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During the last two decades, a large body of information on the events responsible
for intestinal fat digestion and absorption has been accumulated. In particular, many
groups have extensively focused on the absorptive phase in order to highlight the
critical “players” and the main mechanisms orchestrating the assembly and secretion
of chylomicrons (CM) as essential vehicles of alimentary lipids. The major aim of this
article is to review understanding derived from basic science and clinical conditions
associated with impaired packaging and export of CM. We have particularly insisted
on inborn metabolic pathways in humans as well as on genetically modified animal
models (recapitulating pathological features). The ultimate goal of this approach is that
“experiments of nature” and in vivo model strategy collectively allow gaining novel
mechanistic insight and filling the gap between the underlying genetic defect and the
apparent clinical phenotype. Thus, uncovering the cause of disease contributes not
only to understanding normal physiologic pathway, but also to capturing disorder onset,
progression, treatment and prognosis.
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INTRODUCTION

Intestinal fat transport is a prerequisite process to deliver alimentary lipids to the bloodstream
for subsequent metabolism and peripheral energy homeostasis. Several biochemical, physiological
and morphological requirements must be met to allow intraluminal digestion and intracellular
transport of triglycerides (TG), phospholipids (PL), and cholesterol (CHOL). Digestive processing

Abbreviations: ABCG5, ATP-binding cassette G5; ABL, Abetalipoproteinemia; ACAT2, Acylcholesterol acyltransferase-2;
ANGPTL4, Angiopoietin-like protein 4; Apo, Apolipoprotein; CE, Cholesteryl ester; CHOL, Cholesterol; CM, Chylomicron;
CRD, Chylomicron retention disease; DGAT, Diacylglycerol transferase; EFA, Essential fatty acid; ER, Endoplasmic
reticulum; FA, Fatty acid; FATP4, Fatty acid transport protein 4; FHBL, Hypobetalipoproteinemia; GI, Gastrointestinal;
GTPase, Guanosine triphosphatase; HDL, High density lipoprotein; I-FABP, Intestinal fatty acid-binding protein; IR,
Insulin resistance; KO, Knockout; LDL, Low density lipoprotein; LPL, Lipoprotein lipase; MG, Monoglyceride; MGAT,
Monoacylglycerol transferase; MTTP, Microsomal triglyceride transfer protein; NPC1L1, Niemann-Pick C1-Like 1; PCTV,
Pre-CM transport vesicle; PL, Phospholipid; SR-BI, Scavenger receptor-BI; TG, Triglyceride; VLDL, Very-low density
lipoprotein.
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and mucosal transport represent the essential steps to warrant
optimal lipid absorption. However, their abnormalities result
in intestinal fat malabsorption not only of lipids, but also of
fat-soluble vitamins, concomitantly with gastrointestinal (GI)
symptoms along with steatorrhea, nutritional fatty acid (FA) and
vitamin deficiency, and substantial extra-intestinal disorders. The
objective of the present review is to focus on congenital disorders
of intestinal lipid absorption, highlighting the molecular genetics
and pathophysiological mechanisms while describing the clinical
manifestations and management of patients.

BRIEF SUMMARY OF INTESTINAL LIPID
DIGESTION

Lipid digestion involves breakdown of TGs into FA and
2-monoglyceride (MG) by lipase, hydrolysis of cholesteryl
ester (CE) into free CHOL and FA by CHOL esterase, and
decomposition of PL into lysoPL and FA by phospholipase A2
in the intestinal lumen (Levy et al., 2007). The three enzymes
are synthesized by the pancreas and are delivered through its
exocrine acinar cells. Importantly, an alkaline mixture composed
of water and bicarbonate is released by pancreatic ductal cells into
duodenum to maintain the ideal pH for enzyme activity. Finally,
bile salts that are concentrated in gallbladder stores also flow
into the duodenum. Their detergent action assists in breaking
down large fat globules into small droplets, and in solubilizing
the lipids by forming micelles, thereby allowing the enzymes to
get to emulsified lipid droplets. Impairment of enzymatic activity,
bicarbonate supply or bile acid output leads to malabsorption
symptoms, including steatorrhea, deficiency of essential FAs
(EFA) and fat-soluble vitamins (A, D, E, and K), weight loss,
abdominal discomfort, and abdominal bloating. Various causes
and conditions may be implicated such as chronic pancreatitis,
pancreatic duct obstruction, pancreatic cancer, diabetes mellitus,
partial or total pancreatectomy, cystic fibrosis, inflammatory
bowel diseases, small bowel resections, or bariatric intervention.

OVERVIEW OF LIPID ABSORPTION AND
CHYLOMICRON FORMATION

Following intraluminal fat digestion, the lipolytic products
must cross small intestinal brush border to form lipid-carrying
lipoproteins (Figure 1). The access of FAs to enterocytes can
be achieved by passive diffusion displaying a “flip-flop” pattern
down a favorable concentration gradient (Mashek and Coleman,
2006; Storch and Thumser, 2010). A second FA uptake process
involves protein-facilitated FA transfer in view of its saturation
nature as exemplified by FA transfer proteins (Storch and
Thumser, 2010). Apical microvillus membrane proteins such
as fatty acid transport protein 4 (FATP4) and CD36 mediate
the FA transfer inside the enterocyte (Stahl et al., 1999; Nassir
et al., 2007). FATP4 is highly expressed in villus enterocytes,
functions in FA incorporation, and traps FA through their
conversion into CoA derivative given its endogenous acyl CoA
synthetase activity (Milger et al., 2006). For its part, CD36 is also
abundant in the small intestine, facilitates FA uptake, and exhibit

various functions in lipid absorption such as fat test perception
and food intake (Laugerette et al., 2005; Martin et al., 2011;
Pepino et al., 2012).

