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Lung adenocarcinoma (LUAD) has a high mortality rate and is difficult to diagnose and treat in its early
stage. Previous studies have demonstrated that small nucleolar RNAs (snoRNAs) play a critical role in
tumor immune infiltration and the development of a variety of solid tumors. However, there have been
no studies on the correlation between tumor-infiltrating immune-related snoRNAs (TIISRs) and LUAD.
In this study, we filtered six immune-related snoRNAs based on the tissue specificity index (TSI) and

expression profile of all snoRNAs between all LUAD cell lines from the Cancer Cell Line Encyclopedia
and 21 types of immune cells from the Gene Expression Omnibus database. Further, we performed
real-time quantitative polymerase chain reaction (RT-qPCR) to validate the expression status of these
snoRNAs on peripheral blood mononuclear cells (PBMCs) and lung cancer cell lines. Next, we developed
a TIISR signature based on the expression profiles of snoRNAs from 479 LUAD patients filtered by the ran-
dom survival forest algorithm. We then analyzed the value of this TIISR signature (TIISR risk score) for
assessing tumor immune infiltration, immune checkpoint inhibitor (ICI) treatment response, and the
prognosis of LUAD between groups with high and low TIISR risk score. Further, we found that the
TIISR risk score groups showed significant differences in biological characteristics and that the risk score
could be used to assess the level of tumor immune cell infiltration, thereby predicting prognosis and
responsiveness to immunotherapy in LUAD patients.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lung cancer is one of the most common malignancies world-
wide and is the leading cause of cancer-related mortality [1].
Among them, lung adenocarcinoma (LUAD) is the most common
shared histological subtype, accounting for approximately 50% of
the primary lung cancer. LUAD is usually diagnosed in the
advanced stage and has high mortality and poor prognosis [2,3].
Although the application of therapies such as surgery, chemother-
apy, and molecular targeted therapy has improved LUAD patient
survival in the past decade, the poor prognosis caused by its high
invasiveness, easy metastasis, and recurrence has not been fully
resolved. Immune checkpoint inhibitors (ICIs) are by far the most
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widely used immunotherapeutic agents for LUAD [4]. However, in
clinical practice, ICIs are effective only in a minority of patients [5].
Therefore, in order to effectively guide personalized treatment, it is
important to identify biomarkers to predict the treatment response
and prognosis of LUAD patients.

With the development of high-throughput and accurate detect-
ing technologies, the tumor immune microenvironment (TIME) is
considered to have a significant impact on the clinical treatment
response and prognosis of patients with tumors [6,7]. Rachel and
other scholars have demonstrated that immune cell infiltration in
tumors is positively correlated with LUAD prognosis [8–10]. Based
on this evidence, we speculate that the TIME status is a promising
indicator of LUAD treatment response and prognosis.

Noncoding RNA (ncRNA) has gradually become important for
gene regulation and plays a key role in the biological processes
of different tumors [11]. Small nucleolar RNAs (snoRNAs) comprise
the largest group of small ncRNAs in mammalian cells. They con-
sist of 60–300 nucleotides and regulate gene expression at multi-
ple levels, including involvement in chromatin architecture, RNA
editing, and translation [12–14]. Since Chang et al. [14] first
reported the relationship between snoRNA and tumors, a new
understanding of the role of snoRNA in tumors has emerged. Grow-
ing evidence shows that snoRNA plays a paramount role in the pro-
gression of a variety of tumors, including gastric and colon cancers
[15,16]. A recent study suggested that snoRNA was significantly
elevated in the tumor tissue and plasma of non-small cell lung can-
cer patients and was related to patient survival rate [14,17]. Mean-
while, snoRNA was also associated with TIME-related features,
such as CD8+ T cell infiltration, and had the potential to become
a noncoding molecular marker of TIME [18]. In addition, the TIME
status is actively involved in the occurrence and development of
tumors. For instance, the intertumoral infiltration of cytotoxic lym-
phocytes is positively correlated with better response to treatment
in LUAD patients [19,20]. Accordingly, we conclude that snoRNA is
associated with the immune status of tumors and may predict the
treatment response and prognosis of tumor patients through the
TIME, thereby accurately guiding personalized therapy.

