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The large mortality and morbidity rate of C. albicans infections is a crucial problem
in medical mycology. Because the generation of biofilms and drug resistance are
growing concerns, the growth of novel antifungal agents and the looking for newer
objectives are necessary. In this review, inhibitors of C. albicans biofilm generation and
molecular mechanisms of intestinal epithelial barrier protection are elucidated. Recent
studies on various transcription elements; quorum-sensing molecules; host responses
to adherence; and changes in efflux pumps, enzymes, bud to hyphal transition, and
lipid profiles have increased the knowledge of the intricate mechanisms underlying
biofilm resistance. In addition, the growth of novel biomaterials with anti-adhesive nature,
natural products, drugs, bioactive compounds, proteins, lipids, and carbohydrates
are being researched. Recently, more and more attention has been given to various
metal nanoparticles that have also appeared as antibiofilm agents in C. albicans. The
intestinal epithelial obstacle exerts an crucial effect on keeping intestinal homeostasis
and is increasingly associated with various disorders associated with the intestine such
as inflammatory bowel disease (IBD), irritable bowel syndrome, metabolic syndrome,
allergies, hepatic inflammation, septic shock, etc. However, whether their involvement
in the prevention of other intestinal disorders like IBD are useful in C. albicans
remains unknown. Further studies must be carried out in order to validate their
inhibition functions in intestinal C. albicans. This provides innovates ideas for intestinal
C. albicans treatment.

Keywords: Candida albicans, antibiofilm, intestinal epithelial barrier, new combination therapy, fungal infection

INTRODUCTION

Fungal infections due to Candida species represent an important cause of nosocomial bloodstream
infections and are especially usual among seriously ill and intensive care patients and the patients
with a solid malignancy or in recovery from abdominal operation (Pongrácz et al., 2015; Li
et al., 2016). As a normal element of human intestinal, oral, and vaginal microflora, C. albicans
(C. albicans) is also the leading element causing nosocomial fungemia (Brown et al., 2012).
Among several susceptible people, it is argued that C. albicans infections are disseminated by
gastrointestinal transmission; data from researches applying both patients and animal models
supports this assumption (Miranda et al., 2009; Maraki et al., 2015; Shankar et al., 2015). Life-
threatening illness with obvious rates of mortality among immunocompromised patients and the
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patients undergoing immunosuppressive therapy can be caused
by C. albicans (Pongrácz et al., 2015). C. albicans is a commensal
fungus that asymptomatically adapts to the normal microflora
of the host but is aggressive and virulent once transformed
to its hyphal form and covered by an extracellular polymeric
substance (EPS). This demonstrates that C. albicans is the most
common fungal pathogen among humans. It can cause diseases
varying from considerable mucosal infection to deadly invasive
bloodstream infection, which has a 40% mortality rate (Gulati
and Nobile, 2016; Lohse et al., 2018). The three phases of the
growth of C. albicans include adherence of the yeast cells to
medical equipment (early phase), differentiation of yeast cells and
hyphal cells (intermediate phase), and a growth in the matrix,
which is the mature stage (Alim et al., 2018).

Greatly structured biofilms consist of various cell kinds (i.e.,
round, budding yeast-form cells; oval pseudohyphal cells; and
elongated, cylindrical hyphal cells) encased in an extracellular
matrix (Chandra et al., 2001; Ramage et al., 2005, 2009; Fox
and Nobile, 2012). Occupying 15% of all hospital-obtained sepsis
cases, species within the CTG clade (mainly C. albicans and
closely associated species) are the remarkable fungal species
found in medical device infections as the fourth most usual
cause of bloodstream infections in clinical context (Wenzel,
1995; Wisplinghoff et al., 2004; Pfaller and Diekema, 2007).
Urinary and central venous catheters, mechanical heart valves,
pacemakers, contact lenses, joint prostheses, and dentures are all
impressionable to C. albicans biofilms (Donlan and Costerton,
2002; Kojic and Darouiche, 2004; Cauda, 2009; Seddiki et al.,
2013). Once it generates on an implanted medical equipment,
Candida biofilm is potential in seeding impregnated bloodstream
infections and can result in aggressive systemic tissue and organ
infections. Biofilms cause various infections by attaching to
surfaces or interfaces and embedding in a matrix of extracellular
polymeric substances (Costerton et al., 1999). Biofilm generation
on biomaterials and medical equipment including catheters and
heart valves, results in chronic infections with high morbidity
and mortality rates (Uppuluri et al., 2010; Seddiki et al.,
2013). Biofilms are remarkably resistant to drugs after implant-
associated infections because matured biofilms form a protein-
and carbohydrate-rich extracellular matrix. In virtue of the
large resistance of fungal biofilms to present antifungal drugs,
great antifungal doses and elimination of the colonized medical
equipment are necessary for treating infections (Mermel et al.,
2009; Lepak and Andes, 2011; Andes et al., 2012; Cornely et al.,
2012; Lortholary et al., 2012). Therefore, novel antifungal agents
are needed to stop biofilm generation (Zarnowski et al., 2014).

At the same time, intestinal epithelial cells (IECs) form
the first physical and immunological protective wall against
aggressive pathogens. They not only coexist with the intestinal
microbiota resisting commensal bacteria, but also fight pathogens
to maintain homeostasis (Sánchez de Medina et al., 2013). The
intestinal mucosal obstacle is chiefly composed of a mechanical
obstacle, a chemical obstacle, a microbial obstacle, and an
immune obstacle, which exert a significant effect on blocking
the attaching of pathogens including Candida species (Yan et al.,
2013). The mucosal barrier can adequately contain luminal
microorganisms and molecules while absorbing nutrients.

Alterations of the intestinal epithelial barrier are increasingly
being associated with various disorders related to the intestine
such as irritable bowel syndrome, inflammatory bowel disease
(IBD), metabolic syndrome, hepatic inflammation, allergy, septic
shock, and others (Natividad and Verdu, 2013). Several studies
have documented that farnesol promotes intestinal epithelial
barrier transcriptional regulation by activating JAK/STAT3
signaling. The involved molecules may also represent a good
potential target for the treatment of C. albicans invasion
(Fang et al., 2019). Recent studies have shown that labetalol
decreased TBI-caused sympathetic hyperactivity, and restrained
histopathological intestinal injury combined with variations in
gut permeability and gut TNF-α expression in a rat model of TBI
(Lang et al., 2015).

Because broad-spectrum antifungal drugs are extensively
applied, the appearance of resistant fungal strains in clinical
cases has been a main issue in antifungal therapy. Here, we
reviewed current research progress in inhibiting C. albicans
biofilm formation and summarized current elements of intestinal
epithelial barrier protection. These treatments may alter
traditional antifungal drugs so that it becomes a novel therapeutic
solution for C. albicans intestinal infection.

