
biomolecules

Article

SCRIB Is Involved in the Progression of Ovarian Carcinomas in
Association with the Factors Linked to
Epithelial-to-Mesenchymal Transition and Predicts Shorter
Survival of Diagnosed Patients

Usama Khamis Hussein 1,2,3,†, Asmaa Gamal Ahmed 1,4,†, Won Ku Choi 2,5,†, Kyoung Min Kim 1,2,
See-Hyoung Park 6 , Ho Sung Park 1,2, Sang Jae Noh 7 , Ho Lee 7, Myoung Ja Chung 1,2, Woo Sung Moon 1,2,
Myoung Jae Kang 1,2, Dong Hyu Cho 2,5,* and Kyu Yun Jang 1,2,*

����������
�������

Citation: Hussein, U.K.; Ahmed,

A.G.; Choi, W.K.; Kim, K.M.; Park,

S.-H.; Park, H.S.; Noh, S.J.; Lee, H.;

Chung, M.J.; Moon, W.S.; et al. SCRIB

Is Involved in the Progression of

Ovarian Carcinomas in Association

with the Factors Linked to

Epithelial-to-Mesenchymal Transition

and Predicts Shorter Survival of

Diagnosed Patients. Biomolecules 2021,

11, 405. https://doi.org/10.3390/

biom11030405

Academic Editor: Alan Prem Kumar

Received: 11 January 2021

Accepted: 6 March 2021

Published: 9 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Korea;
usamahussein@jbnu.ac.kr (U.K.H.); asmaascience3@gmail.com (A.G.A.); kmkim@jbnu.ac.kr (K.M.K.);
hspark@jbnu.ac.kr (H.S.P.); mjchung@jbnu.ac.kr (M.J.C.); mws@jbnu.ac.kr (W.S.M.);
mjkang@jbnu.ac.kr (M.J.K.)

2 Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of
Jeonbuk National University Hospital, Jeonju 54907, Korea; cwkksk@gmail.com

3 Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
4 Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
5 Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Jeonju 54896, Korea
6 Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Korea; imsesame@gmail.com
7 Department of Forensic Medicine, Jeonbuk National University Medical School, Jeonju 54896, Korea;

sjnoh@jbnu.ac.kr (S.J.N.); foremed@jbnu.ac.kr (H.L.)
* Correspondence: obgy2001@jbnu.ac.kr (D.H.C.); kyjang@jbnu.ac.kr (K.Y.J.)
† Contributed equally to the study.

Abstract: SCRIB is a polarity protein important in maintaining cell junctions. However, recent reports
have raised the possibility that SCRIB might have a role in human cancers. Thus, this study evalu-
ated the roles of SCRIB in ovarian cancers. In 102 human ovarian carcinomas, nuclear expression of
SCRIB predicted shorter survival of ovarian carcinoma patients, especially in the patients who received
post-operative chemotherapy. In SKOV3 and SNU119 ovarian cancer cells, overexpression of SCRIB
stimulated the proliferation and invasion of cells. Knockout of SCRIB inhibited in vivo tumor growth of
SKOV3 cells and overexpression of SCRIB promoted tumor growth. Overexpression of SCRIB stimu-
lated epithelial-to-mesenchymal transition by increasing the expression of N-cadherin, snail, TGF-β1,
and smad2/3, and decreasing the expression of E-cadherin; the converse was observed with inhibition
of SCRIB. In conclusion, this study presents the nuclear expression of SCRIB as a prognostic marker of
ovarian carcinomas and suggests that SCRIB is involved in the progression of ovarian carcinomas by
stimulating proliferation and epithelial-to-mesenchymal transition-related invasiveness.

Keywords: ovary; cancer; SCRIB; epithelial-to-mesenchymal transition; prognosis

1. Introduction

SCRIB (scribble) is a protein important in maintaining cell polarity and tight junctions
of epithelial cells [1]. The role of SCRIB as a component of cell junctions suggests that
SCRIB acts as a tumor suppressor because structural and functional alteration of cell
polarity induces tumorigenesis [2,3]. Consequently, loss of SCRIB can induce mammary
tumorigenesis and promote prostate neoplasia [4,5]. The tumor-suppressive role of SCRIB
is also supported by a report that the loss of SCRIB causes loosening of the cell to cell contact
and leading epithelial-to-mesenchymal transition (EMT) [1]. However, subsequent reports
presented conflicting evidence. Mislocalization of SCRIB from the cytoplasmic membrane
to the cytoplasm or nuclei was presented as a tumorigenic phenotype of SCRIB [4,6].
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Cytoplasmic enrichment of SCRIB stimulates the EMT pathway and promotes hepatic
tumor formation [7]. When considering the significant role of EMT in cancer development
and progression [8,9], SCRIB might have a role in cancer progression by regulating EMT [10].
Overexpression of SCRIB stimulated invasiveness of gastric cancer cells by stabilizing
β-catenin and stimulating the EMT pathway [10]. Furthermore, elevated expression of
SCRIB predicted shorter survival of breast cancer [4] and gastric cancer patients [10].
In addition, SCRIB is involved in the development of B-cell lymphoma stimulated by MYC
activation [11]. However, in non-small cell lung cancers, SCRIB expression was associated
with a favorable prognosis [12]. Therefore, the effect of SCRIB in tumorigenesis might
differ according to its subcellular localization and the molecules acting cooperatively with
SCRIB in a specific type of cancer.

Ovarian carcinoma is one of the most common and the most lethal gynecological ma-
lignancy [13]. Despite recent advances in the treatment of ovarian carcinomas with specific
targeted therapies, especially for angiogenesis and homologous recombination deficiency,
the improvement of survival of advanced cancer patients is limited [13]. Tumor stage
still remains the most important prognostic indicator [13]. Therefore, more advanced
study to find novel therapeutic targets is important to improve the treatment efficacy of
advanced ovarian carcinomas. One of the important molecular hallmarks of advanced
carcinoma is EMT, and EMT is involved in cancer metastasis and resistance to conventional
anti-cancer therapy [9,14–16]. Therefore, exploration of EMT-targeted therapy might be
helpful in enhancing therapeutic efficacy of advancer carcinomas, including ovarian carci-
nomas [8,14,15]. Furthermore, recent reports have shown a relationship between SCRIB
and EMT in human cancers [7,10]. Thus, the study for SCRIB might be helpful in the
understanding of EMT-targeted therapy in ovarian carcinomas. Therefore, we investigated
the roles of SCRIB in ovarian carcinomas in conjunction with the EMT phenotype using
human ovarian carcinoma tissues and ovarian cancer cells.