Studies have shown that snoRNA plays a key role in tumorige-
nesis and tumor development; however, the role of immune cell-
derived snoRNA in the TIME remains unknown. In this study, we
searched for immune-related snoRNAs by comparing LUAD tumor
cell lines from the Cancer Cell Line Encyclopedia (CCLE) database
with the human immune cell data from the Gene Expression Omni-
bus (GEO) database. We then constructed a prediction model by
identifying the housekeeping snoRNAs from immune cells
(Fig. 1), in order to predicting the immune infiltration status, prog-
nosis, and even the immunotherapeutic effect in LUAD patients.
2. Methods

2.1. Data source

Publicly available RNA sequencing (RNA-seq) datasets were
gathered from the GEO database (https://www.ncbi.nlm.nih.gov/-
geo), The Cancer Genome Atlas (TCGA, https://portal.gdc.can-
cer.gov/), and the CCLE project (https://portals.broadinstitute.org/
ccle). In detail, the transcriptional profiles of patients with LUAD
(GSE81089 and TCGA-LUAD) were obtained from the GEO and
TCGA databases using GEOquery [21], TCGAbiolinks [22], or man-
ually for further analysis (Table S1). The IMvigor210 [23] dataset
was downloaded from http://research-pub.gene.com/IMvig-
or210CoreBiologies/. 479 LUAD samples with complete clinical
and expressional information from TCGA-LUAD were used for the
training set. The data of 106 LUAD samples with survival informa-
tion were extracted from GSE81089 dataset was used as validation
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set. Moreover, 348 bladder cancer patients who received ICIs treat-
ment form IMvigor210 were used as the validation set because of
lacking eligible LUAD datasets with ICIs treatment patients. Tran-
scriptome sequencing data of purified human immune cells
(GSE114765, GSE133145, GSE135635 and GSE107011) were
downloaded from the GEO database using GEOquery [21] or man-
ually (Table S2). RNA-Seq data of LUAD cell lines were obtained
from the CCLE database based on histology subtype.

2.2. Processing of the transcriptomic sequencing data

All counts or fragments per kilobase of transcript per million
(FPKM) mapped reads values were transformed to transcripts per
kilobase million (TPM) values under GENCODE annotation
(https://www.gencodegenes.org/) version 34 for further analysis.
Samples with only TPM values were directly used without data-
type transformation. Due to the complexity of the purified
immune cell data, we excluded samples from patients with
specific disease (e.g., primary Sjogren’s syndrome) and then used
the xCell [24] algorithm to further confirm immune cell types
using the maximum enrichment score. Finally, a total of 188
samples from 21 small or 7 main categories of immune cells
were enrolled in this study (Table S2). Combat from the sva
package (3.35.2) was used to remove batch effects across
immune cell samples.

2.3. Identifying tumor-infiltrating immune-related snoRNAs and
developing a related signature

Tumor-infiltrating immune-related snoRNAs (TIISRs) were
identified based on the tissue specificity index (TSI) and the
expression profile between LUAD cell lines and immune cells.
The TSI was developed by Yanai et al. in 2005, as follows [25]:

TSIsno ¼
PN

i¼1ð1� xsno;iÞ
N � 1

where N is the total number of immune cell samples and xsno;i is
defined as the expression intensity calculated by maximal compo-
nent normalization.

A higher TSI represents higher immune cell-type specificity,
while a lower TSI indicates more general expression across
immune cell types. We selected snoRNAs that are more commonly
expressed among immune cells (TSI � 0.4) but are not expressed in
LUAD cell lines (housekeeping) as TIISRs. Due to unremovable
batch effects between immune cells and cancer cell lines, we
sorted the snoRNA expression profile by the mean value of each
snoRNA. We then selected the intersection between the high
expression snoRNAs among immune cells and the low expression
snoRNAs among LUAD cell lines as TIISRs. Further, we excluded
TIISRs that were not expressed on more than half of the samples
from the training set. Then, six TIISRs (SNORD14A, SNORD59A,
SNORD99, SNORD100, SNORD63 and SNORD19) were included
for random survival forest (RSF) model construction. This is an
ensemble-tree method that adapts the random forests to right-
censored data and survival analysis [26,27].

The log-rank score test for splitting survival trees is described
by Hothorn and Lausen (2003) [28]. According to this test, we
assume that the x-variable x has been ordered so that
x1 � x2 � � � � � xn. The ‘‘ranks” were then calculated for each sur-
vival time T j where j 2 ½1; � � � ;n�. This gives the following equation:

aj ¼ dj �
XCj

k¼1

dk
n� Ck þ 1

where Ck ¼ #½t : Tt � Tk�. Note that Cj is the index of the order for
Tj. The log-rank score test is defined as follows:
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Fig. 1. Strategy for identifying the tumor-infiltrating immune-related snoRNA (TIISR) signature in this study. snoRNAs were sorted in immune cells and cancer cell lines in
descending order of expression. The snoRNAs that were most expressed in immune cells and least expressed in lung adenocarcinoma (LUAD) cell lines were screened, and the
specificity of candidate snoRNAs expressed against different types of immune cells was calculated using the tissue specificity index (TSI). Six snoRNAs were finally included.
Furthermore, the TIISR signature was identified by the RSF model; accordingly, LUAD patients were divided into high-risk and low-risk groups based on median risk score to
explore the characteristics in terms of biological processes, immune infiltration status, immunotherapy response, and prognosis.
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Risk score ¼ S x; cð Þ ¼
P

xk�cðaj � nlaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nlð1� nl

nÞs2a
q

where a and s2a are the sample mean and sample variance of
½aj : j ¼ 1; � � � ; n�. Log-rank score splitting defines the measure of
node separation by jSðx; cÞj. Maximizing this value over x and c
yields the best split.