For the intestinal transport of alimentary CHOL, various
microvillus transporters have been described, including
Niemann-Pick C1-Like 1 (NPC1L1), scavenger receptor-BI (SR-
BI), and CD36. While these transporters regulate CHOL influx,
the heteromeric complex ATP-binding cassette G5 (ABCG5)/G8
on villus brush-border membrane is in charge of CHOL efflux
directly toward intestinal lumen. Besides, ABCA1 is a basolateral
efflux pump that transfers CHOL to apolipoprotein (Apo) A-I,
thereby contributing to high-density lipoprotein (HDL) particles
(Figure 2).

Through the action of these transporters, lipolytic products
move into the enterocyte. With the assistance of cytosolic
binding proteins such as intestinal fatty acid-binding protein
(I-FABP) and Liver-FABP (L-FABP), they are directed to the
membrane of the endoplasmic reticulum (ER), where they
are re-esterified. The 2-MG and FAs are reconstituted to
form TG by the MG pathway involving monoacylglycerol
transferase (MGAT) and diacylglycerol transferase (DGAT)
(Bell and Coleman, 1980). Sequentially, MGAT catalyzes
the formation of diglyceride (DG) whereas DGAT catalyzes
the final reaction leading to TG. Diglycerides can also
be synthesized by a secondary glycerol phosphate pathway
(Lehner and Kuksis, 1996). For their part, CHOL and PL
are re-esterified in their original forms by acylcholesterol
acyltransferase-2 (ACAT2) and biosynthetic pathways (e.g., lyso-
phosphatidylcholine acyltransferases), respectively (Buhman
et al., 2000; Li et al., 2015). Thereafter, microsomal triglyceride
transfer protein (MTTP) shuttles TG, CE, and PL to the structural
Apo B-48 to promote chylomicron (CM) assembly (Black, 2007;
Levy et al., 2011). While MTTP appears as an essential protein
to uphold CM biogenesis by lipidation of the critical Apo B-48,
Sar1B GTPase is another crucial component of COPII vesicles
that buds from the ER to transport pre-CM to the Golgi apparatus
(Levy et al., 2011). In this intracellular compartment, CM
particles fuse into another transport vesicle and are vectorially
transported to the basolateral membrane for secretion into the
circulation via the lymphatic system (Lo and Coschigano, 2020)
(Figure 1).

GENETIC DEFECTS IN
INTRA-ENTEROCYTE LIPID
TRAFFICKING AND CHYLOMICRON
FORMATION

In this section, we will review how genetic abnormalities may
hamper intracellular lipid movement and CM assembly/output.

Abetalipoproteinemia
Abetalipoproteinemia (ABL) is a homozygous autosomal
recessive disorder caused by mutations of the MTTP gene
(Wetterau et al., 1992; Shoulders et al., 1993) (Table 1). The
MTTP is in fact a soluble microsomal heterodimer consisting of
a unique large 97 kDa protein conferring lipid transfer activity,
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and the multifunctional 58 kDa protein disulfide isomerase
necessary to maintain the catalytically active structure (Wetterau
and Zilversmit, 1984). MTTP resides in the ER lumen and
orchestrates the transfer of TG, CE, and PL onto Apo B-48 to
produce pre-CM particles. Very often, Apo B-48 is not detected
in the intestinal tissue of ABL patients probably due to the
limiting availability of lipids, which normally protect it from
proteasome degradation (Boren et al., 1992; McLeod et al., 1994;
Rustaeus et al., 1995). In fact, the addition of a core lipid to the
nascent Apo B-48 in the ER takes place during its translation
and translocation, which prevents its degradation and allows
the protein to grow and translocate completely into the lumen
(Boren et al., 1994; Swift, 1995).

Apart from the MTTP residence in the ER, the occurrence
of membrane-associated Apo B in the Golgi, coupled with its
interaction with active MTTP, suggests an important role for
the Golgi in the biogenesis of Apo B-containing lipoproteins
(Levy et al., 2002). As the liver proceeds in the same way
to assemble very low-density lipoprotein (VLDL), the genetic
mutations of MTTP affects Apo B-100-containing hepatic
derived lipoproteins. It is important to remember that the two
Apo B translation products (B-100 and B-48) are produced by the
same gene, but intestinal Apo B-48 is generated through mRNA
editing mechanism employing the catalytic deaminase APOBEC1
(Teng et al., 1990, 1993; Anant et al., 1995).

In view of the aberrations of MTTP, there is a total absence
of circulating CM (following fat feeding) and Apo B-containing
lipoproteins along with extremely low level of plasma TG, total
CHOL, and Apo B-100 (Raabe et al., 1998). Young children
present with diarrhea, malabsorption, and severe steatorrhea,
with additional features such as deficiency of EFAs and fat-soluble
vitamins, red blood cell acanthocytosis, retinal degeneration, and
neurological dysfunction (likely due to the paucity of vitamins A,
D, E, K), and steatohepatitis (Black et al., 1991).