2. Materials and Methods
2.1. Patients and Tissue Samples

This study evaluated 102 ovarian carcinomas diagnosed between November 1996 and
August 2008. All cases were reviewed according to the latest WHO classification [17] and
the 8th edition of the AJCC (American Joint Committee on Cancer) staging system [18].
The data for clinicopathological factors were obtained by review of medical records and
histologic slides. The factors evaluated in this study were the age of patients, preop-
erative serum level of CA125, tumor size, presence of ascites at diagnosis, tumor stage,
lymph node metastasis, bilaterality of tumor, histologic grade, histologic type, and platinum
resistance. The cases included in this study (according to the histologic type of ovarian
carcinoma) were 73 serous carcinomas (consisting of 11 low-grade serous carcinomas and
62 high-grade serous carcinomas), 20 mucinous carcinomas, 5 endometrioid carcinomas,
3 clear cell carcinomas, and 1 malignant Brenner tumor. Post-operatively, 80 patients
received chemotherapy and were evaluated for platinum resistance [19], and 18 patients
were platinum-resistant. This study was approved by the institutional review board of
Jeonbuk National University Hospital (IRB number, CUH 2019-09-034).

2.2. Immunohistochemical Staining in Human Ovarian Carcinoma Tissue

The expression of SCRIB in human ovarian carcinoma tissue was evaluated via im-
munohistochemical staining of tissue microarray sections. The tissue microarray cores
were 5 mm in diameter, and one core per case was arrayed from areas of the highest
histologic grade without degenerative or necrotic changes. An antigen retrieval proce-
dure was performed with a microwave oven. The tissue sections were boiled in pH 6.0
antigen retrieval solution (DAKO, Glostrup, Denmark) for 20 min. The primary antibody
for SCRIB (1:50, Santa Cruz Biotechnology, Santa Cruz, CA, USA) was used for staining.
Immunostained slides were scored with consensus by two pathologists (K.M.K. and K.Y.J.)
without clinical information. Based on the subcellular expression patterns of SCRIB in
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nuclei and cytoplasm in human cancer tissue, immunohistochemical expression of SCRIB
was separately analyzed according to its cytoplasmic and nuclear expression patterns.
The scoring of immunostained slides was conducted according to the Allred scoring sys-
tem [20]. The Allred scoring system utilizes a staining intensity score (0; no staining, 1;
weak, 2; intermediate, 3; strong) and a staining area score (0; no staining, 1; 1%, 2; 2–10%,
3: 11–33%, 4; 34–66%, 5; 67–100%) [20–22]. The final scores were obtained by adding the
staining intensity score and staining area score.

2.3. Cell Lines and Transfection

SKOV3 (ATCC, Manassas, VA, USA) and SNU119 (KCLB, Seoul, Korea) ovarian cancer
cell lines were used in this study. The SKOV3 cell line was grown in DMEM/F-12 (Nu-
trient Mixture F-12 (Ham) (1:1) powder with L-glutamine, pyridoxine hydrochloride and
without HEPES buffer) (Catalog #; 12500-062, GIBCO Invitrogen Corporation, Grand Is-
land, NY, USA), and the SNU119 cell line was grown in RPMI 1640 culture medium (with
L-glutamine, 25 mM HEPES buffer and without sodium bicarbonate) (REF. 23400-021,
GIBCO Invitrogen Corporation, Grand Island, NY, USA) at 37 ◦C under humidified condi-
tions with 5% CO2. The culture media was supplemented with 10% Fetal Bovine Serum
(Gibco BRL, Gaithersburg, MD, USA) and 1% penicillin/streptomycin (Gibco BRL, Gaithers-
burg, MD, USA). The knockout of SCRIB was induced by an hSCRIB/CAS9 KO plasmid
(Catalog #; sc-400384, Santa Cruz Biotechnology, Santa Cruz, CA, USA). Overexpression of
SCRIB was induced using an overexpression vector for SCRIB (Catalog #; EX-Z2845-M03,
accession #; NM_002467, GeneCopoeia, Rockville, MD, USA). The jetPRIME transfection
reagent (Polyplus Transfection, Illkirch, France) was used for transfection.

2.4. Proliferation Assays

A Cell Counting Kit-8 (CCK8, Dojindo, Kumamoto, Japan) assay and a colony-forming
assay were used to evaluate the proliferation of cells. The CCK8 assay was performed by
growing 3 × 103 SKOV3 and 3 × 103 SNU119 cells in 96-well plates for 24, 48, and 72 h.
At the indicated time, CCK8 was added for two hours, and the absorbance was measured
at 560 nm in a microtiter plate reader (Bio-Rad, Richmond, CA, USA). The colony-forming
assay was performed by culturing 1 × 103 cells per well in 6-well culture plates. The cul-
tures were grown in triplicate and allowed to grow and form colonies for two weeks.
The colonies in the culture plates were fixed with methanol and stained with 0.01% crystal
violet. Quantification of the number of colonies was performed using Clono-Counter
software (software was downloaded from the supplementary electronic material) [23].

2.5. In Vitro Wound Healing and Trans-Chamber Migration and Invasion Assays

The migration and invasion activity of ovarian cancer cells were evaluated with a
wound-healing assay and trans-chamber migration and invasion assays. The wound-
healing assay was performed by making linear scratches with the tip of a 200 µL pipette
in 60 mm culture plates that had reached 100% confluency with cells. The microscopic
images for wound healing assay were taken immediately following the application of
the linear scratches, and again 24 h after making the scratches. For the migration assay,
SKOV3 (5 × 104) and SNU119 (1 × 105) cells were grown for 48 h in the 24-transwell mi-
gration chamber (Corning Life Sciences, Acton, MA, USA). Invasion assay was performed
by growing SKOV3 (1 × 105) and SNU119 (2 × 105) cells for 48 h in the bioCoat Matrigel
Invasion Chamber (Corning 24-Well Plate 8.0 Micron, REF. 354480, ready-to-use, BD Bio-
sciences, San Jose, CA, USA). The migrated and invaded cells on the underside of the insert
were counted in five microscopic fields (magnification ×100) per well after being stained
with DIFF-Quik staining solutions (Sysmex, Kobe, Japan).