The comprehensive working framework for identifying marker
tumor-infiltrating snoRNAs and developing a TIISR signature is
shown in Fig. 1.
2.4. Gene set variation analysis (GSVA), single-sample gene set
enrichment analysis (ssGSEA), and TIME cell infiltration estimation

The ‘‘c2.cp.hallmark.v7.1.symbols” and‘‘c5.all.v7.1.symbols”
gene sets were downloaded from MSigDB and used for hallmark
and Gene Ontology (GO) enrichment by GSVA and ssGSEA from
‘‘GSVA” R package [29]. The characteristics of the TIME include
immune cell infiltration, anticancer immunity cycle activation,
and immune checkpoint expression. TIME cell infiltration estima-
tion was performed using the xCell [24] and CIBERSORT-Abs
[30,31] algorithms. Seven steps involved in anticancer immunity
cycle activation were scored by ssGSEA based on the gene expres-
sion of each sample, and the score of each step reflected the activa-
tion of antitumor immunity [32,33]. The inhibitory immune
checkpoints were obtained from studies of Auslander et al. and
Hu et al. [34,35].
2.5. Separating peripheral blood mononuclear cells (PBMCs)

Blood samples were collected from 10 health volunteers and
processed within 2 h. The whole separating was followed by pro-
duct information sheet of LymphoPrep (a density gradient medium
for the isolation of mononuclear cells from STEMCELL technologies,
cat. 07851) and PBMCs were washed by phosphate buffer saline
(PBS) and centrifuged by 400g at 4 ℃ for 5 mins. Then the cells
were ready for RNA extract.
2.6. Lung cancer cell lines and cell culture

H1299 and A549 cell lines were provided by Stem Cell Bank,
Chinese Academy of Sciences (Beijing, China). H1975, and PC-9
cells were kindly provided by Professor Chun Fang Zhang (Depart-
ment of Thoracic Surgery, Xiangya Hospital). Cells were cultured in
RPMI 1640 medium (Gibco, Waltham, MA, USA) supplemented
with 10% fetal bovine serum (Gibco), 100 U/mL penicillin, and
100 lg/mL streptomycin (Gibco) and incubated at 37 �C and 5%
CO2.
2.7. RNA extract and real-time quantitative polymerase chain reaction
(RT-qPCR)

RNA was extracted, reverse transcripted to cDNA and RT-qPCR
were all followed by the guide of miDETCT A track miRNA RT-
qPCR Starter kit (RiboBio, cat. C10721-1) and performed RT-qPCR
on a QuantStudio 5 real time PCR system (Applied Biosystems).
The primers for SNORD63 (miRA100955), SNORD100
(miRA100954), SNORD99 (miRA100953), SNORD19 (miRA100957),
SNORD59A (miRA100951), SNORD14A (miRA101316) and U6
(miRAN0002-1-100) were also provided by RiboBio. The U6 was
used as loading control.
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2.8. Statistical analysis

Spearman correlation was used for all correlation analyses.
Kruskal–Wallis tests were used for comparing numeric values
between two or more groups, except as otherwise noted. The
‘‘limma” package and the empirical Bayesian approach were used
for performing differential analysis using the enrichment analysis
results. The medians were considered cutoff points for the risk
score and other numeric variants; cutoffs were also used for sub-
grouping. Survival analyses were based on the Kaplan–Meier
method and log-rank tests. Univariate and multivariable Cox
regression models were used for calculating hazard ratios (HRs)
and identifying independent prognostic factors. Receiver operating
characteristic (ROC) curves were used to assess the specificity and
sensitivity of risk score based on the pROC package. P values or
adjusted P-values <0.05 were considered statistically significant,
while pathways with adjusted P < 0.01 were used for visualization.
Data processing, analysis, and visualization were performed using
R software (3.6.3).
3. Results

