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COVID-19 has caused severe threats to lives and damage to property worldwide. The immunopathology
of the disease is of particular concern. Currently, researchers have used gene co-expression networks
(GCNs) to deepen the study of molecular mechanisms of immune responses to COVID-19. However, most
efforts have not fully explored dynamic changes of cell-type-specific molecular networks in the disease
process. This study proposes a GCN construction pipeline named single-cell Disease Progression cellular
module analysis (scDisProcema), which can trace dynamic changes of immune system response during
disease progression using single-cell data. Here, scDisProcema considers changes in cell fate and expres-
sion patterns during disease development, identifying gene modules responsible for different immune
cells. The hub genes are screened for each module by the specific expression level and the intercellular
connectivity of modules. Based on functional items enriched by each gene module, we elucidate the bio-
logical processes of different cells involved in disease development and explain the molecular mecha-
nisms underlying the process of cell depletion or proliferation caused by disease. Compared with
traditional WGCNA methods, scDisProcema can make more convenient use of the heterogeneity informa-
tion provided by scRNA-seq data and has great potential in exploring molecular changes during disease
progression and organ development.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Coronavirus disease 2019 (COVID-19), caused by Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has been
spreading progressively since the end of 2019. As a result, by
February 2022, the cumulative number of confirmed cases and
the death toll had exceeded 430 million and 50 million, respec-
tively, posing a significant threat to the lives and health of people
worldwide. Immune disorders caused by COVID-19 are highly
associated with poor outcomes [1], and therefore, immunological
issues related to the disease have received widespread attention.
In general, during the development and recovery of the disease,
the proportion of immune cells and the expression level of inflam-
matory factors would have different dynamic changing trends or
degrees [2,3]. Therefore, deepening the understanding of these
dynamic changes is of great significance to identify factors that
contribute to the deterioration of COVID-19 and its sequelae dur-
ing patients’ recovery process.

Single-cell RNA sequencing (scRNA-seq) technology [4] has
made great progress, significantly improving the understanding
of cell heterogeneity and cell–cell communication [5] masked by
bulk sequencing. At present, this technique has been applied in
transcriptome analysis of SARS-CoV-2 infected cells [6–8]. An inte-
grated scRNA-seq dataset [9], including 1.46 million single cells,
characterized the immune landscape of COVID-19 patients. The
authors collected samples of patients at different progression or
convalescent stages. Based upon the severity, five states were
defined, namely mild/moderate progression (MP), severe/critical
progression (SP), mild/moderate convalescence (MC), severe/criti-
cal convalescence (SC), and healthy control (H) state. Such a com-
prehensive data set provides the fundamental for further analysis.

With the popularization of scRNA-seq technology, a variety of
network analysis algorithms and tools have been developed,
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among which the weighted gene co-expression network analysis
(WGCNA) algorithm [10] is widely used for the detection of key
genes related to phenotypic traits. WGCNA identifies co-
expressed gene modules, in which the most closely related genes
are identified as hub genes, which are usually functionally impor-
tant and represent major roles in diseases, facilitating the identifi-
cation of diagnostic biomarkers and potential drug targets. WGCNA
has also been used in COVID-19 research to predict important
genes, or gene modules [11,12]. However, current studies lack
exploring the dynamic change, which refers to the change of
gene-expression patterns underlying the cell proportion fluctua-
tion during the disease development. Therefore, we proposed the
scDisProcema pipeline to capture the dynamic change in this
study.

