P-gp was evaluated through in silico studies
in the current work. Although the use of C. elegans P-gp
can be considered an experimental limitation if we intend to
compare it with the transport in the host, it allows us to
study drug–drug interactions at the parasite level. Additionally,
as P-gp is a very conserved and ubiquitous protein and the
conformation described for Cel-Pgp-1 is similar to that found
for mammalian P-gp (29), the results of substrate recognition
could be applied to the different animal models used in the
current trial.

ADMET predictions showed that ABM would be a P-gp
inhibitor, whereas R-CNE would not. The ADMET prediction
also implies that ABM will have difficulty to cross the blood–
brain barrier, whereas R-CNE may easily pass through it.
The molecular docking results of this work indicated different
interactions of ABM and R-CNE with Cel-Pgp-1. The binding
affinity of drugs and drug candidates varies; however, in general,
a design goal is engineering a compound with a binding affinity
on the order of 0.1 nM, which is equivalent to a Gibbs energy of
−14 kcal/mol (45). ABM showed a lower energy-binding value
than R-CNE; this result is consistent with the specific binding of
ABM to P-gp, as previously demonstrated (29). The binding site
and binding energy of R-CNE in the current work were similar to
those of the anthelmintic drug thiabendazole (29). These authors
suggested that the transmembrane translocation of thiabendazole
is unlikely. Accordingly, the R-CNE translocation would be also
unlikely, and R-CNE would not be a P-gp modulator at the
parasite level. Thus, the influence of R-CNE on drug absorption
and accumulation may be explained with other mechanisms.
Different bioactive phytochemicals may increase intestinal
absorption by enhancing enterocyte membrane permeability or
by opening paracellular tight junctions (14). In fact, R-CNE
was used as penetration enhancer that allows drug permeation
through the skin and enhanced the effect of a vasodilator drug
after topical administration (46). Thus, the increased intestinal
accumulation of Rho123 and ABM observed in the current trial
may be supported by the effect of R-CNE on the membrane of
intestinal cells.

Currently, numerous marketed pharmaceutical formulations
contain the combination of two or three synthetic anthelmintics.

However, there is scarce information of the combination
of bioactive phytochemicals and antiparasitic drugs. The
concomitant administration of sainfoin and IVM to sheep
by the oral route decreased the absorption of the synthetic
anthelmintic (47). In a recent study, the in vivo coadministration
of the natural terpene thymol with albendazole also led to a
negative pharmacokinetic interaction by significantly reducing
the ruminal sulforeduction of the metabolite albendazole
sulfoxide to the parent drug albendazole (48). The information
obtained with the in vitro and in silico studies was complemented
with the in vivo trial. The in vivo trial evaluated whether
or not the BM+R-CNE combination would be a useful
pharmacological tool, including the assessment of a potential
drug–drug interaction between both compounds in naturally
infected sheep. The in vivo coadministration of R-CNE and
ABM prolonged the absorption half-life by 57% (Table 1). The
ABM Tmax tended to be delayed in the presence of R-CNE.
Although P-gp modulation may enhance ML absorption, for
example, after IVM oral coadministration with itraconazole
in sheep (49), the in silico simulations demonstrated that a
drug–drug interaction between R-CNE and ABM at the P-
gp level is unlikely. Therefore, the beneficial effect of R-
CNE on the pharmacokinetics of ABM may be based on the
effect of the natural products on the enterocyte membrane
permeability (14).

The plasma concentration profiles of R-CNE ranged between
420 and 2,593 ng/mL, and the phytochemical was eliminated
rapidly after the administration of each dose. R-CNE is
metabolized by phase I and phase II metabolism, which favors
its rapid excretion (50). In vitro efficacy tests onHaemonchus spp.
eggs and larvae have corroborated that the R-CNE concentrations
necessary to obtain an efficacy >90% were 370µg/mL (7), which
is 142-fold higher than the Cmax observed in the current trial.
Given the low in vivo exposure of parasites to R-CNE, the
compound would not be able to achieve a high anthelmintic
efficacy if it were administered alone. The coadministration of R-
CNE and ABM increased the anthelmintic efficacy from 94.9 to
99.8%; according to Coles et al. (26), the criteria to classify drug
efficacy should change from suspected of resistance (ABM alone)
to sensitive (ABM+R-CNE) (Table 2). This enhanced efficacy
may be based on the pharmacokinetic interaction between R-
CNE and ABM within the host and on a pharmacodynamic
interaction related to the in vivo effect of R-CNE on the
nematodes. The low level of resistance observed for the ABM
alone treatment may be a limitation and may underestimate the
impact of the treatment combined with R-CNE. The current
trial was carried out on an experimental farm with a history of
resistance to MLs and benzimidazoles. However, at the time of
the in vivo trial, the low proportion of Haemonchus spp. within
the initial parasite population could explain the increase in the
FECRT. Further studies are needed to test this pharmacological
tool under different resistance scenarios.

Another important issue is to establish the additive or
synergistic feature of this type of combination. The in vitro
evaluation of the binary combination of R-CNE with other
bioactive phytochemicals, such as anethole, showed synergistic
activity in the egg hatch assay with H. contortus eggs (7).

Frontiers in Veterinary Science | www.frontiersin.org 7 December 2020 | Volume 7 | Article 601750

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Miró et al. Abamectin and Carvone Interaction

However, the in vivo administration of R-CNE+anethole
combination to infected lambs for 45 days resulted in a reduction
in fecal egg counts of H. contortus, but there was no effect on
total worm count (9). Proper dosing regimen and formulation are
essential to ensure the best performance after the administration
of a bioactive phytochemical to ruminants. From a practical
point of view, the dosing schedule used for R-CNE in the
current trial is a limitation and needs to be improved by the
pharmaceutical technology. The challenge for the future use
of monoterpenes as antiparasitic compounds is conditioned
to suitable pharmaceutical formulations that provide sustained
concentrations in the tissues of parasite location.

In conclusion, this study has demonstrated a pharmacokinetic
and pharmacodynamic interaction between the synthetic
anthelmintic ABM and R-CNE. Despite the limitations
described, the integration of in vitro assays, in silico analysis,
and in vivo pharmacoparasitological studies is relevant for the
knowledge of the combinations of bioactive natural products and
synthetic anthelmintics. Considering the increasing resistance
of gastrointestinal nematodes to the different drug families, the
development of new pharmacological tools is critical for the
design of future successful strategies for parasite control.
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