3.1. snoRNA expression in immune cells and cancer cell lines

After excluding immune cell samples that collected from
patients with specific diseases, the identities of all 188 samples
were further confirmed by the xCell algorithm. Seven main types
of immune cells were involved: T cells, B cells, neutrophils,
hematopoietic stem cells, eosinophils, monocytes/macrophages,
natural killer (NK) cells, and 21 subtypes. Among them, there were
eleven types of T cells, five types of monocytes/macrophages, and
one type each of B cells, neutrophils, hematopoietic stem cells,
eosinophils, and NK cells (Fig. 2A). To investigate the expression
patterns of snoRNAs in different immune cells, we analyzed the
expression levels of snoRNAs in 21 types of immune cells
(Fig. 2B). The expression data of cancer cell lines from the CCLE
database are listed in Fig. 2C. To take into consideration the inevi-
table batch effects between immune cells and cancer cell lines, we
ranked the snoRNA expression profiles of immune cells and LUAD
cell lines from high to low/ low to high mean expression of each
snoRNA (Fig. 2B and C). The intersection between the most highly
expressed snoRNAs among immune cells and the least expressed
snoRNAs among LUAD cell lines were selected to be TIISRs, which
included nine snoRNAs (SNORD14A, SNORD59A, SNORD63B,
SNORD99, SNORD100, SNORD63, SNORD19, SNORA31, and
SNORD13E). They were considered to be ubiquitously expressed
in human immune cells, but not in LUAD. Further, we excluded
snoRNAs what were not expressed in more than half of the samples
from TCGA-LUAD cohort to improve the performance and stability
of the RSF model.

Finally, six snoRNAs (SNORD14A, SNORD59A, SNORD99,
SNORD100, SNORD63, and SNORD19) were screened out as TIISRs.
We separately identified the expression levels of these six TIISRs in
different immune cells. We found that they were expressed in 21
types of purified human immune cells (Fig. S1A, S1B), suggesting
that they were housekeeping for almost all kinds of immune cells.

Also, RNA from PBMC and four lung cancer cell lines were pre-
pared for RT-qPCR assays to verify findings from bioinformatic
analysis. As shown on Fig. 3, all six snoRNAs were expressed much
higher in PBMCs than PC-9, A549, H1299 and H1975 cell lines.

Consequently, these six TIISRs were used for the subsequent
analysis.



Fig. 2. The expression of snoRNAs in immune and cancer cell lines. A. The human immune cell types screened by xCell. Color represents different types of immune cells. B.
The expression of snoRNAs in immune cells from the Gene Expression Omnibus (GEO) database. From top to bottom, the expression decreases. Color represents different
types of immune cells. C. The expression of snoRNA in cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) database. snoRNA expression increases from top to
bottom. Color represents different types of cancer cell lines.
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3.2. Identification and biological characteristics of TIISR signature

Using TCGA database, 479 samples containing complete clinical
information and transcriptomic data of LUAD were collected as a
training dataset. Then, based on the expression profile of these
six TIISRs and the overall survival information (Fig. 4A), we identi-
fied the TIISR signature by RSF using TCGA-LUAD dataset. When
the TIISR signature was applied to the training dataset, 479 LUAD
patients were divided into the high-risk (n = 240) and low-risk
groups (n = 239) by the median value of the risk score (0.5335).

Firstly, GSVA enrichment analysis was performed to explore the
biological characteristics of TIISR signature under different risk
score. As shown in Fig. 4B and Table S3, the high-risk group was
remarkably enriched in G2M checkpoint, E2F targets, mTORC1 sig-
naling, glycolysis, MYC targets V1 and V2, protein secretion path-
ways, and biological states. Meanwhile, the low-risk group was
mainly enriched in cholesterol homeostasis, PI3K/AKT/mTOR sig-
naling pathways, and biological states. These results demonstrate
that there were significant differences in the pathways and the bio-
logical status between two risk score groups in LUAD patients.

Furthermore, we extracted the expression of these six TIISRs
under different risk score. As shown in Fig. 4A, the heatmap
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revealed that SNORD14A, SNORD63, SNORD59A, and SNORD100
had high expression in the low-risk group and low expression in
the high-risk group. In addition, the high-risk individuals had poor
prognosis, indicating that the TIISR signature might play a harmful
role in LUAD. Thus, we further explored whether the TIISR signa-
ture could reflect the probability of patient survival. Survival anal-
ysis of the high/low-risk groups in TCGA-LUAD dataset (n = 479)
demonstrated that the patients who had low risk score had a
longer survival time than those with high risk score (Fig. 4C). Fur-
thermore, the ROC of the 3-year and 5-year survival correlation of
the TIISR signature was analyzed, and the area under the curve
(AUC) was calculated. The AUC of the TIISR signature was 0.83
and 0.82 at 3 and 5 years of survival, respectively (Fig. 4D); Also,
the sensitivity and specificity were 82.7%, 62.4% for 3-year-OS
and 77.2%, 64.4% for 5-year-OS with median risk score as cutoff.
These results demonstrated the effectiveness of the signature as
a prognostic biomarker for predicting the survival status of LUAD
patients.