ANTIBIOFILM TREATMENT

Natural Products
Over the past several decades, natural compounds have
become an important source of antimalarial, antibacterial, and
chemotherapeutic agents. Currently, approximately 60% of drugs
applied for treating cancers are obtained from natural sources.
In addition, one of the most usual and productive methods of
obtaining new therapeutic agents applying medicinal chemistry is
to modify natural products (Zaki et al., 2019). Natural commodity
screening has proven to be a hopeful strategy. Therefore, it is
effective to target fungal biofilms with natural derivatives or
synthetic analogs. Antibiofilm agents can make fungal biofilms
more impressionable against traditional antibiotics and the hosts’
immune systems but might not directly kill the bacteria. The
search for C. albicans inhibitors has resulted in the identification
of many compounds of potential therapeutic use.

Eucarobustol E (EE), a currently reported formyl-
phloroglucinol meroterpenoid, displayed potent inhibitory
roles against both C. albicans yeast cells and biofilms, but no
poisonousness toward human cells. Observing an obvious
increase in negative regulator genes (TUP1, NRG1), researchers
assumed that eucarobustol E’s suppression of carbon flow
to ergosterol activated the mechanisms of negative hyphal
development management and finally contributed to biofilm
suppression in vitro model (Liu et al., 2017). The biofilm
generation of C. albicans can be inhibited by CLEO, camphor,
or fenchyl alcohol at 0.01% treatments. The treatments appear
to prevent hyphal formation, which might be beneficial in
controlling C. albicans infections in vitro (Manoharan et al.,
2017). Several vitro studies have documented that purpurin
suppressed C. albicans biofilm formation by blocking the yeast-
to-hypha change under hypha-inducing conditions at sublethal
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concentration (3 mg/ml) and decreased the metabolic activity
of mature biofilms in a way dependent of concentration (Tsang
et al., 2012). Recently, researchers have tested 21 methylindoles
and found that biofilm formation was effectively inhibited
by 1-methylindole-2-carboxylic acid (5MI2CA) at 0.1 mM
(17.5 µg\ml) and 5-methylindole-2-carboxylic acid (5MI2CA)
at 0.1 mM with C. albicans DAY185 and ATCC10231 strains
in vitro research (Lee et al., 2018). In another study, researchers
investigated biofilm-inhibiting activity against C. albicans with
used different indole derivatives. The vitro and vivo research
showed that 7-benzyloxyindole, 4-fluoroindole and 5-iodoindole
suppressed biofilm generation more effectively than antifungal
agent fluconazole (FCZ). In particular, while reducing C. albicans
biofilm formation,7-benzyloxyindole at 0.02 mM (4.5 lg m l µ1)
did not have an additive effect on planktonic cells (Manoharan
et al., 2018). A recently vitro and vivo study proposed a set of
compounds, on basis of the Pseudomonas aeruginosa 2-heptyl-
4(1H)-quinolone (HHQ) key quinolone interkingdom signal
structure, that manifest non-cytotoxic antibiofilm activity in
C. albicans’ fungal pathogens (Reen et al., 2016). Interestingly,
an in vitro study showed that riccardin D as a macrocyclic
bisbibenzyl separated from Chinese liverwort Dumortiera
hirsute plays an inhibitory role in C. albicans biofilm generation
(Li et al., 2012). In addition, as a novel kind of antifungal agent,
bisbibenzyls suppress morphogenesis switches and biofilm
generation by upregulating DPP3 in C. albicans in vitro (Zhang
et al., 2011). Perillaldehyde (PAE), a natural monoterpenoid
agent extracted from Perilla frutescens, has been proved to
have multiple physiological capabilities, which is available as
an anti-inflammatory, anti-oxidative and antifungal agent.
Study has demonstrated that PAE manifests powerful antifungal
ability against C. albicans (C. albicans). Researchers found that
PAE prevented NLRP3 inflammasome assembly, decreased the
extreme accumulation of ROS and inhibited the p65 transfer
in nuclear; all resulting in decreased inflammation in the host.
Together, these evidences suggest using PAE to treat C. albicans
infection in vitro and vivo (Chen et al., 2020). Shikonin (SK)
is the president component of the red pigment extracts from
the roots of the plant Lithospermum erythrorhizon. It not
only could prevent the formation of biofilms but also break
the maintenance of mature biofilms. In a mouse vulvovaginal
candidiasis (VVC) model, the fungal burden was largely
decreased after SK treatment. Another studies demonstrated that
SK is able to prevent hyphae formation and decrease cellular
surface hydrophobicity (CSH). Some hypha-and adhesion-
specific genes were distinguishingly expressed in SK-treated
biofilm, containing the downregulation of ECE1, HWP1, EFG1,
CPH1, RAS1, ALS1, ALS3, and CSH1 and upregulation of TUP1,
NRG1, and BCR1 in vitro. Furthermore, SK could induce the
production of farnesol, a quorum sensing molecule, and an
exogenous addition of farnesol improved the antibiofilm activity
of SK (Yan et al., 2019).

Antifungal Agents
One challenge for clinicians is that there is a limited number of
available antifungal agents. There are three classes of antifungals:
azoles, polyenes, and echinocandins, which are primarily used

for invasive infections. Although azoles including fluconazole,
have been the major treatment method for Candida infections
for nearly two decades, a decline in susceptibility to azoles,
polyenes, and echinocandins by Candida species is an expanding
problem. The limited quantity of antifungal drugs and the growth
in resistance to present antifungals necessitate the discovery of
some new antifungal agents (Vila et al., 2016). Presently, FCZ is
the preferred therapy in systemic C. albicans infection (Parizkova
et al., 1999). Recent research shows that a novel topical triazole
PC945 has antifungal activity against emerging yeast Candida
auris in vitro (Rudramurthy et al., 2019).