First, we inferred different immune cell types’ gene co-
expression network modules during disease progression. Then,
we identified the key modules underlying the dynamic changes
of immune regulation in disease processes by correlating module
expression patterns with cell proportion change. Furthermore,
hub gene and functional enrichment analysis of the key module
elucidated the underlying biological processes. The above steps
traced the dynamic proportion changes of immune cells during
the disease development and recovery process and revealed the
gene expression patterns corresponding to these cellular changes.
The pipeline is downstream of quality control and cell clustering,
which are performed by using the R package Seurat [13], and the
Seurat object can be directly utilized by scDisProcema. An over-
view of the present work can be seen in Fig. 1A.
2. Materials and methods

2.1. Cell preprocessing, clustering and annotation

Data filtering, normalization, dimensionality, and clustering
were performed by R package Seurat (4.0.4). Cells with less than
200 detected genes or higher than 5000 detected genes and higher
than 25% mitochondrial gene ratio were removed. The raw read
counts were normalized with the NormalizeData function. The
top 2000 highly variable genes (HVGs) were identified by the
FindVariableFeatures function, then scaled using the ScaleData
function. The RunPCA function was used to perform principal com-
ponent analysis, and then the RunHarmony function of R package
harmony [14] (0.1.0) was used to reduce the batch effect. The top
30 principal components (PCs) were used to perform t-
distributed stochastic neighbor embedding (tSNE) to embed the
dataset into two dimensions. Then FindNeighbors and FindClusters
functions were adopted to construct the nearest neighbor graph
and cluster cells. Recognized marker genes were used to annotate
the cell type for each cluster. We annotated nine cell types, namely
B, CD4 + T, CD8 + T, monocyte-derived dendritic cell (mDC),
megakaryocyte (Mega), monocyte or macrophage (Mono/Macro),
natural killer cell (NK), plasmacytoid dendritic cell (pDC), cd T cell
(cd T). Function FindAllMarkers was used to identify differentially
expressed genes (DEGs) of each cell cluster, and we set parameters
‘‘only.pos” as TRUE, ‘‘logfc.threshold” as 0.5 and ‘‘min.pct” as 0.5.
Details of parameters can be seen in Appendix A.
2.2. The scDisProcema workflow

The workflow of the scDisProcema can be divided into three
steps: 1) state-gene matrix as input to WGCNA for gene co-
expression network module searching; 2) module dynamic analy-
sis for obtaining the degree of dynamic change and relevance to
cells over the course of disease; 3) key module identification for
different cell types.
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2.2.1. Gene co-expression network module searching
Based on feature selection and cell clustering results, we then

used R package WGCNA (version. 1.70–3) to infer the gene co-
expression network. The average expression values of each HVGs
of different cell types in various states were calculated as input
data. First, the genes with median absolute deviation greater than
0.01 were retained and then the goodSamplesGenes function was
used to screen out samples and genes with zero-variance. To con-
struct a scale-free network, the pickSoftThreshold function was
used to select the best soft threshold and set the filtering criteria
to be 0.9. The network was constructed by the blockwiseModules
function, and we set the ‘‘maxBlockSize” to be the total number
of genes, ‘‘minModuleSize” as 20, ‘‘deepSplit” as 4,
‘‘mergeCutHeight” as 0.1, and numericLabels as TRUE to name
modules with colors. The module eigengene (ME) was calculated
to represent the expression level of the module. Intramodular con-
nectivity (KWithin) was calculated for each module. Details of
parameters can be seen in Appendix A.

2.2.2. Module dynamic analysis
With cell type annotation, we got n cell types (Ci, i = 1,. . ., n) and

m gene modules (Mj, j = 1,. . ., m). For Ci and Mj, we first calculated
the cell-type-specific correlation coefficient score (S(CC)) by the fol-
lowing formula:

S CCð Þi;j ¼
cov Proi;MEj

� �
rProirMEj

ð1Þ

S(CC)i,j represents the Pearson correlation between ME and cell
proportion changes during disease progression. Proi and MEj are
vectors containing cell proportion values of Ci and module eigen-
gene values of Mj in Ci across all states, respectively.

Then we calculated the activity fluctuation score (S(AF)) as fol-
lows to measure dynamic change degree of Mj across all states:
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S represents the number of states (here is 5). The (MEj)s means
the ME value of Mj in the state s (s = 1, . . ., 5).