In order to further validate the role of the TIISR signature in
LUAD patient prognosis, multivariate Cox analysis was applied.
The results are presented in Table 1. The HR of the high risk score
versus low risk score for survival probability was 4.854 (95% CI



Fig. 3. The expression of six snoRNAs from PBMCs and four lung cancer cell lines. A-F. The expression of SNORA14A, SNORD19, SNORD59A, SNORD63, SNORD99 and
SNORD100 in PBMCs and PC9, A549, H1299, H1975 lung cancer cell lines. (Compared by t tests.)
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3.445–6.84, P < 0.001), suggesting that the LUAD patients who
have a higher risk score are more likely to have a poor prognosis.

The above results revealed that the risk score groups showed
remarkably different in multiple biological features. Furthermore,
the TIISR signature can also predict the prognosis of LUAD patients.

3.3. Immunological characteristics of different groups based on the
TIISR signature

To explore the potential biological processes related to immune
and influenced by the TIISR signature, we first conducted GO
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enrichment analysis by performing ssGSEA algorithm on TCGA-
LUAD cohort. The results demonstrated that a variety of
immune-related biological processes were different between two
risk score groups, especially in the somatic diversification of
immune receptors via somatic mutation (Fig. 5A and Table S4).
Also, we found that the risk score was statistically different among
the various immune subtypes (Fig. 5B). Then, we conducted xCell
and CIBERSORT-Abs analysis based on multiple immune subpopu-
lations. By assessing the immune infiltration stage of the high-risk
and low-risk groups, we aimed to further verify the specificity of
the TIISR signature in response to tumor cell immune infiltration.



Fig. 4. Identification and biological characteristics of the tumor-infiltrating immune cell-related snoRNA (TIISR) signature in The Cancer Genome Atlas (TCGA)-lung
adenocarcinoma (LUAD) dataset. A. The distribution of the TIISR, overall survival (OS) status of patients, and snoRNA expression pattern. B. Gene set variation analysis (GSVA)
enrichment analysis showed activated (red) or inhibited (blue) pathways between high and low risk score. Different colored squares represent different pathways. C. Survival
analysis for risk score of TCGA-LUAD dataset. Blue and red lines represent low or high risk score, respectively. D. The predictive value of the TIISR signature in LUAD patients
among TCGA-LUAD dataset. (area under the curve [AUC] 0.83, 3-year OS, and AUC 0.82, 5-year OS). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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There were significant differences in the immune infiltration status
estimated by xCell between high-risk score and low-risk score
groups. Twenty-one subsets were enriched in the low-risk group,
while only T cell CD4 + Th2 and T cell CD4 + Th1 were enriched
in the high-risk group. Ten subsets, including B cells, monocytes,
and neutrophils, were not statistically different among the differ-
ent risk groups (Fig. 5C). A similar result could be found at estimat-
ing infiltrated level of various kinds of immune cells by
CIBERSORT-Abs algorithm (Fig. S2). These findings suggest that a
higher risk score is correlated with less immune cell infiltration.

In addition, the xCell algorithm was used to estimate the
immune cell infiltration score and examine the correlation
between the immune and risk score. The results showed that the
two were negatively correlated with each other. A higher immune
6392
score was correlated with a lower risk score, and vice versa
(Fig. 5D, E). Therefore, we inferred that the TIISR signature might
indicate the degree of immune cell infiltration.

Taken together, the above results demonstrated that the TIISR
signature could greatly assess the degree of tumor immune cell
infiltration, and a higher risk score indicated less immune cell
infiltration.

3.4. The correlation between the TIISR signature and anti-tumor
immunity or immunotherapy response

First, we analyzed the correlation between the risk score and
the degree of immune cell infiltration and found that 16 types of
immune cells had significant correlation with the risk score. More-



Table 1
Univariate and multivariate regression analysis of disease-free survival in each data set.