Miceli et al. (2009) have shown that doxycycline (DOX;
128 µg/mL) alone had similar role as FCZ (2–1,024 µg/mL)
against C. albicans biofilms, which only result in a 22.9%
reduction of biofilm metabolic activity. Nevertheless, when DOX
(128 µg/mL) used in combination with FLC it had an important
synergistic effect, resulting in that biofilm metabolic activity of
the C. albicans biofilm was reduced 58.3%. Furthermore, when
DOX was used alone at a higher concentration (2,048 µg/mL)
it cause more significant effect, with a 85% increase in
reduction. These results demonstrate that the combination
of a high-dose DOX-based antimicrobial lock therapy and
traditional antifungal agents may be more advantageous to
the treatment of C. albicans biofilms in vitro (Miceli et al.,
2009). In another vitro study, researchers have observed that
the synergistic effects and mechanisms of the combination of
FLC and DOX at a lower concentration (1–64 µg/mL) against
C. albicans biofilms (Gao et al., 2013). Some vitro studies
have reasearchedresearched the effects of NSAIDs on fungal
growth inhibition, enzyme activation, and reduction in fungal
prostaglandin E2 (PGE2) production, particularly focusing on
inhibiting biofilm formation; For instance, aspirin could decrease
the biofilm formation, with a 95% reduction. The inhibitory
effects on C. albicans of COX inhibitors plus FLC block biofilm
development through the PGE2-dependent mechanism, which
suggests a new method of solving the biofilm resistance problem
(Alem and Douglas, 2004; de Quadros et al., 2011; Ells et al.,
2011). In addition, ibuprofen exhibited a synergistic effect with
FLC against FLC-resistant strains (but not FLC-susceptible
strains) in vitro (Arai et al., 2005; Ricardo et al., 2009). Vitro
studies suggest that ambroxol (AMB) could easily penetrate the
formed biofilm and exert antifungal effects, thereby blocking
biofilm formation. The finding herein provide the first mode of
action of the antifungal and antibiofilm activity of the mucolytic
agent and its advantage to terbinafine as a commercially
available antifungal that can prevent the fungal growth and
biofilm formation (Rene et al., 2014). Researchers found that
anidulafungin exerts an additive effect on immune cells which
prevents Candida biofilms formation. Moreover, this additive
interaction contributes to the release of the proinflammatory
cytokine TNF-α and the chemokine IL-8 at different levels. The
helpful Th1 response observed after therapy of biofilms with
anidulafungin could provide new therapeutic ideas, including
inhibiting the release of cytokines with harmful effects and the
induction of others with beneficial effects in vitro (Katragkou
et al., 2010). Besides, D,L-2-hydroxyisocaproic acid (HICA) may
become a promising antifungal agent to prevent C. albicans cell
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growth and biofilm formation due to abnormal hyphae and
collapsed hyphal structures in time of incubation with HICA at
an acidic pH. It’s necessary for treating bacterial-fungal biofilm
infections to importantly decrease the mutagenic potential of
C. albicans biofilms in vitro (Nieminen et al., 2014). Clioquinol
[5-chloro-7-iodoquinolin-8-ol, (CQ)] manifested fungistatic and
fungicidal activity against C. albicans. It blocked true hyphae
formation in a way of concentration-dependent in a variety
hyphae-inducing of conditions. CQ also has interferential effect
on ion homeostasis in C. albicans to prevent the growth of
fungi in the vitro model, which is different from the present
antifungal agents (You et al., 2020). Farnesol as the first quorum-
sensing molecule was discovered in a eukaryote. It prevented
the development of biofilms formed by the resistant strain.
Moreover, there were synergistic effects between farnesol and
fluconazole/5-fluorocytosine, but there were antagonistic effects
between farnesol and terbinafine/itraconazole, respectively,
on the biofilms formed by the resistant strains in vitro
(Xia et al., 2017).

The new bacterial quorum sensing quencher
thiazolidinedione-8 (S-8) possessed given antibiofilm and
antiadhesion activities against C. albicans. The expression
extents of genes correlated with biofilm generation, adherence,
and filamentation (HWP1, ALS3, and EAP1, respectively)
were downregulated by S-8 dose-dependently. Therefore, S-8
presents a new antibiofilm therapeutic approach in treating and
preventing biofilm-related C. albicans infections in vitro model
(Feldman et al., 2014). Recently vitro and vivo studies revealed
that phenylthiazole small molecules including compound 1, have
become an important research subject as novel antifungal agents
for drug-resistant Candida infections. These molecules manifest
rapid fungicidal activity and reduce the metabolic activity of
appendiculate C. albicans and C. auris biofilms by more than
66 and 50%, respectively (Mohammad et al., 2019). CD101 is a
long-acting novel echinocandin with unique pharmacokinetic
characteristics and effective stability and safety relative to the
same drug class, acting powerfully against early and mature
C. albicans biofilms in vitro (Chandra and Ghannoum, 2018).
In addition, ionic liquids are a new category of molten salts.
These compounds have been used as ingredients of active
pharmaceutical ingredients and antimicrobials. Previous vitro
studies have shown that imidazolium ionic liquid compounds
have antifungal and antibiofilm activities by influencing
different cellular processes (Reddy and Nancharaiah, 2020).
In another study, oral management of the broad-spectrum
antibiofilm compound toremifene suppresses C. albicans and
staphylococcus aureus biofilm generation in vivo, exhibiting a
promising possibility of toremifene use as a broad-spectrum oral
antibiofilm compound (De Cremer et al., 2014). Nitric-oxide
releasing aspirin (NO-ASA) has an antifungal/antibiofilm
effect on C. albicans separates from denture stomatitis patients
in vitro, which demonstrates NO-ASA’s potential as a novel
antibiofilm agent for treating fluconazole-resistant strains of
C. albicans (Madariaga-Venegas et al., 2017). Miltefosine is an
alkylphosphocholine showing potent antiparasitic activity.
This compound has been proven to inhibit C. albicans
and non-albicans Candida spp. biofilms and impair the

interspersion of infectious cells in vitro (Vila et al., 2016).
Another new discovery has identified that caspofungin as an
antifungal agent acted effectively against biofilms by intensely
reducing biofilm dispersion under flow conditions in vitro
(Uppuluri et al., 2011).

Microorganisms
Microorganisms could synthesize different types of surface-active
compounds that are effective as antifungal, antibacterial, anti-
adhesive, and antibiofilm agents, which could make them useful
as main immunomodulatory molecules or in vaccines and gene
therapy (Barbosa et al., 2016).

A recent vitro study revealed that Lactobacillus strains
acted against Candida, and the strains’ biosurfactants were
anti-adhesive and impeded biofilm activity against C. albicans
(dos Santos et al., 2019). Given that lactobacilli and C. albicans
are present in all regions of the human GI tract, including the
low-biodiversity niches of the stomach and small intestine,
Lactobacillus species may be central to preventing the outgrowth
of C. albicans and other similarly resilient opportunistic
pathogens (Zeise et al., 2021). In vitro study, butyrate isolated
from Lactobacillus cultures can inhibit C. albicans hyphal
morphogenesis (Noverr and Huffnagle, 2004). Another
group found that butyrate inhibited C. albicans growth and
filamentation but also enhanced the production of nitric oxide
by macrophages and thus their ability to kill C. albicans cells
in vitro. While this group did not implement any experiments
to directly link the effects of butyrate on C. albicans virulence
to its function as a HDACi, they hypothesized that that was
the likely mechanism (Nguyen et al., 2011). In addition,
researchers show that some Lactobacillus species produce a
small molecule under laboratory conditions that blocks the C.
albicans yeast-to-filament transition, an important virulence
trait. Bioassay-guided fractionation of Lactobacillus-conditioned
medium linked this activity to 1-acetyl-β-carboline (1-ABC).
They use genetic approaches to show that filamentation
inhibition by 1-ABC requires Yak1, a DYRK1-family kinase.
Additional biochemical characterization of structurally related
1-ethoxycarbonyl-β-carboline confirms that it inhibits Yak1
and blocks C. albicans biofilm formation. Thus, our findings
reveal Lactobacillus-produced 1-ABC can prevent the yeast-
to-filament transition in C. albicans through inhibition of
Yak1 in vitro and vivo (MacAlpine et al., 2021). Graham
et al. (2017) reported that recognition of the E. faecalis
bacteriocin, EntV [generated from the entV (ef1097) locus],
is essential and adequate for decreasing C. albicans virulence
and biofilm generation by inhibiting hyphal generation in vitro
and vivo research (Graham et al., 2017). Phagocytic cells are
crucial components of the innate immune system preventing
C. albicans mucosal infections. Streptococcus gordonii and
Pseudomonas aeruginosa often colonize mucosal sites, along
with C. albicans. S. gordonii increased C. albicans survival
and filamentation within macrophage phagosomes, while
P. aeruginosa reduced fungal survival and filamentation
(Salvatori et al., 2020). In another vitro and vivo study,
S. mutans were capable of secreting subproducts that inhibited
biofilm generation, morphogenesis and pathogenicity in
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C. albicans, alleviating test candidiasis in the G. mellonella model
(Barbosa et al., 2016).