2.2.3. Key module identification
The product of (1) and (2) was calculated and then scaled using

z-score normalization, namelyZscore S CCð Þ � S AFð Þ
� �

. The absolute
value of the above-scaled score was used as module significance
score (S(MS)). Thus, we obtained a matrix of n cell types and m gene
modules, the elements of which are S(MS)i,j. A large S(MS) value indi-
cates a significant dynamic change of module expression across
different states and a strong correlation with the cell ratio varia-
tion. The module with the largest S(MS) value was identified as its
key module for each cell type.

2.3. Hub genes selection

Hub genes are genes with high correlation in the module. Here,
genes that meet the following two requirements are defined as hub
genes: 1) specifically expressed in corresponding cell types; 2)
owned high connectivity in the network module. Thus, markers
with the top five intercellular connectivity were chosen. If no
member in the key module belongs to the marker gene set, we
used another strategy to select hub genes. That is, the log2 fold
change (log2FC) of a gene’s mean expression level in the corre-
sponding type against other types was used to measure the speci-
ficity, and the genes with top five KWithin values and absolute
log2FC larger than 0.5 were set as the hub genes.



Fig. 1. The overall framework and WGCNA results. (A) The overall framework. (B-C) The t-SNE projection of single-cell data by samples (B) and by cell types(C). (D) The dot
plot of marker genes of nine major cell types. (E) The bar plot and the line plots show the variation trend of each cell type during disease progression and recovery. (F) WGCNA
hierarchical clustering results. (G) The heatmap shows module eigengene values across different states in nine cell types. tSNE for t-Distributed Stochastic Neighbor
Embedding; WGCNA for weighted gene co-expression network analysis.
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Table 1
COVID-19 sample information.

State # of samples # of cells

Healthy (H) 10 58,058
Mild progression (MP) 5 44,201
Severe progression (SP) 3 28,110
Mild convalescence (MC) 15 120,744
Severe convalescence (SC) 8 39,630
Total 41 290,743
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2.4. Network visualization

The network was visualized using the Cytoscape (version. 3.9.0)
software [15]. we calculated the log2 expression change of genes in
the disease state compared with healthy state for each cell type as
log2FC. The edge represents the association between two genes in
the visualized network, and the nodes represent genes. We visual-
ized the size of nodes and their color according to the values of
KWithin and log2FC, respectively. The color of nodes in the control
network of healthy state was grey, and upregulated and downreg-
ulated genes were mapped with red and blue, respectively. When
visualizing the PPI network built by Metascape [16], we show the
label of each node using gene name and moderately adjust the
tightness of the network.
3. Results

3.1. Sample selection and clustering analysis of COVID-19 samples
under different states

The dynamic change of immune status of SARS-CoV-2 infection
has been widely concerned. The landscape in the Cell paper men-
tioned above [9] gave a relatively complete picture of this dynamic
due to the comprehensive samples and high-quality data, improv-
ing our knowledge of immunology in disease outcomes. Thus, we
extracted 41 samples covering all states for single-cell level profil-
ing (Fig. 1. A-B) and gene network analysis. Furthermore, to reduce
the batch effects and other possible influencing factors, such as
effects of different experimental operations and comorbidities on
the expression profile, we selected the fresh peripheral blood sam-
ples from patients without other comorbidities. Detailed informa-
tion can be seen in Table 1 and Supplementary Table *1*.

A total of 290,743 cells were divided into 27 clusters by tSNE
clustering analysis, covering nine cell types in the immune system
(Fig. 1C), including B cells (CD79A), CD4 + T cells (CD3D & CD4),
CD8 + T cells (CD3D & CD8A), monocyte-derived DCs (CD1C),
megakaryocytes (PPBP), monocytes or macrophages (CST4 &
LYZ), natural killer cells (GNLY), plasmacytoid DCs (TCF4) and cd
T cells (CD3D & TRDV2) (Fig. 1D), and their proportions varied by
states (Fig. 1E). All the above cell types were annotated based upon
the cell type information in reference [9]. Generally, the lympho-
cytes, such as T cells, B cells, and pDCs, had the lowest proportion
in SP state and rose gradually in the convalescence period. How-
ever, the cell ratio of myeloid cells except mDCs showed the oppo-
site dynamic trend.