Given the failure to thrive and abnormal clinical features
such as neurological sequelae in early childhood, genetic testing
should rapidly validate the diagnosis. ABL patients necessitate
permanent maintenance on a low-fat diet. Although long-
term high-dose supplementation with vitamins A (10–15,000
IU/day) and E (100 mg/kg/day) improve retinal and neurological
functions (Granot and Kohen, 2004), their plasma levels seldom
return to the normal range (Traber, 2013).

Hypobetalipoproteinemia
Familial hypobetalipoproteinemia (FHBL) is a monogenic,
inherited disorder, which closely resembles ABL, but is essentially
caused by genetic defects of the APOB gene on chromosome 2
(Whitfield et al., 2003) (Table 1). As a result of non-sense, frame
shift and splicing mutations in the APOB gene, prematurely
truncated Apo B forms (i.e., smaller proteins than Apo B) are
associated with the total absence of circulating CMs and Apo
B-48 in response to fat meals (Levy et al., 1994). Moreover,
the liver is unable to secrete VLDL, and extremely low plasma
concentrations of low-density lipoprotein (LDL), TG and total
CHOL are common in FHBL (Di Leo et al., 2008; Buonuomo
et al., 2009). Sometimes, search of mutations uncovered truncated
APOB forms of various lengths, ranging from APOB-6.46 to

APOB-89. The truncated forms are characterized by the missing
carboxyl-terminal portion, which must have interfered with the
translation of full-length APOB (Wang et al., 2018).

Homozygous FHBL presents in infancy or early childhood
with variable clinical manifestations, including failure to
thrive, steatorrhea, undetectable fat-soluble vitamins, EFA
deficiency, acanthocytosis, and neurologic deficits with macular
degeneration (Lee and Hegele, 2014). In adulthood, FHBL
may be affected by hepatic steatosis (Heeks et al., 2013). As
can be seen, the phenotype is similar to that of ABL, and
the same goes for management. Unfortunately, homozygous
FHBL may be accompanied by cirrhosis (Bonnefont-Rousselot
et al., 2009; Florkowski et al., 2010) and hepatocellular
carcinoma (Di Leo et al., 2008; Cefalu et al., 2013). It
is therefore recommended that patients undergo hepatic
evaluation regularly.

Chylomicron Retention Disease (CRD)
CRD is another congenital malabsorption disorder that
highlights the obligatory trafficking of nascent CM between ER
and Golgi in intestinal absorptive cells (Levy et al., 1987; Roy
et al., 1987) (Table 1). Mutations of SAR1-ADP ribosylation
factor, type B (SAR1B) prevent the conveyance of CM-containing
vesicles through the early secretory pathway, leading to the
accumulation of pre-CM (Jones et al., 2003; Charcosset et al.,
2008). In fact, SAR1B, belonging to the Ras superfamily of
guanosine triphosphatases (GTPases), is essential for the
coatomer COPII that transports proteins from the rough ER
to the Golgi apparatus, a process requiring the small Sar1b
GTPase for the exchange of GDP for GTP. Important studies
have shown the ability of SAR1B to initiate vesicle formation by
recruiting first the inner COPII coat components (Sec23 and
Sec24) and subsequently the components of the outer flexible
coat (Sec13/Sec31) (Barlowe et al., 1994). It has been proposed
that CMs of large size move from the ER to Golgi, probably
inside the pre-CM transport vesicle (PCTV) (Siddiqi et al., 2003,
2006). From where we stand at present, SAR1B aberrations affect
the transport of pre-CM from the ER to the Golgi in PCTV,
including their fusion with the cis-Golgi. Nevertheless, further
studies are explicitly required to improve our vision of the
mechanisms implicated in CRD pathogenesis.

Chronic diarrhea, vomiting, abdominal distension, and failure
to thrive are among the most frequent and earliest symptoms
affecting CRD patients. Incapacity to export CM in CRD
impairs the intestinal transport of fat-soluble vitamins and
the status of EFA. Furthermore, plasma levels of CHOL,
PL, LDL, HDL, and Apos (B, A-I) are usually below 50%
of control values (Peretti et al., 2009, 2010). Additional
clinical findings comprise ophthalmologic (micronystagmus,
mild deficit in the perception of the blue yellow axis
and delayed dark adaptation) and neurological complications
(areflexia, proprioceptive aberrancy, ataxia, myopathy, and
sensory neuropathy), which are of lesser importance compared
with those of ABL and FHPL. Elevated creatine kinase and
cardiomyopathy have also been reported along with muscular
abnormality. Also noteworthy are the inadequate mineralization
and retarded bone maturation. While moderate hepatomegaly
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and macrovesicular steatosis are detected, steatohepatitis, and
cirrhosis remain rare (Peretti et al., 2010).

Although clinical examination and biological evaluations
centring on nutrition growth, GI, liver and neurological
manifestations may help in the diagnosis, genetic testing
(identifying Sar1B mutations) remains the most accurate and
reliable tool. Importantly, the signs of chronic diarrhea, fat
malabsorption, fat-laden enterocytes, atypical lipid, and vitamin
profile are suggestive of CRD.