Phenotypic Screening
Phenotypic screening means the nascent methodology for
biological screening of chemical entities for the assessment of
their therapeutic roles. Phenotypic screening was useful for
identifying various small molecules exhibiting antibiofilm and
anti-filamentation activity against C. albicans. Recent studies
have shown that a new range of diazaspiro-decane structural
analogs were often elements of bioactive compounds, which
prevent processes connected with C. albicans virulence (most
remarkably biofilm generation and filamentation) without
affecting overall growth or generating resistance in vitro and vivo
(Pierce et al., 2015). One study leads to the identification of about
2,293 compounds from the chemical library of the National
Cancer Institute which were categorized into three sets- (i) NCI
Natural set, Out of all the compounds present in this set six hits
were confirmed against C. albicans biofilm formation. These
include -Trichoderonin; Nanaomycin; Rapamycin; Anisomycin;
V alinomycin and Bacitracin. Three of these molecules
(Trichoderonin, Nanaomycin, Rapamycin) showed inhibition
of both filamentation and biofilm formation while the rest three
showed inhibition against biofilm formation. Furthermore in the
next (ii)-NCI-Structural diversity set, in total, there were 12 hits
out of which eight were identified as biofilm inhibitor. These
compounds were-Phenanthroline Hydrochloride; 2-isoquinolin-
2-ium-2-yl-1-phenanthren-3-ylethanone, Iodide; Metanilamide
(3-aminobenzenesul fonamide); Mercury, (4-amino phenyl)
(6-thioguano sinato-N7,S6)-; 2-[7-[3-(carboxymethyl)-5,10-
dihydroxy-1-methyl-6,9-dioxo-3,4-dihydro-1H-benzo[g] isochr
omen-7-yl]-5,10-dihydroxy-1-methyl-6,9-dioxo-3,4-dihydro-1H
-benzo [g]isochromen-3-yl]acetic acid 37 are only biofilm
inhibitors while Mercury,(2-aminio-1,9-dihydro-6H-purine-6
-thionato-N7,S6) hexyl-,2-benzo[a]phenothiazin-12-yl-N,N diet
hylethanamine; 17-[1-[2(dimethylamino)ethylamino]ethyl]-13-
methyl-6,7,8, 9,11,12,14,15,16,17 decahydrocyclopenta[a]phen
anthren-3-ol. Next and last was (iii)-NCI-Challenge Set. In this,
there were total 11 hits, of which 10 showed inhibition against
C. albicans biofilm formation whereas only one compound
inhibited filamentation transformation. Ten hits which were
identified from these compounds displayed common inhibition
against both biofilm and filament formation. These include
Biofilm Inhibitor- Trichopolyn-B, Vengicide (Unamycin B,
Toyocamycin), 4Z-4-[[4-(dimethylamino)phenyl]methylidene]-
1-methyl-2-phenylpyrazolo[1,5-a]indol-1-ium-6-ol; trifluorome
thanesulfonate, Anisomycin43, Azetidinecarbo thioic acid,
[1-(2-pyridinyl) ethylidene] hydrazide4. Additionally,
compounds with both antifilamentation and antibiofilm
activity are—6-Hydroxy-3-[(methanesulfonyloxy) Methyl]-1-
[(5,6,7-tri methoxyindol-2-yl) carbonylindoline, Hydrazineca
rbothioamide, N,N-dipropyl-2-(2-pyridinemethylene)-,(N,N,S)
copper(II)chloridecomplex(SP-4-3)3;3-Azabicyclo[3.22]nonane-
3-carboselenoicacid,[1-(2pyridinyl)ethyidene] hydrazide, 2-hyd
roxyethyl-[(2R)-2-hydroxyheptadecyl]-dimethylazaniumiodide,
1H-Azepine-1-carbothioic acid, hexa hydro-, [1-(2-pyridinyl)
ethylidene]hydrazide (Pierce et al., 2014).

Protein and Peptide Inhibitors
Researchers are trying to develop effective and potent therapies
designed to eradicate biofilm-associated infections. Among these,
antimicrobial peptides (AMPs), cytokines, and various proteins
have been examined extensively as new therapeutic agents.
Repetitive Lysine-Tryptophan Peptide scans are capable of
inhibiting cellular functions by binding to RNA and DNA after it
has been translocated into the cell, contributing to the inhibition
of biofilm formation in a fluconazole-resistant C. albicans
strain and the eradication of C. albicans (Ramamourthy et al.,
2020). Researchers selected four of peptides (cathelicidin-BF, Pc-
CATH1, Cc-CATH2, Cc-CATH3) and human cathelicidin LL-
37 to carefully examine their anti-C. albicans and antibiofilm
activities in vitro and in vivo. Antimicrobial assay suggesting
that Pc-CATH1, Cc-CATH2, Cc-CATH3 and cathelicidin-
BF have valid antifungal activities against the eight tested
C. albicans strains, containing standard and clinically isolated
amphotericin B-resistant strains. Furthermore, cathelicidin-BF
importantly prevented the formation of C. albicans biofilms at
sub-antimicrobial concentrations, and also manifested powerful
activity of killing C. albicans in preformed biofilms (Yu et al.,
2016). In another study, the naturally happening host defense
peptide, LL-37, and its truncated mimetics KE-18 and KR-12
were biocidal and antibiofilm against C. albicans, Escherichia
coli and staphylococcus aureus in vitro (Luo et al., 2017).
Adopting an in vitro C. albicans biofilm model, research
suggests that TNF dose-dependently suppresses biofilm growth
stopped by cultivating TNF with N,N′-diacetylchitobiose, a main
carbohydrate ingredient of the C. albicans’ cell wall (Rocha et al.,
2017). Weiland-Brauer et al. (2019) assessed the capacity of a
multitude of metagenome-derived bacterial quorum quenching
(QQ) proteins to block biofilm development in C. albicans
and S. epidermidis. Here, proteins QQ-5 and QQ-7 obstructed
the morphogenesis of C. albicans by suppressing a yeast-to-
hyphae conversion and impairing biofilm formation in vitro
model (Weiland-Brauer et al., 2019). Along with this, the hLF1-
11 peptide notably inhibited C. albicans biofilm formation
primarily at early stages, disturbing biofilm cellular density and
metabolic activity, and influenced morphogenesis in the Ras1-
cAMP-Efg1 path in vitro (Morici et al., 2016). By binding the
most hopeful amino acid substitutions, researchers observed
that the double-substituted OSIP108 analog Q6R/G7K displayed
eight-fold-grown antibiofilm activities (Delattin et al., 2014).