Univariate analysis Multivariate analysis

Variables HR 95% CI P Value HR 95% CI P Value

TCGA-LUAD
Age 1.155 0.855–1.56 0.348 1.227 0.907–1.659 0.185
Gender (Male/Female) 1.053 0.782–1.416 0.735 1.076 0.799–1.45 0.629
Stage (High/Low) 2.522 1.843–3.451 <0.001 2.147 1.564–2.947 <0.001
Risk Score (High/Low) 4.854 3.445–6.84 <0.001 4.605 3.259–6.508 <0.001

GSE81089
Age 1.07 0.582–1.965 0.829 1.025 0.553–1.9 0.938
Gender (Male/Female) 1.231 0.696–2.178 0.475 1.304 0.729–2.332 0.37
Stage (High/Low) 3.208 1.799–5.72 <0.001 3.159 1.771–5.634 <0.001
Risk Score (High/Low) 2.016 1.125–3.611 0.018 2.044 1.134–3.684 0.017

TCGA, the cancer genome atlas.
LUAD, lung adenocarcinoma.
HR, hazard ratio.
CI, confidence interval.
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over, while CD4 + Th1 and Th2 cells were positively correlated with
the risk score, the rest were negatively correlated with it. In addi-
tion, we analyzed the correlation between the expression levels of
18 immune checkpoints and the risk score. This analysis demon-
strated a significant negative correlation between the risk score
and the expression levels of nine immune checkpoints, including
ADORA2A, BTLA, CD200R1, CD80 and other 5 checkpoints
(Fig. 6A and Table S5).

Then, we analyzed the antitumor immunity of different risk
score groups by tumor immune cycle. The results are displayed
in Fig. 6B. Among the various anticancer immunity steps, such as
those of T cell recruitment, dendritic cell recruitment, Treg cell
recruitment, and tumor immune cell infiltration, the anticancer
immunity status was different between the high- and low-risk
score groups. In particular, during tumor immune cell infiltration,
the antitumor immunity of the low-risk group was more pro-
nounced compared with that of the high-risk group. Accordingly,
we speculate that a lower risk score indicates stronger antitumor
immunity.

To further investigate the potential role of the TIISR signature in
predicting ICI treatment response, we examined the expression
levels of 18 potential tumor immune checkpoints between two risk
score groups. Previous studies have shown that CTLA4, BTLA,
CD200R1, and CD80 played important roles in the development
and immunotherapy of solid tumors [36–39]. As shown in
Fig. 7A, patients with low risk score were more likely to express
CTLA4 than those with high risk score, and a similar trend was
observed for BTLA, CD200R1, CD80 and other four immune check-
points (Fig. S3A). While there were no differences on the expres-
sion of other 10 immune checkpoints between the high- and
low-risk score groups (Fig. S3B)

We further determined whether the expression of CTLA4, BTLA,
CD200R1, or CD80 had an impact on the survival of patients. The
479 samples from TCGA-LUAD cohort were divided into 4 sub-
groups according to the risk score and immune checkpoint expres-
sion levels: the high-risk score and high immune checkpoint
expression group, the high-risk score and low immune checkpoint
expression group, the low risk score and high immune checkpoint
expression group, and the low risk score and low immune check-
point expression group. Then, the survival probability of LUAD
patients was compared among these four subgroups with different
risk score and immune checkpoint expression levels. The results
were shown in Fig. 7B. When the survival rate of LUAD patients
was higher in low risk score group, which was consistent with
our previous results. These results demonstrated that the TIISR sig-
nature had discriminatory power in patients with similar levels of
immune checkpoint expression.
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Thus, the TIISR signature might be a potential positive marker
for representing anti-tumor immunity status and predicting the
response to ICI treatment.

3.5. Validation in independent datasets

To assess the effectiveness of the TIISR-based RSF model in
other datasets and prevent model overfitting, we used an indepen-
dent dataset (GSE81089) as a test set to validate its ability to eval-
uate LUAD prognosis. One hundred and eight LUAD patients were
divided into low-risk (n = 54) and high-risk groups (n = 54). The
results showed that the survival rate of the low-risk group was sig-
nificantly higher than that of the high-risk group (HR 2.044, 95% CI
1.134–3.684, P = 0.017), and that the discrepancy between the
long-term survival rates of the two groups widened as survival
time increased. The 5-year survival rate of the high-risk group
was only about two-thirds that of the low-risk group (Fig. 8A).
Likewise, the AUC of the TIISR signature was 0.73 and 0.71 at 3
and 5 years of survival, respectively (Fig. 8B), supporting the notion
that the TIISR signature is a powerful predictor of LUAD prognosis.

As the LUAD cohort with ICIs treatment lacks the expression
data of snoRNAs. We employed a dataset of bladder cancer from
IMvigor210 cohort which contains expression information of snoR-
NAs and survival data. Patients on this cohort were received ICIs
treatment. We further applied the RSF model and found that the
high risk score group had worse prognosis (Fig. S4A, HR 1.313,
95% CI 1.093–1.577, P = 0.004) and response to ICIs treatment
(Fig. S4B, P = 0.01549).