2.6. Western Blotting Assay

The cultured cells were washed twice with phosphate buffered saline and lysed
using ice-cold PRO-PREP Protein Extraction Solution (iNtRON Biotechnology, Seong-
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nam, Korea) supplemented with 1× phosphatase inhibitor cocktail 2,3 (Sigma, St. Louis,
MO, USA). The normalized protein was loaded in a 4× SDS-PAGE, electrophoresed on
a SDS-polyacrylamide gel, and electrotransferred to a polyvinylidene difluoride mem-
brane. Anti-SCRIB (Cat. No. #; 4475, Cell Signaling Technology, Beverly, MA, USA),
anti-β-catenin (Catalog #; 610154, Millipore, Darmstadt, Germany), anti-active β-catenin
(Catalog #; 05-665, Millipore, Darmstadt, Germany), anti-cyclin D1 (Catalog #; 2922, Cell Sig-
naling Technology, Beverly, MA, USA), anti-E-cadherin (Catalog #; 610182, BD Biosciences,
Becton, Dickinson), anti-N-cadherin (Catalog #; 13116, Cell Signaling Technology, Bev-
erly, MA, USA), anti-snail (Catalog #; ab180714, Abcam, Cambridge, UK), anti-TGF-β1
(Catalog #; 3709, Cell Signaling Technology, Beverly, MA, USA), anti-smad2/3 (Catalog #;
3102, Cell Signaling Technology, Beverly, MA, USA), and anti-actin (Catalog #; sc-376421,
Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) antibodies were used as the primary
antibodies. The membranes were developed with an ECL detection system (Amersham
Biosciences, Buckinghamshire, UK). The images were obtained by using a luminescent
image analyzer (LAS-3000, Fuji Film, Tokyo, Japan) and quantified using ImageJ software
(ImageJ, version 1.38e, NIH, Bethesda, MD, USA).

2.7. Quantitative Reverse-Transcription Polymerase Chain Reaction (qRT-PCR)

Total RNA was obtained using an RNeasy Mini Kit (Qiagen Sciences, Valencia, CA,
USA). After normalization of RNA, 1.5 µg RNA was reverse transcribed to cDNA using
an RT-qPCR kit (Takara Biotechnology Co., Ltd., Dalian, China). A quantitative reverse-
transcription polymerase chain reaction was performed with the Applied Biosystems Prism
7900HT sequence Detection System and SYBR Green PCR Master Mix (Applied Biosystems,
Foster City, CA, USA). All experiments were performed in triplicate, and the values were
normalized to the expression of the GAPDH reference gene. To calculate qRT-PCR results,
the delta-delta-Ct method was used. In this method, we calculate the differences between
gene being Tested Experimental (TE) and Housekeeping gene Experimental (HE) [TE-HE],
and the differences between gene keeping Tested Control (TC) and Housekeeping gene
Control (HC) [TC-HC]. These are the delta Ct values for the Experimental (delta-CTE or
∆CTE) and Control (delta-CTC or ∆CTC) conditions. Finally, we calculate the difference
between ∆CTE and ∆CTC (∆CTE−∆CTC) to get the delta-delta-Ct or what we knew double
delta-Ct (∆∆Ct) values. All experiments were performed in triplicate. The primer sequences
used in the qRT-PCR are listed in Table 1.

Table 1. Primer sequences used for a qRT-PCR.

Gene Primer Sequence Product Size

SCRIB
forward GGGACGACGAGGGCATATTC

207reverse CGTTCTCAGGCTCCACCATGC

CTNNB1 (β-catenin)
forward AAAATGGCAGTGCGTTTAG

100reverse TTTGAAGGCAGTCTGTCGTA

CCND1 (Cyclin D1) forward GAGGAAGAGGAGGAGGAGGA
236reverse GAGATGGAAGGGGGAAAGAG

E-cadherin
forward CCCGGGACAACGTTTATTAC

72reverse ACTTCCCCTTCCTCAGTGAT

N-cadherin
forward ACAGTGGCCACCTACAAAGG

201reverse CCGAGATGGGGTTGATAATG

TGF-β1 forward CCCACAACGAAATCTATGACAA
246reverse AAGATAACCACTCTGGCGAGTG
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Table 1. Cont.

Gene Primer Sequence Product Size

SNAL1 (Snail)
forward ACCCCACATCCTTCTCACTG

217reverse TACAAAAACCCACGCAGACA

SMAD2 (Smad2)
forward ACTAACTTCCCAGCAGGAAT

97reverse GTTGGTCACTTGTTTCTCCA

SMAD3 (Smad3)
forward CGAGAAATGGTGCGAGAAGG

259reverse GAAGGCGAACTCACACAGC

GAPDH
forward AACAGCGACACCCACTCCTC

258reverse GGAGGGGAGATTCAGTGTGGT

2.8. In Vivo Tumorigenic Assay

Five-week-old female FoxnN.Cg/c nude mice (Orient Bio, Seongnam, Korea) were
used in vivo tumorigenic assay with the approval of the institutional animal care and use
committee of Jeonbuk National University (approval number: CBNU 2019-067). The mice
were randomly assigned to three groups, with four mice in each group. According to the ex-
perimental groups, SKOV3 cells were transfected with empty vector, SCRIB-overexpressing
vector, or vector for knock-down of SCRIB. Next, 2 × 106 SKOV3 cells were transfected
with the indicated vectors via subcutaneous injection into the flank after mixing with
Corning matrigel Basement Membrane Matrix (1:1) (Catalog #; 356234, Bedford, MA, USA).
Tumor size was measured every week and calculated by the following equation: tumor
volume = length × width × height × 0.52 [10,22,24]. The mice were euthanized according
to humane end points at six weeks after tumor cell inoculation. The mice were euthanized
after anesthetizing with sodium pentobarbital. The size and weight of the tumors were
measured. Hematoxylin and eosin staining was performed on the resected tumor tissue,
lung, liver, and kidney.