Lipid Inhibitors
Based cluded that cinnamaldehyde (CNMA) could potentially
be used in multilamellar liposomes (ML) as an antifungal
and antibiofilm agent. According to the outcomes of a vitro
research, ML-CNMA blocks the proliferation of C. albicans
and accelerates apoptosis (Khan et al., 2017). In another
study, it has been proved that sophorolipid (SL), a glycolipid
biosurfactant, has antimicrobial and anticancer characteristics.
It was found that SL retards C. albicans biofilm formation
and decreases the survival of conducted biofilms in vitro
(Haque et al., 2016). Researchers have found that SMOFlipid
did not damage C. albicans development, but it did notably
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suppress hypha generation and hyphal prolongation in vitro.
Furthermore, development suppression could occur in intralipid
when replenished with capric acid, there is a fatty acid in
SMOFlipid but no in intralipid. C. albicans biofilm generation in
PN solutions was also found to be dependently inhibited by capric
acid (Willems et al., 2019).

Polysaccharide Inhibitors
Another newly discovered chitosan has been identified as a
polysaccharide that inhibited C. albicans planktonic development
(HMW, 1 mg/mL; LMW, 3 mg/mL) in vitro. With respect to
biofilm development, chitosan suppressed C. albicans adherence
(ca. 95%) and biofilm generation (> 90%) and decreased mature
biofilms by ca. 65% and dual species biofilms (C. albicans and
S. mutans) by ca. 70%. The outcomes demonstrate that this
molecule is potential to be an anti-Candida agent working
with C. albicans infections (Costa et al., 2014). Further,
chitosan resistance, aggressive development, biofilm generation,
and virulence in C. albicans require that MSS2 maintain
mitochondrial function in vitro (Ke et al., 2021).

Nanoparticles
Due to the weak penetration and non-specificity of antifungal
and non-antifungal drugs, it is hard to treat biofilm generation.
For addressing this issue, researchers are striving to augment
the penetration of drugs into the extracellular matrix of biofilm.
Over the past few years, several metal nanoparticles have
become potential candidates in treating microbial infections
because of their potential as effective antimicrobial agents.
Hernandez-Delgadillo et al. (2013) found that aqueous colloidal
bismuth oxide nanoparticles exhibited antimicrobial activity
against C. albicans development (decreasing colony scale by
85%) and inhibited biofilm generation in vitro (Hernandez-
Delgadillo et al., 2013). In another vitro and vivo study,
sustained nitric oxide-releasing nanoparticles resulted in cell
death in C. albicans yeast and hyphal cells, inhibiting biofilm
generation in vitro and in a rodent central venous catheter model
(Ahmadi et al., 2016).

Other Inhibitors
RNA aptamers chosen against yeast cells suppress C. albicans
biofilm generation in vitro (Bachtiar et al., 2019). Researchers
screened three protease inhibitor libraries including 80
compounds for their inhibitive abilities against C. albicans
biofilm formation in vitro and vivo and interference in
mature biofilms. The outcomes demonstrate that through
integrating normative antifungal agents with given protease
inhibitors, it may be a therapy method to prevent and treat
C. albicans biofilm infections (Lohse et al., 2020). Besides, it
was observed that human serum weakens biofilm generation by
preventing the adherence of C. albicans cells in vitro. This answer
may relate to the downregulation of adherence-associated
genes ALS1, ALS3, and BCR1. The administrative serum
ingredient is protease-resistant and heat stable (Ding et al., 2014)
(Table l).

PROTECTING THE INTESTINAL
EPITHELIAL BARRIER

Mucus Layer
The mucus layer covering gastrointestinal mucosa is the first
line of defense against invasions generating from luminal
content. It chiefly consists of high molecular weight glycoproteins
called mucins (MUC).

Current researches have identified butyric acid as a main
source of energy for intestinal epithelial cells that can raise the
mucus-layer supplement rate in vitro models and butyrate is
able to upregulate colonic mucins at the transcriptional level
and even better when it is the major energy source of the cells
(Gaudier et al., 2004). Inflammatory responses in the gut can
be retarded by this short-chain fatty acid through reducing the
expression of INF-γ, TLR2, and TNF-α in vitro (Elce et al.,
2017). Some researches have disclosed that there are more A.
muciniphila-derived extracellular vesicles (AmEVs) in the fecal
samples of healthy controls compared with those of patients
with T2D. In addition, AmEV administration enhanced tight
junction function, reduced body weight gain and improved
glucose tolerance in high-fat diet (HFD)-induced diabetic mice.
To test the direct effect of AmEVs on human epithelial
cells, cultured Caco-2 cells were treated with these vesicles.
AmEVs decreased the gut permeability of lipopolysaccharide-
treated Caco-2 cells, whereas Escherichia coli-derived EVs had
no significant effect. Interestingly, the expression of occludin
was increased by AmEV treatment. Thus, A. muciniphila is
capable of restoring mucus layer thickness, relieving intestinal
inflammation reactions from pili-like proteins, and improving
inflammation-caused obstacle integrity damage, thus decreasing
gut barrier demolition (Chelakkot et al., 2018). In vivo model
showed that ILC3-derived IL-22 can also induce expression of
tissue protective mucins and antimicrobial peptides including
RegIIIβ, RegIIIγ, S100A8 and S100A9 by acting on the intestinal
epithelium (Sonnenberg et al., 2011) (Figure l).

Toll-Like Receptors
Toll-like receptors (TLRs), innate immune sensors, exert a
significant role in molding intestinal microbiota. TLRs may be
deemed to an interface among the intestinal epithelial barrier,
microbiota, and the immune system (Frosali et al., 2015).
Furthermore, intestinal flora can mediate TLRs’ expression
to maintain immune balance (Goto and Kiyono, 2012). TLR
pathways are also closely associated with gastrointestinal barrier
integrity and function; TLR2 and TLR4 paths are necessary for
intestinal protection against acute mucosal injury by maintaining
epithelial barrier integrity (Cario, 2008). The study suggests
that the intestinal barrier offers places for intestinal flora that
regulate TLRs’ immune reactions, particularly those in the
intestine, because there are several immune cells and non-
immune cells that contain TLRs in the intestinal barrier (de
Medina et al., 2014). According to vitro, animal models and
human results, TLR signaling in the intestinal epithelial cells
notably increased the generation of IgA in the intestine. This
role was regulated by TLR-caused expression of a given series of
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TABLE 1 | Inhibitors involved in C. albicans biofilm formation.