Management of these patients consists in recommending a fat-
free diet, enriched in EFA, medium-chain TGs and liposoluble
vitamins, including 50 UI/kg/day vitamin E, 15,000 IU/day
vitamin A, 15 mg/week vitamin K, and 800–1,200 UI/kg/day or
100,000 IU/2 months vitamin D if younger than 5 years old and
600,000 IU/2 months if older than 5 years old (Peretti et al., 2010).
Recently, a study evaluated the efficacy of fat-soluble vitamin
E acetate and tocofersolan (a water-soluble derivative of RRR-
α-tocopherol) by evaluating the ability of each formulation to
restore vitamin E storage after 4 months of treatment (Cuerq
et al., 2018). While in patients with ABL, tocofersolan and
α-tocopherol acetate bioavailability was extremely low (2.8 and
3.1%, respectively), bioavailability was higher in patients with
CRD (tocofersolan, 24.7%; α-tocopherol acetate, 11.4%).

CD36 Alteration and Intestinal Lipid
Secretion
FA translocase or CD36 is a class B scavenger receptor, which
is anchored in the membrane by transmembrane domains, and
is largely involved in high affinity FA uptake in several tissues
(Yamashita et al., 2007). In the small intestine, CD36 is localized
in the villus membrane of the jejunum (Poirier et al., 1996; Chen
et al., 2001; Lobo et al., 2001). Knockout (KO) of CD36 did
not disturb the intestinal uptake of FA, and no impaired FA
absorption was seen in CD36-KO mice (Goudriaan et al., 2002).
Later, it was discovered a reduced lipid output in the lymph
of CD36-null mice (Drover et al., 2005). Probably, the reason
for this inconsistency was that CD36 ablation also impacts on
CM clearance by affecting its size (Drover et al., 2005), resulting
in circulating CM build-up, thereby concealing the lessened
lipid output from the enterocytes to the lymphatic system. The
presence of CD36 is therefore necessary for the delivery of
lipids from the gut. Accordingly, patients with CD36 deficiency
exhibited increased levels of plasma TG, free FA, CM remnants,
and Apo B-48 because of an enhanced production of smaller
lipoproteins than CM in the intestine (Masuda et al., 2009).

FATP4 Alteration and Intestinal Lipid
Secretion
To elucidate the role of FATP4 in intestinal FA uptake, Fatp4
knockdown is performed in primary mouse small intestinal
enterocytes. FATP4 deficiency reduces FA uptake (Stahl et al.,
1999). Seemingly, this downregulation is not dependent on
the transport function of the FATP4 protein but rather on
its enzymatic activity conducting to FA esterification with
coenzyme A for TG and phospholipid biosynthesis in the gut
(Milger et al., 2006; Ko et al., 2020). If heterozygous Fatp4+/−

mice displays reduced long-chain FA uptake (Gimeno et al.,
2003), Fatp4−/− knockdown mice mates display similar food
intake, growth, weight gain, intestinal TG absorption and fecal
fat loss on either low or high-fat diets (Shim et al., 2009).
Although serum CHOL concentrations were lower in Fatp4−/−

mice, the authors conclude that intestinal FATP4 has no
physiological part in dietary lipid absorption in mice. However,
in the presence of bacterial infection causing intestinal nutrient
malabsorption in piglets, a synthetic antimicrobial peptide KR-32
alleviates malabsorption by improving the expression of FABP4
(Liu et al., 2019).

As G/A polymorphism in exon 3 of the FATP4 genes
rise to a Gly209Ser substitution with potential structural-
functional implications, a group of researchers investigates
whether variation within the FATP4 gene influences fasting
and postprandial lipid and lipoprotein variables along with
markers of insulin resistance (IR) in healthy, middle-aged
Swedish men (Gertow et al., 2004). Their hypothesis turns out
to be correct in view of the negative association of the FATP4
variant with metabolic syndrome components, including IR,
TGs, postprandial lipemia, and HDL-CHOL.