The cell proportion changes can partially reflect the effect of
virus infection on immune cells at different stages [2,3], which
may be closely related to the occurrence of inflammatory reaction
and secretion of cytokines.
3.2. Gene co-expression module construction of COVID-19 processes

Our network is built based on the WGCNA tool. The input data
was the cell states-HVGs expression matrix. After quality control,
705 genes were selected and divided into 11 gene modules
(Fig. 1F). The heatmap (Fig. 1G) displayed the ME values across cell
types, visualizing the changes of module expression during the
progression and recovery. In addition, the hierarchical clustering
of modules and cells was carried out, respectively. Cell types at dif-
ferent states were clustered together, suggesting that the co-
expression modules identified by WGCNA were cell-type-specific.
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3.3. Key module identification of COVID-19 processes

We identified the module responsible for the patients’ immune
changes during COVID-19 processes by correlating cell proportion
change with module expression pattern change. For each cell type,
we considered the degree of dynamic change in module expression
and the correlation with the change in cell proportions. As a result,
the module with the highest module significance score, namely
S(MS), was identified as the key module of the cell type. The com-
plete process can be seen in subsection 2.2 and Fig. 2, and the
results are shown in the heatmap (Fig. 3A). As a result, the red
module was identified as the key module for B cell and pDC,
magenta module for CD8 + T cells, blue module for megakary-
ocytes, brown module for monocytes or macrophages, and grey
module for CD4 + T, mDC, NK, and cd T cells. The corresponding
relationship between modules and cell types, as well as the hub
genes and main functions of each module, are discussed below,
which are all shown in Table 2.

There are some reliable cell type-specific marker datasets, for
example, PanglaoDB Augmented (2021) [17], CellMarker Aug-
mented (2021) [18], and CellMatch (https://github.com/ZJUFan-
Lab/scCATCH/tree/master/data, which is incorporated into the
tool scCATCH [19]). Enrichr [20] is a comprehensive interactive
enrichment tool that can use these datasets to perform robust type
annotation of gene modules. Therefore, we used Enrichr to evalu-
ate whether the enrichment results in the key modules could
match the corresponding cell types. The results were shown in
Fig. 3B-F. In the enriched items of the red module (Fig. 3B), the sec-
ond and fifth terms were B cells and plasmacytoid dendritic cells,
respectively. Macrophages and monocytes were ranked as the
brown module’s top three and four enriched items (Fig. 3E),
respectively. Additionally, different cell types could share the same
key modules, indicating a functional connection between these cell
types.

In general, the matched enriched terms of identified modules
indicate the rationality of identified key modules.
3.4. Dynamic modular change of key modules in COVID-19 processes

We used the Cytoscape to depict the above key modules. To
reflect the degree of module dynamic change, we calculated the
expression change under certain disease states compared with
the healthy state (see details in subsection 2.4). The networks in
Fig. 4 visualized the co-expression pattern of each module across
five states. Different cell types could share the same module, and
the expression trend could also be similar (Supplementary
Fig. *1*). Genes in red, magenta, and blue modules were inclined
to upregulate as the disease worsened and downregulated during
recovery (Fig. 4A-D). In contrast, the brown and grey modules
showed more complex fluctuation (Fig. 4E-I). These modules were
generally upregulated in mild patients but remarkably downregu-
lated in severe ones, indicating the difference between patients
with mild and severe syndromes.

The dynamic change trend of gene modules could be the same
as that of cell proportion, e.g., megakaryocytes and mDCs. In con-
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Fig. 2. The workflow of scDisProcema. The workflow consists of three steps, namely gene co-expression network module construction, module dynamic analysis, and key
module identification.
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trast, some are opposite, e.g., B cells, pDCs, CD8 + T cells, suggesting
that biological processes involved in these gene modules may be
responsible for either cell proliferation or depletion, which can
be further verified. Moreover, the dynamic change patterns of dif-
ferent cell types in the same module were correlated, suggesting
potential interactions among different cell types (Supplementary
Fig. *1*).