Inhibitors Biofilm-related processes
inhibited

Research type References

Natural product Eucarobustol E Hyphal formation vitro Liu et al., 2017

CLEO, camphor,
fenchyl alcohol

Hyphal formation vitro Manoharan et al.,
2017

purpurin Hyphal formation and metabolic
activity

vitro Tsang et al., 2012

5MI2CA and 1MI2CA Hyphal formation vitro and vivo Lee et al., 2018

7-benzyloxyindole Hyphal formation vitro and vivo Manoharan et al.,
2018

HHQ Unknown vitro and vivo Reen et al., 2016

Riccardin D Hyphal formation vitro Li et al., 2012

Bisbibenzyls Hyphal formation vitro Zhang et al., 2011

Perillaldehyde Hyphal formation vitro and vivo Chen et al., 2020

Shikonin Hyphal formation vitro and vivo Yan et al., 2019

Antifungal agents doxycycline Unknown vitro Miceli et al., 2009;
Gao et al., 2013

NSAIDs Unknown vitro Alem and Douglas,
2004; de Quadros
et al., 2011; Ells
et al., 2011

ibuprofen Unknown vitro Arai et al., 2005;
Ricardo et al., 2009

Ambroxol Unknown vitro Rene et al., 2014

anidulafungin Unknown vitro Katragkou et al.,
2010

D,L-2-
hydroxyisocaproic
acid

Hyphal formation vitro Nieminen et al.,
2014

clioquinol Hyphal formation vitro You et al., 2020

Farnesol Hyphal formation and
Decreased thickness

vitro Xia et al., 2017

thiazolidinedione-8 Adherence, Hyphal formation
and metabolic activity

vitro Feldman et al.,
2014

Phenylthiazole Small
Molecule

Adherence and metabolic
activity

vitro and vivo Mohammad et al.,
2019

CD101 Adherence vitro Chandra and
Ghannoum, 2018

[C16MIM]Cl Killing of biofilm cells vitro Reddy and
Nancharaiah, 2020

Toremifene Unknown vivo De Cremer et al.,
2014

nitric-oxide releasing
aspirin

Adherence and hyphal
formation

vitro Madariaga-
Venegas et al.,
2017

Miltefosine Dispersion vitro Vila et al., 2016

caspofungin Dispersion vitro Uppuluri et al.,
2011

Microorganisms Lactobacillus Adherence and hyphal
formation

vitro and vivo Noverr and
Huffnagle, 2004;
Nguyen et al.,
2011; dos Santos
et al., 2019;
MacAlpine et al.,
2021; Zeise et al.,
2021

E. faecalis bacteriocin Hyphal formation Vitro and vivo Graham et al., 2017

Pseudomonas
aeruginosa

Hyphal formation vitro Salvatori et al.,
2020

(Continued)
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TABLE 1 | (Continued)

Inhibitors Biofilm-related processes
inhibited

Research type References

Streptococcus mutans Hyphal formation vitro and vivo Barbosa et al.,
2016

diazaspiro-decane
structural analogs

Hyphal formation vitro and vivo Pierce et al., 2015

Phenotypic
screening

Trichoderonin,
Nanaomycin,
Rapamycin et al.

Hyphal formation vitro Pierce et al., 2014

Anisomycin, V
alinomycin, Bacitracin
et al.

Unknown vitro Pierce et al., 2014

Protein and
peptides inhibitors

Pc-CATH1, Cc-CATH2,
Cc-CATH3 and
cathelicidin-BF

Unknown vitro and vivo Yu et al., 2016

LL-37, KE-18 and
KR-12

Unknown vitro Luo et al., 2017

TNF metabolic activity and yeast
morphology

vitro Rocha et al., 2017

QQ Hyphal formation vitro Weiland-Brauer
et al., 2019

hLF1-11 peptide metabolic activity and yeast
morphology

vitro Morici et al., 2016

Decapeptide OSIP108 Unknown vitro Delattin et al., 2014

Lipid inhibitors Cinnamaldehyde Unknown vitro Khan et al., 2017

Sophorolipid Hyphal formation vitro Haque et al., 2016

Smoflipid Hyphal formation vitro Willems et al., 2019

Polysaccharide
inhibitors

Chitosan Adherence vitro Costa et al., 2014

MSS2 Adherence vitro Ke et al., 2021

Nanoparticles Bismuth oxide aqueous
colloidal nanoparticles

Unknown vitro and vivo Hernandez-
Delgadillo et al.,
2013

Nitric Oxide-Releasing
Nanoparticles

metabolic activity vitro and vivo Ahmadi et al., 2016

Other inhibitors RNA aptamers Hyphal formation vitro Bachtiar et al.,
2019

Combination of
Antifungal Drugs and
Protease Inhibitors

Unknown vitro Lohse et al., 2020

Human serum Adherence vitro Ding et al., 2014

chemokines and cytokines that facilitated both the employment
of B cells to the lamina propria and IgA class shift of B cells,
thus decreasing intestinal inflammation (Shang et al., 2008). In
a previous study, B. fragilis, through TLR2, induced cytokine
generation and T cell differentiation. Unlike pathogens that
trigger inflammatory responses through TLRs that result in
immune responses to clear infections, symbiotic colonization
by B. fragilis is actually enhanced by signaling via the TLR
pathway promoting suppression of Th17 immunity. Thus, PSA
evolved to engender host-bacterial mutualism by inducing
mucosal tolerance through TLR2 activation of Treg cells (Round
et al., 2011). Vitro and animal models also suggested the
favorable impacts of Yupingfeng (YPF) are likely associated with
stimulation of cytokines synthesis by triggering TLR2 and TLR4

paths, improving intestinal community structure and intestinal
barrier integrity and functionality (Sun et al., 2016). A model
of synergy was suggested whereby infection with C. albicans
increases both the biomass of S. oralis and the TLR2 expression
to critical levels required for mucosal proinflammatory signaling
by this otherwise commensal organism. Whole mouse genome
tongue microarray analysis showed that when compared with
animals infected with one organism, the doubly infected
animals had genes in the major categories of neutrophilic
response/chemotaxis/inflammation significantly upregulated,
indicative of an exaggerated inflammatory response. This
response was dependent on TLR2 signaling since oral lesions,
transcription of pro-inflammatory genes and neutrophil
infiltration, were attenuated in TLR2-/-animals. Furthermore,
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FIGURE 1 | Mucins (MUC) protect the intestinal epithelial barrier. Exogenous IL-22 involved in producing protective mucus (MUC1, MUC3, MUC10 and MUC13)
and induce expression of antimicrobial peptides including RegIIIβ, RegIIIγ. Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells
deprived of glucose Inflammatory responses in the gut can be retarded by butyrate through reducing the expression of INF-γ, TLR2, and TNF-α in vitro.

S. oralis activated neutrophils in a TLR2-dependent manner
in vitro. Thus, this study identifies a previously unrecognized
pathogenic synergy between oral commensal bacteria (Xu et al.,
2014). In intestinal epithelial cells, TLR2 stimulation efficiently
preserves zonula occludens-1 (ZO-1)-associated barrier integrity
against stress-induced damage, which is controlled by positive
signaling crosstalk between PI3K-Akt and conventional protein
kinase C (PKC) isoforms via MyD88. In parallel, the PI3K/Akt
pathway limits proinflammatory TLR2-signaling through the
Mapk-NFkB pathway (Cario, 2008) (Figure 2).