I-FABP (FABP2) Alteration and Intestinal
Lipid Secretion
The intestinal form, I-FABP, is encoded by the FABP2 gene,
and is expressed exclusively in the proximal intestine where the
bulk of fat absorption occurs (Thumser and Storch, 2000; Levy
et al., 2009). Apparently, this protein is involved in intracellular
targeting of FA given its involvement in FA transfer between
membranes to allow FA metabolism and processing of dietary
long-chain FA into CMs (Thumser and Storch, 2000; Hussain
et al., 2005; Montoudis et al., 2008), while being regulated by
lipids, hormones, and cytokines (Dube et al., 2001; Carrier et al.,
2004). Accordingly, a reduction of body weight was noticed in
I-FABP−/− mice (Gajda et al., 2013), suggesting possible fat
malabsorption. When I-FABP KO mice were challenged with
high-fat diet, total fecal excretion per gram of food intake
was increased concomitantly with decreased energy absorption
(Lackey et al., 2020). It finally appeared that intestinal transit
and motility are stimulated by I-FABP deletion as a consequence
of altered vagal tone induced by reduced cannabinoid receptor
1 activation, thereby affecting nutrient and lipid absorption
(Lackey et al., 2020). Despite all these interesting data, I-FABP
overexpression in normal molecularly modified normal human
intestinal epithelial cells is not related to lipid esterification, Apo
synthesis and lipoprotein assembly, which therefore excludes its
role in intestinal fat transport (Montoudis et al., 2006). Likewise,
although I-FABP shows a high affinity for long-chain FAs and has
been suggested to be involved in enterocyte FA uptake (Murphy
et al., 1996; Alpers et al., 2000), animal models lacking I-FABP did
not exhibit impaired FA uptake (Vassileva et al., 2000; Lagakos
et al., 2011; Gajda et al., 2013). On the other hand, decreased
amounts of I-FABP are observed in patients with ABL and
CRD in link with the pathological intracellular accumulation of
lipid structures in the enterocytes, leading the investigators to
hypothesize that I-FABP acts as a lipid sensor to prevent the
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FIGURE 1 | Dietary lipid digestion and absorption. Digestion of dietary fat requires bile acids, digestive enzymes and bicarbonate. Dietary lipids, mostly
triacylglycerols (TG) but also cholesteryl ester (CE) and phospholipids (PL), are initially emulsified by bile acids and then hydrolyzed by pancreatic lipase, cholesterol
esterase and phospholipase A2. The lipolytic products fatty acids (FA), 2-monoglyceride (2-MG), free cholesterol (FC), and lyso PL form micelles by the action of bile
acids in the proximal small bowel. The micelles release the lipolytic products near to the microvillus membrane to allow their uptake by lipid transporters: scavenger
receptor BI (SR-BI), fatty acid translocase (CD-36), Niemann-Pick C1-Like 1 (NPC1L1), ATP-binding cassette G5/G8 (ABCG5/G8), and fatty acid transport protein 4
(FATP4). Following their uptake, the lipolytic products are deposited in the endoplasmic reticulum (ER) by L- and I- fatty acid binding proteins (L- and I-FABP), for
esterification, assembly with apolipoproteins, packaging into chylomicrons (CM) and transport to bloodstream via the lymphatics.

intracellular esterification of FA into TGs which would otherwise
lead to further additional intestinal injury (Guilmeau et al., 2007).

Importantly, some studies have shown that variations in
FABP2 gene may influence both intestinal lipid absorption and
metabolism. The G-to-A substitution at codon 54 of the FABP2
gene, which results in an alanine-to-threonine substitution at
amino acid 54 (Ala54Thr) of I-FABP, has been reported to
be associated with increased intestinal fat absorption (Agren
et al., 1998; Levy et al., 2001), as well as FA oxidation, IR, and
diabetes (Baier et al., 1995). Furthermore, it has been proposed
that the effects of FABP2 allelic variations on lipid traits are
context dependent, indicating that this variant may play an
important role in cardiovascular pathogenesis in the presence
of IR and dyslipidemia (Stan et al., 2005). In the light of all
these observations, I-FABP is central in intestinal physiology and
metabolic disorders, but additional efforts are needed to precise
its specific functions.

L-FABP Alteration and Intestinal Lipid
Secretion
L-FABP is abundantly detected in the small intestine and has
broad FA binding specificity with high affinity for long-chain

polyunsaturated FAs though it may bind to CHOL, acyl-CoA, bile
acid, and phytanic acid (Gordon et al., 1985; Lowe et al., 1987;
Thumser and Wilton, 1996; Wolfrum et al., 1999). In addition,
it is associated with the ER membrane of enterocytes where it
plays a role as a budding initiator protein for PCTV, indicating its
influence on CM synthesis/secretion (Neeli et al., 2007; Siddiqi
et al., 2010). Accordingly, L-FABP null mice were protected
against diet-induced obesity and hepatic steatosis (Newberry
et al., 2006). On the other hand, investigators did not record
any overt growth delay or failure to gain weight in chow-fed L-
Fabp−/− mice (Martin et al., 2003; Newberry et al., 2003). More
startling is the finding that female L-Fabp−/− mice develop a
striking obesity phenotype in administrating a semisynthetic diet
supplemented with CHOL (Martin et al., 2006). To resolve these
conflicting data, different fat diets are administered to female
L-Fabp−/− mice (Newberry et al., 2008). In contrast to high-
polyunsaturated FA, high-saturated fat dramatically protected
against obesity and hepatic steatosis, which is indicative that
L-FABP functions as a metabolic sensor depending on the
type of FA. Later, it has been demonstrated that L-FABP−/−

mice are characterized by a modest MG trafficking defect and
defective mucosal FA oxidation (Gajda et al., 2013). A recent
study has shown that low L-FABP expression compromises initial
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FIGURE 2 | Intracellular network required for lipid transport and lipoprotein assembly. Free cholesterol (FC), monoacylglycerols (MG), lysophospholipids (LysoPL),
and fatty acids (FA), carried by bile salt mixed micelles in the intestinal lumen, cross the unstirred water layer and are captured by specific proteins within brush
border membranes of the jejunum considered as the optimal segment for lipid absorption. Whereas NPC1L1, viewed as the most putative transporter, mediated the
uptake of digestive FC, physiologically excessive amounts are secreted back to the intestinal lumen via the apical membrane of the enterocyte by the ABCG5/G8
heterodimer. Similarly, ABCA1, localized on the basolateral surface contributes to cholesterol homeostasis by promoting cholesterol efflux to plasma apo A-I, which
enhances the formation of nascent HDL. Following the transfer of lipolytic products to the endoplasmic reticulum (ER), local acyl-CoA:cholesterol O-acyltransferase 2
(ACAT-2) catalyzes the esterification of FC, while monoacylglycerol acyltransferase (MGAT)-diacylglycerol acyltransferase (DGAT) complex recycles FA and MG into
triacylglycerols (TG), and phosphoglyceide-synthesizing enzymes intervene in phospholipids (PL) formation. Under the action of microsomal triglyceride transfer
protein (MTP), lipids are then assembled with newly synthesized apo B-48 to generate chylomicrons (CM). These lipoprotein particles are then conveyed in
specialized vesicles from the ER to the Golgi apparatus with the crucial participation of Sar1b GTPase. They are finally exocytosed after the fusion of Golgi vesicles
and basolateral membrane.