2.9. Statistical Analysis

The immunohistochemical positivity of the nuclear expression of SCRIB (nSCRIB) and
cytoplasmic expression of SCRIB (cSCRIB) was determined by receiver operating charac-
teristic (ROC) curve analysis [25]. The cut-off points in ROC curve analysis for nSCRIB
and cSCRIB were determined to predict the cancer-related death of patients [10,25,26].
The prognosis of ovarian carcinoma patients was evaluated for overall survival (OS) and
relapse-free survival (RFS) through June 2015. An event in OS analysis was the death of a
patient from ovarian cancer. An event in RFS analysis was the relapse of cancer and death
of a patient from ovarian cancer. Univariate and multivariate Cox proportional hazards
regression analysis were used to present a hazard ratio (HR) and 95% confidence interval
(95% CI). Survival curves were derived from Kaplan-Meier survival analysis. The rela-
tionship and difference between factors were analyzed with the Pearson’s chi-square test
and the Student’s t-test, and the values are presented as the mean ± standard deviation.
All experiments were done in triplicate and performed three times, with representative
data presented. SPSS software (IBM, version 20.0, Armonk, NY, USA) was used in statistical
analysis, and a p-value less than 0.05 was considered statistically significant.

3. Results
3.1. The Expression of SCRIB Is Associated with the Progression of Ovarian Carcinomas

Immunohistochemically, SCRIB was expressed in both the cytoplasm and nuclei of
ovarian carcinoma cells (Figure 1A). As shown in Figure 1A, there were cases that did not
express SCRIB, and cases that expressed SCRIB predominantly in the cytoplasm, predomi-
nantly in the nuclei, or both the cytoplasmic and the nuclei. Therefore, the expression of
SCRIB was separately analyzed according to its cytoplasmic or nuclear expression. The cut-
off points of immunohistochemical staining scores for the nuclear expression of SCRIB
(nSCRIB) and cytoplasmic expression of SCRIB (cSCRIB) were determined with ROC anal-
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ysis to predict the death of cancer patients (Figure 1B). The cut-off points were six in both
nSCRIB and cSCRIB (Figure 1B). The cases with a score equal or greater than six for both
nSCRIB and cSCRIB were considered positive. With these cut-off points, the factors signifi-
cantly associated with both nSCRIB and cSCRIB were CA125 level, cancer stage, ascites,
bilaterality of cancer, histologic grade, histologic type, and platinum resistance (Table 2).
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Figure 1. Immunohistochemical expression of SCRIB and statistical analysis. (A) SCRIB is expressed in both the cytoplasm
and nuclei of ovarian carcinoma cells. Original magnification: ×400. (B) Receiver operating characteristic curve analysis to
determine cut-off points for the nuclear expression of SCRIB (nSCRIB) and cytoplasmic expression of SCRIB (cSCRIB).

Table 2. Clinicopathologic factors and the expression of SCRIB in ovarian carcinomas.

Characteristics No.
nSCRIB cSCRIB

Positive p Positive p

Age, y <60 69 32 (46%) 0.055 30 (43%) 0.013
≥60 33 22 (67%) 23 (70%)

CA125 * Normal 18 3 (17%) <0.001 3 (17%) 0.001
Elevated 74 46 (62%) 44 (59%)

Stage I & II 52 21 (40%) 0.010 19 (37%) 0.001
III & IV 50 33 (66%) 34 (68%)

Cancer size, cm ≤10 67 40 (60%) 0.058 41 (61%) 0.010
>10 35 14 (40%) 12 (34%)

Lymph node metastasis Absence 83 43 (52%) 0.632 42 (51%) 0.566
Presence 19 11 (58%) 11 (58%)

Ascites Absence 69 30 (43%) 0.006 31 (45%) 0.040
Presence 33 24 (73%) 22 (67%)
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Table 2. Cont.

Characteristics No.
nSCRIB cSCRIB

Positive p Positive p

Bilaterality Unilateral 58 25 (43%) 0.022 25 (43%) 0.040
Bilateral 44 29 (66%) 28 (64%)

Histologic grade Low (1) 26 4 (15%) <0.001 4 (15%) <0.001
High (2 and 3) 76 50 (66%) 49 (64%)

Histologic type Serous 73 45 (62%) 0.015 49 (67%) <0.001
Mucinous 20 4 (20%) 3 (15%)

Endometrioid 5 3 (60%) 0 (0%)
Clear cell 3 2 (67%) 1 (33%)
Malignant

Brenner 1 0 (0%) 0 (0%)

Platinum-resistance Absence 62 29 (47%) 0.006 31 (50%) 0.036
Presence 18 15 (83%) 14 (78%)

cSCRIB Negative 49 6 (12%) <0.001
Positive 53 48 (91%)

* Pre-operative serum level of CA125 was not measured in 10 patients.

3.2. The Expression of SCRIB Is Associated with Shorter Survival of Ovarian Carcinoma Patients
in Univariate Analysis

In univariate survival analysis, age, cancer stage, cancer size, presence of ascites,
bilaterality of cancer, CA125 level, histologic grade, nSCRIB, and cSCRIB were significantly
associated with OS or RFS (Table 3) (Figure 2).

Table 3. Univariate analysis in overall ovarian carcinoma and 62 high-grade ovarian carcinomas.