4. Discussion

LUAD is the most common histological type of lung cancer [40];
its degree of malignancy, tumor progression, and prognosis depend
not only on the intrinsic characteristics of tumor cells, but also on
tumor immune infiltration [41]. Recently, molecular map-based
methods and signatures, such as DNAmethylation [42] and lncRNA
[43], have been applied to the inferences of tumor immune infiltra-
tion, and the role of snoRNA in controlling cell fate and tumorige-
nesis has been widely considered. The potential roles of different
types of snoRNAs in tumors are gradually being revealed. For
example, Grigory et al. [44] demonstrated that immune
response-related genes were activated in cells transfected with
snoRNA; meanwhile, SNORA50A/B might inhibit tumor progres-
sion [18]. In our study, six housekeeping snoRNAs were screened
out: SNORA14A, SNORD63, SNORD59A, SNORD100, SNORD19,
and SNORD99. Among these, SNORA59A has been revealed to play
a role in prostate cancer [45], and SNORD63 has been considered as



Fig. 5. The immunological characteristics of the tumor-infiltrating immune cell-related snoRNA (TIISR) signature. A. Gene Ontology enrichment analysis showed a significant
difference in immune-related biological processes between high- and low-risk score groups. B. The differences of risk score in five immune subtypes from The Cancer Genome
Atlas (TCGA)-lung adenocarcinoma (LUAD) cohort. C. Volcano plots for the enrichment of immune cell types for tumors with high and low risk score, calculated based on the
NES score from the xCell algorithm. NES, enrichment of immune subpopulations. D. Correlation analysis between risk score and immune score. The two were linearly
negatively correlated. Higher immune score was correlated with lower risk score. E. Immune score in the two risk score groups. Kruskal–Wallis tests were applied for testing
statistical differences.

R. Wan, L. Bai, C. Cai et al. Computational and Structural Biotechnology Journal 19 (2021) 6386–6399

6394



Fig. 6. The correlation between risk score and immune status and immune checkpoints. A. Spearman correlation analysis between risk score with immune cells (left) and
immune checkpoints (right). B. The difference in antitumor immune steps between the high- and low-risk groups among various cancer immunity cycles.
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Fig. 7. The role of the tumor-infiltrating immune cell-related snoRNA (TIISR) signature in immune checkpoint inhibitor (ICI) treatment. A. The relative expression of four
immune checkpoints between the high-risk score and low-risk score groups (Kruskal–Wallis test). Left to right, CTLA4, BTLA, CD200R1, and CD80. B. Kaplan–Meier survival
curves of overall survival status among four patient groups stratified by the TIISR signature and different immune checkpoints. From left to right, CTLA4, BTLA, CD200R1, and
CD80.
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a noninvasive diagnostic biomarker for clear cell renal cell carci-
noma [46]. Meanwhile, there were no relevant studies that demon-
strated the application of the remaining four snoRNAs in cancers.
Accordingly, based on the expression and TSI of snoRNAs in human
immune cells and cancer cell lines, we herein identified the TIISR
signature through RSF and then classified LUAD samples into
high-risk and low-risk groups.

Studies have found that MYC and KRAS gene mutations and ALK
gene rearrangements are pathophysiological alterations in lung
cancer [47]. Among them, KRAS and MYC mutation-driven tumors
are characterized by altered metabolic pathways, including
enhanced nutrient intake, protein, and glycolysis [48], while the
ALK gene activates mTORC1. Mutations in this pathway are extre-
mely common in primary invasive cancers [47,49]. In this study,
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mTORC1 signaling, glycolysis, MYC targets, protein secretion path-
ways, and biological status were significantly enriched in the high-
risk group. Furthermore, our study also demonstrated that snoRNA
expression was higher in the low-risk group compared to that in
the high-risk group, which is consistent with the results of previ-
ous studies showing that snoRA50A/B may exert oncogenic effects
by suppressing KRAS oncogenes [18]. The prognostic predictive
roles of SNORD93 in breast cancer, SNORA42 in lung cancer, and
SNORA21 in colon cancer have been confirmed and reported
[12,18]. Therefore, we further performed survival analysis and
multifactorial Cox analysis in different risk score groups among
the training set. We found that the low-risk group had longer sur-
vival time and better long-term prognosis. Further analysis
revealed that the TIISR signature could be a valid marker for pre-



Fig. 8. Validation of the tumor-infiltrating immune cell-related snoRNA (TIISR) signature on an independent dataset (GSE81089). A. Survival analysis for risk score from the
GSE81089 dataset. Blue and red lines represent low and high risk score, respectively. B. The predictive value of the TIISR signature in lung adenocarcinoma (LUAD) patients
among the GSE81089 dataset (area under the curve [AUC] 0.73, 3-year overall survival [OS], and AUC 0.71, 5-year OS). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

R. Wan, L. Bai, C. Cai et al. Computational and Structural Biotechnology Journal 19 (2021) 6386–6399
dicting LUAD patient prognosis; patients with a higher risk score
tended to have worse prognosis.