TABLE 1 | Genetic defects of genes associated with intestinal malabsorption and lipid dysmetabolism along with related complications.

Gene Disease Inheritance Prevalence Phenotype

MTTP Abetalipoproteinemia AR <1/1,000,000 5th Apo B and LDL Growth delay, Fat malabsorption, Hepatomegaly, Neurological
dis., Neuromuscular dis.

APO B Hypobetalipoproteinemia ACD <1/1,000,000 8 Apo B and LDL Growth delay, Fat malabsorption, Hepatomegaly, Neurological
dis., Neuromuscular dis.

Sar1B CM retention disease AR <1/1,000,000 8 CM secretion Low Apo B and LDL, Growth delay, Fat malabsorption,
Hepatomegaly, Neurological dis., Ophthalmologic dis., Malnutrition

DGAT1 Congenital diarrhea Type 7 AR ND Malabsorption of nutrients/electrolytes, Diarrhea, FTT, hypoalbuminemia,
Hypertriglyceridemia, PLE, anemia, vitamins (D and E) deficiencies

DGAT2 Charcot-Marie-Tooth disease ACD ND Hypotriglyceridemia, Hypotriglyceridemia, Distal muscle weakness of the lower
limbs, Sensory ataxia, Romberg sign, Decreased reflexes deep tendons

PCSK9 LOF ACD Prevalence* 10,25% Low Apo B & LDL, Reduced CVD risk

ANGPTL3 Familial combined AR 1/382,000 Hypolipidemia

NPC1L1 LOF ND ND Low cholesterol, Low LDL

Most of these disorders are very rare.
ACD, autosomal codominant; AR, Autosomal recessive; Dis, disorder; FTT, failure-to-thrive; LOF, loss of function; ND, no data; PLE, protein-losing enteropathy.
*Noto et al. (2012).
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uptake rate of FA and also reduces basolateral TG secretion
(Rodriguez Sawicki et al., 2017).

Noteworthy, L-FABP gene polymorphisms are also associated
with FA metabolism particularly in the liver (Richieri et al., 1994).
For example, a negative association has been detected between
FABP1 T94A and plasma TG levels, probably as a consequence
of negative interference of the T94A variant with FA binding
in humans (Fisher et al., 2007; Gao et al., 2010). In line with
this assumption, T94A substitution markedly altered the human
L-FABP structure and stability, along with conformational
and functional response to fibric acid derivatives (fibrates), a
medication lowering blood TG levels and reducing the liver
VLDL production (Martin et al., 2013). It is important to
point out the binding of L-FABP with PPARα, resulting in
ligand transfer and PPARα transcription of multiple proteins
in FA metabolism in mouse primary hepatocytes, with a
net effect of lessening plasma TG (Velkov, 2013). Whether
similar actions of T94A variant apply to the small intestine
is not known despite the abundant L-FABP content in the
small intestine.

SR-BI Alteration and Intestinal Lipid
Secretion
A few groups have detected an association of intestinal lipid
absorption with SR-BI, a cell-surface glycoprotein expressed
in the apical microvillus membrane. SR-BI knockdown results
in decreased FA influx and CM export in Caco-2 cells (Levy
et al., 2004), whereas SR-BI overexpression has led to enhanced
dietary CHOL absorption in mice (Bietrix et al., 2006). Other
studies have reported raised apical CHOL uptake by Caco-2
cells using SR-BI-blocking antibody and by small inhibitory RNA
(Cai et al., 2004). However, these negative findings should be
considered with caution since the extracellular loops of SR-
BI are efficient receptors for intestinal mixed micelles, and
the properties and composition of micellar solution represent
a key factor governing micelle interactions with intestinal
SR-BI (Goncalves et al., 2015). Precautions do apply since
recent works underline that intestinal SR-BI is a critical
regulator of CM transport (Lino et al., 2015) and liposoluble
vitamins (Mardones et al., 2002; Reboul et al., 2005; van
Bennekum et al., 2005). In fact, acute administration of BLT-
1, an SR-BI inhibitor, to hamsters and rats significantly lowers
postprandial plasma TGs and CM without effect on CHOL
accumulation (Lino et al., 2015). Therefore, the authors suggest
that intestinal SR-BI is more involved in postprandial TG
handling than in CHOL uptake.