Characteristics No.
OS RFS

HR (95% CI) p HR (95% CI) p

Overall ovarian carcinomas (n = 104)
Age, y, ≥60 (vs. <60) 33/102 2.763 (1.641–4.717) <0.001 2.338 (1.438–3.802) <0.001
Stage, III & IV (vs. I & II) 50/102 3.286 (1.845–5.853) <0.001 4.206 (2.346–6.908) <0.001
Cancer size, cm, >10 (vs. ≤10) 35/102 0.487 (0.262–0.906) 0.023 0.574 (0.334–0.985) 0.044
LN metastasis, presence (vs. absence) 19/102 1.320 (0.707–2.466) 0.383 1.697 (0.973–2.958) 0.062
Ascites, presence (vs. absence) 33/102 1.967 (1.154–3.353) 0.013 1.914 (1.170–3.131) 0.010
Bilaterality, bilateral (vs. unilateral) 44/102 1.642 (0.969–2.783) 0.065 2.115 (1.297–3.448) 0.003
CA125, elevated (vs. normal) * 74/92 5.083 (1.578–16.376) 0.006 5.009 (1.810–13.861) 0.002
Histologic grade, high (vs. low) 76/102 3.207 (1.444–7.124) 0.004 3.312 (1.631–6.725) <0.001
nSCRIB, positive (vs. negative) 54/102 3.312 (1.820–6.026) <0.001 3.606 (2.082–6.245) <0.001
cSCRIB, positive (vs. negative) 53/102 3.179 (1.747–5.786) <0.001 3.292 (1.917–5.655) <0.001

High-grade serous carcinomas (n = 62)
Age, y, ≥60 (vs. <60) 27/62 2.139 (1.170–3.911) 0.013 1.689 (0.972–2.934) 0.063
Stage, III & IV (vs. I & II) 37/62 1.822 (0.952–3.486) 0.070 2.831 (1.493–5.366) 0.001
Cancer size, cm, >10 (vs. ≤10) 14/62 0.703 (0.326–1.517) 0.370 0.773 (0.395–1.513) 0.452
LN metastasis, presence (vs. absence) 14/62 1.313 (0.658–2.621) 0.440 1.789 (0.953–3.356) 0.070
Ascites, presence (vs. absence) 26/62 1.342 (0.735–2.450) 0.338 1.391 (0.798–2.427) 0.245
Bilaterality, bilateral (vs. unilateral) 35/62 1.268 (0.684–2.350) 0.450 1.587 (0.887–2.840) 0.120
CA125, elevated (vs. normal) 52/57 2.373 (0.570–9.880) 0.235 1.589 (0.492–5.136) 0.439
nSCRIB, positive (vs. negative) 42/62 2.278 (1.117–4.644) 0.023 1.888 (1.002–3.560) 0.049
cSCRIB, positive (vs. negative) 45/62 2.116 (0.976–4.585) 0.058 1.635 (0.836–3.199) 0.151

* Pre-operative serum level of CA125 was not measured in 10 patients.
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In addition, we performed survival analysis according to histologic subtype of ovarian
carcinomas. In high-grade serous carcinoma (HGSC), age, cancer stage, and nSCRIB
were significantly associated with OS or RFS in univariate analysis (Table 3) (Figure 3A).
In addition, despite the low number of cases, nSCRIB and cSCRIB were significantly
associated with survival of mucinous carcinoma patients (Figure 3B).
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3.3. Nuclear Expression of SCRIB Predicts Shorter Survival of Ovarian Carcinoma Patients in
Multivariate Analysis

The factors significantly associated with OS or RFS in univariate analysis except for
CA125 level were included in multivariate analysis. In overall 104 ovarian carcinomas,
age, cancer stage, histologic grade, and nSCRIB were associated with OS or RFS (Table 4).
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The nSCRIB positivity predicted a 2.252-fold (95% CI; 1.205–4.207, p = 0.011) greater risk of
death of patients. In HGSC, age and nSCRIB were independent indicators of OS, and tumor
stage was an independent indicator of RFS (Table 4). nSCRIB-positive patients had a
2.236-fold (95% CI; 1.097–4.558, p = 0.027) greater risk of death compared with nSCRIB-
negative patients with HGSC (Table 4).

Table 4. Multivariate Cox regression analysis in overall ovarian carcinoma and 62 high-grade
ovarian carcinomas.

Characteristics
OS RFS

HR (95% CI) p HR (95% CI) p

Overall ovarian carcinomas (n = 102) *
Age, y, ≥60 (vs. <60) 2.254 (1.306–3.890) 0.004 1.654 (1.002–2.730) 0.049
Stage, III & IV (vs. I & II) 2.218 (1.212–4.059) 0.010 2.802 (1.573–4.990) <0.001
Histologic grade, high (vs. low) 2.353 (1.071–5.168) 0.033
nSCRIB, positive (vs. negative) 2.252 (1.205–4.207) 0.011 1.768 (0.963–3.245) 0.066

High-grade serous carcinomas (n = 62) **
Age, y, ≥60 (vs. <60) 2.103 (1.150–3.843) 0.016
Stage, III & IV (vs. I & II) 2.831 (1.493–5.366) 0.001
nSCRIB, positive (vs. negative) 2.236 (1.097–4.558) 0.027

* The factors included in the multivariate analysis were age, cancer stage, cancer size, ascites, bilaterality,
histologic grade, nSCRIB, and cSCRIB. ** The factors included in the multivariate analysis were age, cancer stage,
cancer size, ascites, bilaterality, histologic grade, nSCRIB, and cSCRIB.

3.4. The Expression of SCRIB Predicts Shorter Survival of Ovarian Carcinoma Patients Who
Received Adjuvant Chemotherapy

In our results, nSCRIB and cSCRIB were significantly associated with platinum-
resistance and shorter survival of patients. These results suggest that SCRIB might be re-
lated to chemoresistance. Therefore, we further analyzed for survival in the sub-population
of ovarian carcinoma patients who received adjuvant chemotherapy. In eighty patients
who received adjuvant chemotherapy, both nSCRIB and cSCRIB were significantly associ-
ated with OS and RFS in univariate analysis (Table 5) (Figure 4). In multivariate analysis,
age, cancer stage, bilaterality, and nSCRIB expression were independent indicators of
OS (Table 5). Higher tumor stage and nSCRIB positivity predicted shorter RFS (Table 5).
Positivity of nSCRIB predicted a 2.363-fold (95% CI; 1.149–4.859, p = 0.019) greater risk of
death and a 2.530-fold (95% CI; 1.313–4.875, p = 0.006) greater risk of relapse or death of
patients (Table 5).

Table 5. Univariate and multivariate analysis in 80 ovarian carcinoma patients who received adjuvant chemotherapy.