Aryl-Hydrocarbon Receptor
An aryl-hydrocarbon receptor (AHR) as a kind of toxin sensor
binds to various endogenous and exogenous chemicals. In a
previous study, AHR expression was increased in gut resident
innate lymphoid cells (ILCs) (Jacquelot et al., 2019). The lack
of AHR was related to decreased ILCs numbers and reduced
ILC3-derived IL-22 in vitro and vivo (Kiss et al., 2012; Lee et al.,
2012; Jacquelot et al., 2019). In another study, AHR directly
bound to the Il22 promoter and had a synergistic effect on
RORγt to promote Il22 expression in ILC3 (Qiu et al., 2012).
In vitro and vivo studies have shown that the cytochrome P4501
(CYP1) family enzymes mediated the metabolic elimination of
AHR ligands. Moreover, structural expression of CYP1 enzymes
greatly decreased the usability of AHR ligands and resulted in
the loss of gut ILC3 and Th17 cells (Schiering et al., 2017).
Therefore, elementary Cyp1a expression or entire loss of AHR
in mice improves their sensitivity to C. rodentium related
to hindered IL-22 generation (Kiss et al., 2012; Qiu et al.,
2012; Schiering et al., 2017). There are studies that emphasize
how constant control of the availability of AHR ligands via
intestinal epithelial cells offer vital feedback to immune cells,
which thereby forms mucosal protections (Jacquelot et al., 2019)
(Figure 3).

ATG16L1
The autophagy gene ATG16L1 is related to protection from
intestinal epithelial infection. A study showed that there
were fewer Paneth cells and unusual granule morphology
in Atg16l1f/f × Villin-cre mice, resulting in decreased AMP
expression. Congruent with these defective immune responses,
Atg16l1f/f × Villin-cre mice had improved inflammation and
comprehensive bacterial translocation by comparing with control
mice. The limitations of such in mouse model was that there is
a compelling need for new therapeutic approaches to modulate
specific pathways important in autoinflammatory and infectious
diseases. Researchers tried to screen Modulators of autophagy
to evaluate their effects on antibacterial responses in human
epithelial cells. But few studies have been done on humans
(Conway et al., 2013) (Figure 3).

Cold-Inducible RNA-Binding Protein
Intestinal injuries occurring during deep hypothermic circulatory
arrest (DHCA) are hazardous for clinical outcomes. Recent
vitro and animals studies revealed that cold-inducible RNA-
binding Protein (CIRBP) provides a protective effect in cases
of hypothermia. These findings demonstrated the possibility of
utilizing innate mechanisms of CIRBP to sustain the intestinal
epithelial barrier during DHCA for the first time. This utilization
will probably become a targeted treatment to prevent or relieve
intestinal injury and relevant complications (Li et al., 2019)
(Figure 4).

Epidermal Growth Factor Receptors
Vitro research results demonstrate that M3 receptor-induced
activation of p38 MAPK might maintain epithelial barrier
function by downregulating TNF-α signaling and activation
of Epidermal growth factor receptors (EGFR) instead of H1
(Uwada et al., 2017). Both P40 and P75 proteins were shown to
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FIGURE 2 | Toll-like receptors (TLRs) protect the intestinal epithelial barrier. In intestinal epithelial cells, TLR2 stimulation efficiently preserves zonula occludens-1
(ZO-1)-associated barrier integrity against stress-induced damage, which is controlled by positive signaling crosstalk between PI3K-Akt and conventional protein
kinase C (PKC) isoforms via MyD88. In the steady-state conditio, commensal bacteria induce the production of physiologically optimal concentration of inflammatory
cytokines [tumor necrosis factor (TNF)] in mucosal immune cells. Epithelial nuclear factor-κB (NFκB) has an important role in the anti-apoptotic function that is
mediated by TAK1 and the inhibitor of NF-jB kinase (IKK) complex including NF-jB essential modulator (NEMO), IKKa, and IKKb.

FIGURE 3 | (A) Aryl-hydrocarbon receptor (AHR) protect the intestinal epithelial barrier. Directly binding to the Il22 promoter, AHR induces Il22 expression in ILC3 by
acting together with RORγt. (B) Autophagy (ATG16L1) protects the intestinal epithelial barrier. The decrease of Atg16l1 led to fewer Paneth cells and abnormal
granule morphology, resulting in decreased expression of AMP, which growing inflammation and comprehensive translocation of bacteria.

show anti-apoptotic features containing EGFR phosphorylation
and, in the case of P40, preventing the intestinal epithelium
from triggered inflammation in a vitro model (Bauerl et al., 2020)
(Figure 4).

STAT3
Recently, researchers identified a subset of genes specially
mediated by STAT3 in answer to leptin, particularly the TRIB1
and inhibitor of cytokine signaling 3 (SOCS3) genes, which have
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FIGURE 4 | (A) Cold-inducible RNA-binding protein (CIRBP) protect the intestinal epithelial barrier. CIRBP is related to intestinal epithelial barrier maintenance during
DHCA. (B) Epidermal growth factor receptors (EGFR) protect the intestinal epithelial barrier. The maintenance of epithelial barrier function may be helped by M3
receptor-induced activation of p38 MAPK through activation of EGFR. Phosphorylation of the epidermal element factor receptor (EGFR) can be induced by
lactobacillus casei BL23 extracellular vesicles (BL23 EVs) because of proteins P40 and P75 that are bound to their surface.

opposed effects in apoptosis control. Whole apoptotic genes were
greatly accumulated in this gene set (P < 1Eµ05), boosting the
assumption that protection results from leptin control of host
apoptotic genes by STAT3.

Interestingly, in vivo researches on amebiasis show that both
SHP-2 and STAT3 are necessary for leptin-mediated protection
(Guo et al., 2011), suggesting the need for a more sophisticated
protective signaling mechanism during infection of the intestinal
epithelium (Marie et al., 2012). Additionally, the C-EPIYA-CagA-
mediated JAK/STAT pathway promoting cell migration IL6 has a
significant effect on the initial stage of intestinal wound healing,
and gp130-mediated STAT1/3 signaling plays a protective role
in the intestinal epithelium in correlation with STAT3 function
in epithelial migration during epidermal wound healing in vitro
(Sano et al., 1999) (Figure 5).

Lipopolysaccharide /CD14
Recent vitro model demonstrates that excess apoptosis and
obstacle deficiencies triggered by Lipopolysaccharide (LPS)
exposure are present via improved glucose uptake enterocytes.
The reported research shows that a novel cell signaling
path created by activating CD14 in intestinal epithelial cells,
independently of TLR-4, may induce a SGLT-1-mediated glucose
uptake to prevent the epithelium from LPS-caused apoptosis.
This new pathway may help identify therapeutic targets in a
variety of intestinal disorders (Yu et al., 2006) (Figure 6).

NADPH Oxidase 4
Vitro and animals models reveal that NADPH oxidase 4 (NOX4)
as an effective reactive oxygen species generator was considered
a direct miR-99b target. Researchers speculated that protecting
the intestinal epithelium from oxidative stress-induced injury
may be related to miR-99b-mediated NOX4 downregulation
(Chandra et al., 2015) (Figure 6).