To further confirmwhether the predictive effect of the TIISR sig-
nature for LUAD prognosis is TIME-related, we performed an
immune status analysis. The results showed that differential genes
in dissimilar risk score groups were significantly enriched in a
diverse range of immune-related biological processes. Immune
cells such as NK cells, B cells, and macrophages have been demon-
strated to have a positive or negative effect on cancer prognosis
[50–52]. We therefore hypothesized that TIISRs might predict
LUAD prognosis and reflect the degree of immune infiltration. Gen-
erally, active immunity is essential for the clearance of damaged
cells. After stimulation by various cytokines or tumor cells,
immune cells can target tumor cells and induce their death,
thereby eliminating malignant cells and generating further
immune responses [53]. Moreover, studies have indicated that
the presence of infiltrating immune cells is associated with longer
survival and better prognosis [54]. Similarly, we further evaluated
the degree of immune infiltration under different risk score and
found a negative correlation between them; greater immune infil-
tration was accompanied by a lower risk score and better progno-
sis. These results strongly demonstrate that the TIISR signature can
predict the immune infiltration status and the prognosis of LUAD.
More importantly, we performed validation on overall survival by
using an independent dataset. The results were consistent with
those displayed in the training set, suggesting that the prediction
model had good generalizability in LUAD.

ICI treatment has led to substantial progress in the clinical
treatment of a variety of solid tumors, including LUAD. Studies
have reported that CTLA4, BTLA, CD200R1, and CD80 are important
immune checkpoints for LUAD. CTLA4 is a member of the
immunoglobulin superfamily, which encodes a transmembrane
protein that negatively regulates T cell function and thereby acts
as a tumor suppressor in LUAD [55]. BTLA, CD200R1, and CD80
are also considered promising targets for ICI treatment
[38,39,56,57]. However, as we all known, the expression of PD-1/
PD-L1 were the most important biomarker for predicting response
of ICIs treatment [55,58]. BTLA, CD200R1, and CD80 are also con-
sidered promising targets for ICI treatment [38,39,56,57]. However,
as we all known, the expression of PD-1/PD-L1 were the most
important biomarker for predicting response of ICIs treatment
[58]. In this study, the TIISR signature showed no correlation with
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them which may considered less clinical significance nowadays.
But, as shown in this study and many other papers, anti-tumor
immunity was a complex system, many studies have revealed that
PD-1/PD-L1 were not a perfect predictor and finding better predic-
tors were never stopped in the past few years [59,60]. In this study,
we not only evaluated the relationship between TIISR signature
and immune checkpoints, but also relationship between tumor
microenvironment and cancer immunity circle. So, we think that
our findings may become a possible solution for evaluate whether
a patient with lung adenocarcinoma could benefit from a lot of
developed or potential ICIs and offer a novel sight into evaluating
anti-tumor immunity.

However, this study was far away from perfect. As the raw reads
or eligible small RNA-Seq data were hardly obtained or not pro-
vided by GEO, CCLE and TCGA-data base and limited by our time
and fundings. We downloaded level 3 data generated by common
total RNA-Seq procedure for this study. Limited by theory of
paired-end RNA-Seq pipeline, though part of snoRNAs could be
detected in this type of data and finding could be validated by fur-
ther biological experiments like this study and other works. The
values of mature snoRNAs may be under represented and some
related information will be lost by performing analysis using based
on level 3 data directly. So, this study may be updated and
extended when more appropriate data provided by databases or
generated by researchers in the future.

Consistent with the results found in our study, a lower risk
score was accompanied by a higher level of immune checkpoint
expression. Subgroup analysis further suggested that LUAD
patients with a low risk score and high immune checkpoint expres-
sion have better survival, also indicating that patients with a low
risk score may benefit more from ICI treatment. Moreover, studies
have demonstrated that ICI treatment is only effective in 10–20% of
tumor patients [61]. This study showed that the TIISR signature can
provide an important tool for screening for LUAD patients that are
most likely to benefit from ICI treatment.

5. Conclusion

Taken together, this study screened immune-related snoRNAs
by comparing the expression and TSI of immune cells and cancer
cell lines. We then identified the TIISR signature by RSF model as
a way to predict the immune infiltration of tumors and LUAD prog-
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nosis. Our findings show that the TIISR signature can provide an
effective tool for identifying patients who might benefit from ICI
treatment.
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