Characteristics No.
OS RFS

HR (95% CI) p HR (95% CI) p

Univariate analysis
Age, y, ≥60 (vs. <60) 26/80 2.805 (1.527–5.153) 0.001 2.152 (1.248–3.713) 0.006
Stage, III & IV (vs. I & II) 44/80 3.213 (1.605–6.433) <0.001 3.709 (1.984–6.934) <0.001
Cancer size, cm, >10 (vs. ≤10) 26/80 0.617 (0.303–1.255) 0.182 0.766 (0.421–1.394) 0.383
LN metastasis, presence (vs. absence) 17/80 1.169 (0.572–2.391) 0.668 1.489 (0.805–2.756) 0.205
Ascites, presence (vs. absence) 29/80 2.306 (1.252–4.247) 0.007 2.045 (1.182–3.537) 0.010
Bilaterality, bilateral (vs. unilateral) 37/80 1.465 (0.796–2.697) 0.220 1.933 (1.113–3.358) 0.019
CA125, elevated (vs. normal) 65/77 10.560 (1.448–77.004) 0.020 7.140 (1.731–29.448) 0.007
Histologic grade, high (vs. low) 62/80 5.150 (1.140–23.276) 0.033 2.693 (1.210–5.991) 0.015
nSCRIB, positive (vs. negative) 44/80 3.352 (1.680–6.688) <0.001 3.598 (1.943–6.664) <0.001
cSCRIB, positive (vs. negative) 45/80 3.334 (1.634–6.801) <0.001 3.182 (1.719–5.890) <0.001

Multivariate analysis
Age, y, ≥60 (vs. <60) 2.308 (1.244–4.280) 0.008
Stage, III & IV (vs. I & II) 4.079 (1.672–9.953) 0.002 2.619 (1.343–5.108) 0.005
Bilaterality, bilateral (vs. unilateral) 0.436 (0.202–0.942) 0.035
nSCRIB, positive (vs. negative) 2.363 (1.149–4.859) 0.019 2.530 (1.313–4.875) 0.006

Age, cancer stage, cancer size, ascites, bilaterality, histologic grade, nSCRIB, and cSCRIB were included in multivariate analysis.
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3.5. SCRIB Is Associated with the Proliferation and Invasion of Ovarian Cancer Cells

In ovarian cancer cells, we evaluated the effect of SCRIB expression on the prolifer-
ation and invasiveness of cells. The proliferation of SKOV3 and SNU119 ovarian cancer
cells were significantly inhibited by knockout of SCRIB and significantly stimulated by
overexpression of SCRIB as evidenced by CCK8 proliferation assay (Figure 5A) and colony
forming assay (Figure 5B). In addition, the migration and invasion ability of SKOV3 and
SNU119 ovarian cancer cells were significantly inhibited by knockout of SCRIB and were
significantly stimulated by overexpression of SCRIB as evidence by wound-healing, migra-
tion, and invasion assay (Figure 6). Furthermore, overexpression of SCRIB significantly
increased in vivo growth of SKOV3 cells, and knockout of SCRIB significantly decreased
in vivo tumor growth compared with controls (Figure 7). However, histologically, there
were no identifiable metastatic lesions in the lung, liver, or kidney of the mice in the three
experimental groups. In addition, there were no significant differences in the shape of
implanted cancer cells between experimental groups (Figure 7C).
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Figure 5. The effect of SCRIB on the proliferation of ovarian carcinoma cells. (A) SKOV3 and SNU119
cells were transfected with empty vector, vector for knockout of SCRIB, or SCRIB overexpression
vector and performed CCK8 proliferation assay by growing 3000 cells in a 96-well plate for 24, 48,
and 72 h. Knockout or overexpression of SCRIB in both SKOV3 and SNU119 cells were verified via
western blot bands for SCRIB and actin. (B) The colony-forming assay in SKOV3 and SNU119 cells
was performed by seeding 1000 cells per well in a 6-well plate for two weeks. * p < 0.05, ** p < 0.001.
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Figure 6. The effect of SCRIB on the invasiveness of ovarian carcinoma cells. (A) A wound healing
assay was performed three times with SKOV3 and SNU119 cells transfected with empty vector,
vector for knockout of SCRIB, or a SCRIB overexpression vector. EVs; the cells transfected with both
empty vector for knockout and empty vector for overexpression of SCRIB. Microscopic images for
wound healing assay were taken just after making linear scratches and again at 24 h after making
scratches. The wound width was measured from the microscopic images and presented as ‘% of
control’. The values in graphs are presented as the mean ± standard deviation. (B) The trans-chamber
migration assay was performed by growing 5 × 104 SKOV3 or 1 × 105 SNU119 cells in the upper
chamber for 48 h. (C) The trans-chamber invasion assay was performed by growing 1 × 105 SKOV3
or 2 × 105 SNU119 cells in the upper chamber with Matrigel for 48 h. The number of migrated or
invaded cells were counted in five ×100 microscopic fields in each well. ** p < 0.001.
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Figure 7. In vivo tumorigenic assay with knockout or overexpression of SCRIB in SKOV3 ovarian
cancer cells. In vivo tumor growth was evaluated by subcutaneously implanting 2 × 106 SKOV3
cells transfected with empty vectors, vector for knockout of SCRIB, or a SCRIB overexpression vector.
EVs; the cells transfected with both empty vector for knockout and empty vector for overexpression
of SCRIB. (A) The tumor volume was measured every week after tumor implantation by the equation
V = L × W × H × 0.52 mm3. (B) Six weeks after tumor inoculation, mice were euthanized, and tumor
weight was measured. (C) Macroscopic and microscopic findings of xenografted tumors. ** p < 0.001.
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3.6. SCRIB Is Associated with a Change in Expression of Factors Linked to the EMT of
Cancer Cells