NPC1L1 Alteration and Intestinal Lipid
Secretion
As mentioned previously, NPC1L1 mediates CHOL trafficking
from the apical microvillus membrane to the ER (Sane et al.,
2006; Field et al., 2007; Nakano et al., 2019). Since free and
esterified CHOL constitute moieties of CM components, and
since NPC1L1 gene expression in the gut is closely correlated
with CM-CHOL (Lally et al., 2007), it is believed that NPC1L1-
mediated CHOL supply to CM formation plays a role in lipid

assimilation process in enterocytes. In line with this assumption,
the specific inhibitor of NPC1L1 is able to reduce postprandial
Apo B-48 output in hamsters and lessen CM secretion from
the intestine of mice fed a Western diet (Sandoval et al.,
2010). Interestingly, NPC1L1 impedes CHOL esterification and
intracellular CM vesicle trafficking in enterocytes in response
to ezetimibe, which suggests that NPC1L1 participates in a
control mechanism for competent CM packaging and output
by restraining intracellular CHOL movement at a cellular level
(Nakano et al., 2020).

ABCG5/G8 Alteration and Intestinal Lipid
Secretion
Little information is available on the role of ABCG5/G8
in intestinal lipid transport and CM production. However,
it is important to note that ABG5/G8 deficiency causes
hypertriglyceridemia by increasing intestinal absorption,
stimulating hepatic TG production, and lowering plasma TG
catabolism in mice with ABCG5/G8 deficiency (Mendez-
Gonzalez et al., 2011). In this study, intestinal absorption and
secretion of TG were enhanced in ABCG5/G8 null mice, but TG
secretion appeared to be greater than TG absorption.

ACAT2 Alteration and Intestinal Lipid
Secretion
Elegant studies demonstrated that ACAT2, a CHOL-esterifying
enzyme residing in the ER membrane, increases CHOL
absorption efficiency by providing CE for CM packaging and
exocytosis into lymph (Nguyen et al., 2012). However, very poor
data are available to draw conclusion on the role of ACAT2 in CM
assembly and secretion.

DGAT1 Gene Defects and Intestinal
Symptoms
As mentioned before, the DGAT1 gene encodes DGAT1 protein,
a microsomal enzyme with an abundant expression particularly
in the small intestine (Cases et al., 1998; Haas et al., 2012). In
humans, DGAT1 catalyzes the final step in TG synthesis using
DG and FA-CoA, supporting lipid absorption (Yen et al., 2008).
Given the lack of DGAT2 expression in the human intestine (Haas
et al., 2012), mutations in DGAT1 gene may cause conceptually
various disorders (Table 1). In fact, patients with molecular
aberrations in DGAT1 exhibited protein-losing enteropathy, a
congenital diarrheal disorder with failure to thrive in early
infancy (Haas et al., 2012; Stephen et al., 2016; Gluchowski et al.,
2017; Ratchford et al., 2018; van Rijn et al., 2018; Ye et al., 2019;
Xu et al., 2020). Loss-of-function as a consequence of DGAT1
variations may also cause elevated fecal alpha-1-antitrypsin, high
TGs, vomiting, low albumin, elevated transaminases, and low
IgG (Haas et al., 2012; Stephen et al., 2016; Gluchowski et al.,
2017; Schlegel et al., 2018). Although lipotoxicity in the intestinal
epithelium leading to mucosal injury may explain clinical features
in response to DGAT1mutations, further studies are required
to explore the mechanisms. Fat-restricted diet constitutes an
appropriate nutrition therapy.
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DGAT1 vs. DGAT2 in Intestinal Lipid
Output and Metabolism
Although DGAT1 and DGAT2 genes in mice are expressed in
enterocytes (Buhman et al., 2002; Uchida et al., 2013), there
was no evidence of overt fat malabsorption in DGAT1 null
mice (Buhman et al., 2002). DGAT1 was not essential for
TG absorption and CM synthesis even if a high-fat diet was
administered in mice. In fact, DGAT2 may compensate for
DGAT1 deficiency. Paradoxically, DGAT1 KO mice displayed
resistance to the obesogenic effects of a high-fat diet (Buhman
et al., 2002)) and the selective inhibitor JTT-553 of DGAT1
was able to eliminate the rise of plasma TG and CM in rats
after olive oil loading (Tomimoto et al., 2015). By contrast,
DGAT2−/− mice die within a few hours, likely due to extremely
low whole-body TG content and an impaired skin barrier,
suggesting a divergent function for the two enzymes (Stone
et al., 2004). To determine the specific contribution of each of
them on the intestine phenotype, DGAT1 was only expressed
in the gut, and its overexpression did not alter TG secretion
compared to wild-type mice (Lee et al., 2010). On the other
hand, mice with intestine-specific overexpression of DGAT2
have higher intestinal TG (Uchida et al., 2013). Another study
was able to demonstrate that DGAT1 and DGAT2 function
coordinately to regulate the process of dietary fat absorption
by preferentially synthesizing TG for incorporation into distinct
subcellular TG pools in enterocytes (Hung et al., 2017).
Definitely, significant divergences characterize the human and
mouse species, especially taking into account that DGAT1 is
central in human intestinal and DGAT2 is the major enzyme of
TG synthesis in mice.