Krüppel-Like Factors
Vitro and animal models have documented the decay-
promoting element (DAF) protects the intestinal mucosa
from bystander killing by complement. Prostaglandin E2
(PGE2) promotes the expression of DAF that may prevent the
tumor environment from complement attack. Krüppel-like
factors (KLFs) are evolutionarily kept zinc finger-including
transcription elements with various administrative functions
in cell propagation and differentiation. DAF may have
protective functions on both normal intestinal epithelium
and intestinal neoplasia, so we can speculate that both
KLF4 and KLF5 exert similar effects on regulating DAF
expression. These novel findings provide insight into the
functional role of the COX/PGE2system and KLF transcription
factors in the gut and may contribute to new therapeutic
strategies for a variety of intestinal disorders (Shao et al., 2008)
(Figure 6).
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FIGURE 5 | Signal transducers and activators of transcription 3 (STAT3) protect the intestinal epithelial barrier. The activation and tyrosine phosphorylation of Janus
kinase 2 (JAK2) are resulted in by Leptin binding to the long form LRb, which causes follow-up phosphorylation of downstream tyrosine residues (Tyr985, Tyr1077,
and Tyr1138) in the intracellular tail of LRb. The phosphorylation-dependent activation of signal transducers and activators of transcription 3 (STAT3) are bound and
mediated by Phosphorylated Tyr1138, activating transcription of suppressor of cytokine signaling 3 (SOCS3) and other positive effectors of leptin action. The
SH2-containing tyrosine phosphatase SHP-2 is recruited by Phosphorylated Tyr985, activating the signaling path culminating in extracellular signal-regulated kinase
(ERK) activation. The C-EPIYA-CagA-mediated JAK/STAT Pathway and gp130-mediated STAT1/3 signaling plays a protective role in intestinal epithelium.

FIGURE 6 | (A) Lipopolysaccharide (LPS/CD1) protects the intestinal epithelial barrier. SGLT-1-mediated glucose uptake may be activated by CD14 activation in
intestinal epithelial cells, independently of TLR-4, for the protection of the epithelium against LPS-induced apoptosis. (B) NADPH oxidase 4 (NOX4) protects the
intestinal epithelial barrier. The intestinal epithelium from oxidative stress-caused damage may be protected by MiR-99b-mediated NOX4 downregulation.
(C) Krüppel-like factors (KLF) protect the intestinal epithelial barrier. Rapid protection against complementary attacks may be provided by synergistic induction of
DAF by COX/PGE2and KLF4/5 after intestinal mucosal injury. (D) Recombinant NLR Family, Pyrin Domain Containing Protein 3 (NLRP3) protects the intestinal
epithelial barrier. NLRP3 induced generation of IL-18 in intestinal epithelial cells can be protective. (E) Nuclear receptors (NRs) protect the intestinal epithelial barrier.
Within the intestinal epithelium, NRs including VDR, HNF4α, LXR, PPARγ, LRH1, and NR2F6 exert protective effect on intestinal epithelial integrity.
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NLRP3
As an intracellular multiprotein signaling complex,
Inflammasome is related to pathogen sensing and inflammatory
response initiating in physiological and pathological states. The
NLRP3 inflammasome, the most typical inflammasome, which
has been identified as a sensor of cell stress that is strictly
controlled in resting cells.

Nevertheless, changed management of the NLRP3
inflammasome is exhibited in many pathological states such as
cancer and autoimmune diseases. It was proven that NLRP3
expression is post-transcriptionally regulated, and diversified
miRNA have been involved in post transcriptional control
of the inflammasome. Zaki et al. disclosed that NLRP3-
induced generation of IL-18 in intestinal epithelial cells can
be protective and leads to epithelium integrity in experimental
colitis in vitro, animal models and human results. Therefore, the
Nlrp3 inflammasome is critically involved in the maintenance of
intestinal homeostasis and protection against colitis (Zaki et al.,
2010; Tezcan et al., 2019) (Figure 6).

Nuclear Receptors
Gastrointestinal (GI) homeostasis is strongly dependent on
nuclear receptor (NR) functions. They play a variety of roles
ranging from nutrient uptake, sensing of microbial metabolites,
regulation of epithelial intestinal cell integrity to shaping of the
intestinal immune cell repertoire. Several NRs are associated with
GI pathologies; therefore, systematic analysis of NR biology, the
underlying molecular mechanisms, and regulation of target genes
can be expected to help greatly in uncovering the course of
GI diseases. Within the intestinal epithelium, nuclear receptors
(NRs) including VDR, HNF4α, LXR, PPARγ, LRH1, and NR2F6
have a protective effect on intestinal epithelial integrity (Klepsch
et al., 2019); declined mRNAs have also been recognized in
intestinal samples from IBD patients (Ahn et al., 2008; Li et al.,
2015). PRAP1 has been identified an intrinsically disordered
protein that is highly expressed by the gastrointestinal epithelium
and roles on exposed surfaces to prevent the obstacle from
oxidative insult in vivo (Wolfarth et al., 2020) (Figure 6).

CONCLUSION

As fungal pathogens, C. albicans are known for their
capacity to cause mucocutaneous and systemic infections in

human hosts. Biofilm formation causes increasing Candida
resistance to antifungal agents, which results in the failure of
traditional antifungal agents’ therapeutic measures. Current
advances on different natural product, antifungal agents,
microorganisms, protein and peptides inhibitors, lipid inhibitors
and polysaccharide inhibitors have made a growth of the
knowledge of the intricate mechanism underlying the biofilm
resistance. Recently, phenotypic Screening and different
nanoparticles have also appeared as antibiofilm agents against
C. albicans and gaining momentum. Yet, a limitation of this
method is that most of the results from in vitro and animal
models. If we want to apply the method of inhibiting C. albicans
biofilms to clinical treatment, one challenge is that few studies
have applied the results to human trials so that we cannot
rule out whether other intestinal flora and their metabolites
may have an effect on these biofilm inhibitors. On the other
hand, new progress on molecules that protect the intestinal
epithelial barrier like MUC, TLR, AHR, ATG16L1, CIRBP, EGFR,
LPS/CD14, NOX4, STAT3, KLF, NLRP3 and Nuclear Receptors
have improved the understanding of protective mechanism of
intestinal epithelium barrier. However, these molecular studies
did not specifically target intestinal infections of C. albicans.
Therefore, further studies need to be carried out in order to
validate the mechanism of how the intestinal barrier prevents
C. albicans invasion. A key strength of the review is that the
combination of preventing C. albicans from forming biofilms
and using molecules to protect the intestinal epithelial barrier
has not previously been reported for the treatment of C. albicans
intestinal infection. Thus, the combination of these two methods
is a novel idea to improve the therapeutic effect of C. albicans
intestinal invasion. In terms of directions for future research,
further work could focus on which combinations of antibiofilm
and mucosal enhancement treatments were more effective in
inhibiting C. albicans biofilm formation and intestinal infection
and what are the mechanisms. We hope to develop effective
strategies to treat C. albicans drug resistance and invasive
intestinal infections in the near future.
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