In malignant epithelial tumors, the molecules associated with EMT are closely as-
sociated with cancer progression and resistance to therapy. Therefore, we evaluated the
expression of proteins and mRNA transcripts associated with EMT. The protein and mRNA
expression of cyclin D1, N-cadherin, snail, TGF-β1, and smad2/3 decreased, and the ex-
pression of E-cadherin increased with knockout of SCRIB in both SKOV3 and SNU119
cells (Figure 8). Overexpression of SCRIB increased the protein and mRNA expression of
cyclin D1, N-cadherin, snail, TGF-β1, and smad2/3 and decreased expression of E-cadherin
(Figure 8). However, the expression of β-catenin mRNA was unchanged with knockout or
overexpression of SCRIB despite the change in β-catenin protein expression (Figure 8).
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Figure 8. Western blot and quantitative reverse-transcription polymerase chain reaction after knockout or overexpression
of SCRIB in ovarian carcinoma cells. (A) Western blot was performed for SCRIB, β-catenin, active β-catenin, cyclin D1,
E-cadherin, N-cadherin, snail, TGF-β1, smad2/3, and actin after knockout or overexpression of SCRIB in SKOV3 and
SNU119 ovarian carcinoma cells. The western bands were quantified using ImageJ software and the values are indicated
below the bands. (B) Quantitative reverse-transcription polymerase chain reaction was performed for SCRIB, β-catenin,
cyclin D1, E-cadherin, N-cadherin, snail, TGF-β1, smad2, and smad3 after knockout or overexpression of SCRIB in SKOV3
and SNU119 ovarian carcinoma cells. EVs; the cells transfected with both empty vector for knockout and empty vector for
overexpression of SCRIB. ** p < 0.001.
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4. Discussion

In this study, the expression of SCRIB was associated with advanced clinicopatho-
logical factors of ovarian carcinomas, such as elevation of CA125 level, high cancer stage,
and higher histologic grade. In addition, both nSCRIB and cSCRIB positivity were in-
dependent indicators of shorter OS and RFS. Furthermore, nSCRIB positivity predicted
shorter OS of HGSC, the most common histologic type of ovarian cancer with a relatively
unfavorable prognosis. These findings suggest that SCRIB is involved in the progression
of ovarian carcinomas and might be used as a prognostic marker of ovarian carcinoma
patients. Consistently, nSCRIB was an independent predictor of survival of gastric car-
cinoma patients [10]. In addition, higher expression of SCRIB mRNA was associated
with poor prognosis of breast cancers [4] and shorter survival of hepatocellular carcinoma
patients [7]. However, controversially, higher immunohistochemical expression of SCRIB
was associated with favorable prognosis of lung cancer patients [12]. Therefore, because of
controversial reports on the prognostic impact of SCRIB expression in human cancers,
further study is needed in various types of human cancers.

Regarding the subcellular localization of SCRIB, its expression was expected in the
basolateral side of the cytoplasmic membrane because SCRIB is involved in maintaining
tight junctions [1–3]. However, the expression of SCRIB was observed in the cytoplasm
and/or nuclei of human cancer cells [4,10,27]. The subcellular localization of SCRIB was
different between non-neoplastic cells and cancer cells [7,27]. In hepatocytes of healthy
livers, SCRIB is localized in the cytoplasmic membrane [7]. However, cytoplasmic lo-
calization of SCRIB was detected in 69% (22/32 cases) of hepatocellular carcinomas [7].
Moreover, enrichment of cytoplasmic SCRIB was associated with the overall increase of
intracellular SCRIB by inducing overexpression of SCRIB [7]. In a study with human
and mouse liver cancer models, cytoplasmic and nuclear expression of SCRIB was more
prevalent in liver cancer tissue, and non-neoplastic liver tissue showed SCRIB expressed
solely on the cytoplasmic membrane [27]. The cytoplasmic and nuclear expression of
SCRIB in liver cancer tissue was supported by Western blots performed with subcellu-
lar fractionated protein lysates [27]. Therefore, higher expression of SCRIB supports its
translocation to the cytoplasm and nuclei and might be involved in the tumorigenesis of
epithelial cells [7]. Furthermore, in our results, nSCRIB is an independent indicator of
shorter survival of ovarian carcinoma patients. These results suggest that nuclear SCRIB is
important in cancer progression. Thus, the prognostic significance of nuclear localization
of SCRIB might be related to the association between SCRIB and nuclear proteins involved
in cancer progression, such as snail and β-catenin [8,10]. In gastric carcinomas, SCRIB sta-
bilizes β-catenin by binding it and consequently activating TCF/LEF transcription [10].
In our results, the expression of proteins of β-catenin were decreased with knockout of
SCRIB and increased with overexpression of SCRIB. In addition, as a consequence of
the SCRIB-mediated increase of β-catenin protein, the expression of cyclin D1 and snail,
the down-stream molecules of Wnt/β-catenin signaling, were increased with overexpres-
sion of SCRIB. Supportively, mislocalization of SCRIB from the cytoplasmic membrane to
cytoplasm promoted mammary tumorigenesis by activating the Akt/mTOR pathway [4].
Together, these results suggest that subcellular localization of SCRIB, especially in nuclei
and cytoplasm, might be important in the tumorigenic role of SCRIB, which warrants
additional study.

Loss of cell polarity protein might serve to induce tumors by promoting the un-
controlled proliferation of cells [28,29]. Therefore, as a component of polarity protein,
SCRIB has been suggested as a tumor suppressor, and loss of SCRIB induced tumorigene-
sis in MYC-induced transformed epithelial cells [6]. However, in addition to the loss of
SCRIB, mislocalization of SCRIB also induced mammary tumorigenesis [6]. Furthermore,
cytoplasmic and nuclear localization of SCRIB, induced by overexpression of SCRIB, stimu-
lated the proliferation of liver cancer cells [27]. Consistently, in our results, SCRIB positively
regulated the proliferation of ovarian cells. In line with these results in ovarian cancers,
SCRIB stimulated in vitro proliferation and in vivo growth of gastric cancer cells by acti-
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vating the Wnt/β-catenin pathway [10]. Based on the association between SCRIB and the
Wnt/β-catenin pathway, recent reports have shown the molecular relationship between
MYC, FAM83H, SCRIB, and the Wnt/β-catenin pathway in human cancers [10,11,30].
MYC transcriptionally controls FAM83H expression, and the expression of SCRIB was
regulated by FAM83H [10,30]. Thereafter, FAM83H and SCRIB form a complex to stabilize
β-catenin [10]. These molecular relationships might be supported by the report that SCRIB
is involved in the initiation of MYC-driven lymphoma [11]. Knock-out of SCRIB delayed
expansion of B cells in the development of MYC-mediated lymphoma development [11].
Therefore, these results suggest there is a close relationship between MYC, FAM83H, SCRIB,
and the Wnt/β-catenin pathway in cancer progression. However, there are conflicting
reports that SCRIB acts as a tumor suppressor. Conditional knock-out of SCRIB in the
epidermis enhanced epidermal carcinogenesis [31] and SCRIB repressed Wnt signaling
in HEK293T cells [32]. Therefore, further study is needed to clarify the role of SCRIB in
human cancer.