As DGAT2 shares no sequence homology with the members
of the DGAT1 family, it is important to examine carefully
DGAT2 polymorphisms as we have done for DGAT1. When obese
children and adolescents and 94 healthy underweight controls
were screened for polymorphisms, 15 DNA variants are detected:
4 coding non-synonymous exchanges (p.Val82Ala, p.Arg297Gln,
p.Gly318Ser, and p.Leu385Val) and 10 fully synonymous (c.-
9447A > G, c.-584C > G, c.-140C > T, c.-30C > T, IVS2-3C > G,
c.812A > G, c.920T > C, IVS7+23C > T, IVS7+73C > T, and
∗22C > T) (Friedel et al., 2007). The authors do not find (i)
an association between variants or haplotypes and the genomic
region of DGAT2, and (ii) an important role of common genetic
variation in DGAT2 for the development of obesity. On the other
hand, using whole-exome sequencing and biological function
examination, an obese subject carried one loss-of-function
mutation in FA amide hydrolase and one loss-of-function
mutation in DGAT2 (Ning et al., 2017). While inactivation of
the former promotes obesity, DGAT2 modification reduced body
weight. This is an interesting investigation documenting an
interaction model of genetic variants in two distinct genes in
relation with obesity modulation. Finally, mutation of DGAT2
leads to Charcot-Marie-Tooth disease, an autosomal-dominant
axonal neuropathy with low serum TG concentrations (Hong
et al., 2016). Accordingly, mutant DGAT2 overexpression of
the mutant DGAT2 overexpression significantly inhibited the
proliferation of mouse motor neuron cells (Table 1).

MGAT Alteration and Intestinal Lipid
Secretion
While MGAT1 expression is absent in the small intestine (Cases
et al., 1998, 2001; Yen et al., 2002), MGAT2 expression is
abundant in mouse gut (Yen et al., 2002) and its activity
correlates with the rate of MG absorption (Yen et al., 2015).
However, the deletion of MGAT2 did not result in a change in
normal quantities of fat absorbed from the small intestine aside
from an increased energy expenditure noted in knockout mice
(Yen et al., 2009; Nelson et al., 2011). Nevertheless, ablation of
MGAT2 specifically in mouse intestine disturbed intestinal TG
metabolism and delayed fat absorption (Nelson et al., 2014).
In these experimental conditions, the animals were protected
against diet-induced weight gain and associated comorbidities.

Angiopoietin-Like Protein 4 (ANGPTL4)
and ANGPTL3 Alterations and Intestinal
Lipid Secretion
ANGPTLs constitute a group of proteins, which share structural
similarity with angiopoietins, but the absence of the requisite
domains do not allow them to bind with the classical angiopoietin
receptors, Tie1 or Tie2 (Li and Teng, 2014) (Table 1). The
eight members of ANGPTL family play important metabolic
roles in diverse biological and pathological processes, including
dyslipidemia, IR and wound healing (Basu and Goldberg, 2020).
Both ANGPTL3 and ANGPTL4 inhibit lipoprotein lipase (LPL)
activity through unfolding and destabilization, leading to its
degradation (Sukonina et al., 2006). ANGPTL3 is a 70 kDa
protein mostly expressed and secreted by the liver and to a lesser
extent by the kidney (Conklin et al., 1999; Romeo et al., 2009),
whereas ANGPTL4 glycoprotein is a smaller protein (∼45–65
KDa), which is produced in many cells and tissues, including
adipose tissue, liver, intestine, and muscle (Yoon et al., 2000).
Although both proteins inhibit LPL activity and raise plasma TG
levels, they are regulated by physiological states and different
nuclear receptors (Ge et al., 2005). In human, homozygous loss
of ANGPTL3 function leads to familial combined hypolipidemia
characterized by low plasma levels of TGs, HDL-CHOL, and
LDL-CHOL (Shimamura et al., 2007; Xu et al., 2018). Silencing
of ANGPTL3 in mouse models and in human hepatoma
cells result in reduced output and increased uptake of Apo
B-containing lipoproteins (Xu et al., 2018), thereby contributing
to low LDL-CHOL observed in mice and humans with
genetic ANGPTL3 deficiency (Musunuru et al., 2010). Similarly,
ANGPTL4 null mice have decreased plasma TG concentrations,
whereas mice overexpressing ANGPTL4 have raised plasma
TG levels (Mandard et al., 2006; Lichtenstein et al., 2007).
Interestingly, the ablation of ANGPTL4 caused perturbations
of intestinal lymphatics, which worsened after feeding a high-
fat diet (Desai et al., 2007). Moreover, ANGPTL4 was capable
of impeding dietary fat digestion via inhibition of pancreatic
lipase whereas its deletion increased fat mass LPL, especially with
a ANGPTL4 gene variant for a loss-of-function that leads to
hypolipidemia with a reduction of TG-containing lipoproteins
(VLDL) and CHOL-carrying lipoproteins such as LDL and HDL
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(Koishi et al., 2002; Shimizugawa et al., 2002; Teslovich et al.,
2010). The complete ANGPTL3 deficiency was associated with a
highly reduced postprandial hypertriglyceridemia, probably due
to an accelerated catabolism of intestinal derived CM secondary
to the increased LPL activity (Minicocci et al., 2016).

CONCLUSION

Several advances have been made in our understanding of
factors responsible for congenital fat malabsorption syndromes.
The information currently at hand has led to map out the
route of intestinal lipid transport. We certainly appreciate more
the mechanisms controlling intra-enterocyte lipid trafficking
and CM formation, but there is still a paucity of knowledge
related to the processes essential for its extrusion from the
Golgi apparatus and absorptive cells. Probably, the delineation

of additional genetic defects in the future will lead to a
full characterization of the sequential events crucial for CM
packaging and output.
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