In our results, SCRIB stimulated invasiveness and the factors linked to EMT of ovarian
cancer cells. EMT is an important process in cancer progression and is involved in cancer in-
vasiveness, and the characteristic phenotype of EMT is a loss of E-cadherin in epithelial cells
and activation of the snail, TGF-β1, and N-cadherin [9,14]. In our results, SCRIB induced
an EMT phenotype; decrease of E-cadherin and increase of N-cadherin, snail, TGF-β1,
and smad2/3 with overexpression of SCRIB. Interestingly, the expression of the protein of
smad2/3 increased with overexpression of SCRIB. When considering the role of TGF-β1
in EMT as an activator of smad2/3 by inducing phosphorylation of smad2/3 [33], the in-
crease in total protein amount of smad2/3 in SCRIB-overexpressing cells is questionable.
However, in addition to the increase in smad2/3 protein, mRNA of smad2/3 also increased
with overexpression of SCRIB. Therefore, higher expression of smad2/3 protein in SCRIB-
overexpressing cells might be related to increased transcription of smad2/3. Consistently,
when we searched the GEPIA public database (http://gepia.cancer-pku.cn. accessed on 21
February 2021) [34], there was a significant correlation between the expression of TGF-β1
mRNA and smad2 mRNA (Pearson’s R = 0.33, p < 0.001) and smad3 mRNA (Pearson’s
R = 0.31, p < 0.001) in ovarian cancers. Furthermore, mRNA expression of SCRIB was
also significantly correlated with smad2 mRNA (Pearson’s R = 0.12, p = 0.013) and smad3
mRNA (Pearson’s R = 0.17, p < 0.001) in ovarian cancers. In addition, SCRIB induced
expression of factors linked to EMT phenotype and increased invasion of gastric cancer
cells [10] and cytoplasmic SCRIB increased the invasion activity of liver cancer cells [7].
Therefore, these results suggest that SCRIB is involved in the progression of ovarian cancer
by inducing the expression of factors linked to EMT. However, SCRIB is a component of
the Scribble polarity complex and important in maintaining the apicobasal cell polarity of
epithelial cells. Therefore, based on the role of SCRIB as a component of tight junctions,
the maintenance of SCRIB is expected as a tumor suppressor or suppressor of EMT [35,36].
In corneal epithelium, conditional deletion of SCRIB induced EMT phenotype; elonga-
tion of the shape of epithelial cells and loss of E-cadherin and upregulated expression of
snail TGF-β, and smad3/4 [35]. Knock-down of SCRIB in cancer-associated fibroblasts
increased invasiveness of both tumor-associated fibroblasts and co-cultured Lewis lung
cancer cells [36]. However, in contrast, recent reports have shown that the role of SCRIB
in human cancer is closely related to its subcellular localization instead of its expression
level. In a study using tissues from normal endometrium, endometriosis, and endometrial
adenocarcinoma, membranous expression of SCRIB in normal endometrium changed to be
localized in the cytoplasm and nuclei in endometriosis and endometrial carcinomas [37].
In this respect, the loss of SCRIB from the cytoplasmic membrane and its aberrant translo-
cation to the cytoplasm and/or nucleus might serve in the development and progression
of cancers. When SCRIB was overexpressed, SCRIB moved to the cytoplasm, and that was
associated with cancer development. In addition, transfection of mutant SCRIB caused
a cytoplasmic enriched induced EMT phenotype of hepatocellular carcinoma cells and
increased invasiveness of cancer cells [7]. Therefore, SCRIB mediated EMT might be related

http://gepia.cancer-pku.cn
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to the subcellular expression pattern of SCRIB, and further study is needed to focus on
this point.

One of the interesting findings of our study is that SCRIB might be involved in
chemoresistance of ovarian cancer cells. In the comparison of clinicopathologic factors and
SCRIB expression in ovarian carcinomas, nSCRIB and cSCRIB positivity were significantly
associated with platinum-resistance. Furthermore, in subpopulation survival analysis of
patients who received adjuvant chemotherapy, nSCRIB positivity was an independent indi-
cator of shorter survival. In addition, SCRIB expression was closely associated with the ex-
pression of EMT-related molecules. The Wnt, TGF-β, Notch, and mitogenic growth factors
related pathways are known as the signaling pathways that activate EMT [8,9,14]. Further-
more, EMT mediates chemoresistance by inducing stem-cell-like properties in cancer cells,
inducing resistance to drug-induced apoptosis, and modulating tumor microenvironment
on cancer-associated fibroblasts and immune cells [14]. In addition, the EMT phenotype
was associated with chemoresistance and progression of ovarian cancer cells [15,38]. There-
fore, when considering the effect of EMT on cancer drug resistance [8,14,16], SCRIB might
be involved in chemoresistance during the treatment of ovarian carcinomas by activating
EMT pathways. However, there are controversial reports on the role of SCRIB on EMT and
chemoresistance. In corneal epithelium, the EMT phenotype occurred in SCRIB deficient
cells [35]. In non-small cell lung cancer cells, SCRIB supported the anti-cancer effects
of cisplatin by increasing cisplatin-mediated generation of reactive oxygen species and
knock-down of SCRIB induced cisplatin resistance [12]. Therefore, the role of SCRIB in
tumorigenesis and cancer progression might be different according to the type of tumor
and stage of progression of cancer, and further study is needed.

5. Conclusions

In this study, we demonstrated that SCRIB stimulates proliferation and invasiveness
of ovarian cancer cells in conjunction with activation of the factors linked to the EMT
pathway. Moreover, we presented SCRIB expression as a potential prognostic indicator of
ovarian carcinoma patients, especially in patients who received chemotherapy. Therefore,
our results suggest that SCRIB is involved in cancer progression and chemoresistance by
activating some EMT characteristics. Furthermore, our results suggest that the SCRIB-
EMT pathway might be a new therapeutic target for the ovarian carcinomas which highly
express SCRIB and are refractory to the conventional anti-cancer therapies.
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