3.5. Hub genes in the COVID-19

Hub genes are generally the genes that can represent the char-
acteristics of the networks, which are often defined according to
genes’ intermodular connectivity [21–23]. We selected intersected
genes between module hubs and differentially expressed marker
genes considering both cell-specificity and connectivity (see sub-
section 2.3 for more details). All hub genes are shown in Table 2.
We examined the expression of these hub genes and found that
most of them were upregulated explicitly in their corresponding
cell types, confirming the rationality of the defined hub genes
(Supplementary Fig. *2*). However, no hub gene in the magenta
module overlapped with the corresponding cell type marker genes,
suggesting that such a module might not directly determine the
cell type. In contrast, hub genes in the magenta module might reg-
ulate CD8 + T cell function through cell cycle and DNA damage pro-
cesses (see Table 2 and below Fig. 5B for details).

3.6. Module function and protein–protein interaction

To explore the biological processes involved in gene modules,
we utilized the Metascape software, a comprehensive functional
enrichment tool to conduct functional enrichment (Fig. 5A-E;
Table 2) and protein–protein interaction (PPI) network topology
(Fig. 5F-J) analysis. Particularly, connected network components
were identified using the ‘‘Molecular Complex Detection” (MCODE)
algorithm [24], and the top three function terms of the components
were shown.
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In the present study, we showed that functions of red module
genes were directly or indirectly related to ER stress (Fig. 5A).
Endoplasmic Reticulum Stress (ER stress) is a protective cellular
response caused by the accumulation of misfolded proteins in
response to stimuli such as viral infection [25]. GRP94 (human
gene HSP90B1) is a key marker of this intracellular process [26].
ER stress is also associated with apoptosis, autophagy, inflamma-
tory response, angiogenesis, and other biological processes.
MCODEs identified from PPI networks were also associated with
ER protein folding and signal recognition [27] (Fig. 5F). In addition
to HSP90B1, other two hubs of pDC, SEC11C and SPCS3, which both
encode signal peptidase complex subunits, are also involved in
endoplasmic reticulum signal transduction [28]. In addition, a large
number of genes in the red module, including the unique hubs of B
cells, namely IGHM and ISG20, are related to the activation of B
cells, which might be one of the pro-inflammatory responses of
ER stress. Invasion of SARS-CoV-2 could activate ER stress-related
pathways, leading to cellular inflammatory response and cell apop-
tosis, consistent with the upregulation of the red module in the
severe stage.

The magenta module was mainly involved in the cell cycle,
apoptosis, damage repair of genetic material (Fig. 5B). We found
that the genes enriched in cell division and DNA replication were
also involved in the DNA damage and repair process, suggesting
cells were damaged or apoptotic, consistent with the depletion of
CD8 + T cells in the SP state [29]. Most of the involved genes were
histone genes and MCM family genes, which have been shown to
play an important role in regulating the stability of DNA structure
[30,31]. There was a strong interaction between these two kinds of
genes, and both were detected as independent MCODEs in the PPI
network (Fig. 5G).

The key module of megakaryocytes is module blue, and most
genes of which were involved in coagulation function (Fig. 5C).
Besides, these genes are also implicated in human cytomegalovirus
(HCMV) infection and cell interactions, which are critical for plate-
let adhesion [32]. A large number of interacting histone genes were



Fig. 3. The results of key module identification. (A) Modules with maximum or minimum scaled values are marked in the heatmap and identified as key modules. Module red
is the key module for B cell and pDCs, magenta is for CD8 + T cells, blue is for megakaryocytes, brown is for monocytes/macrophages, grey is for CD4 + T, mDCs, NK, and cd T
cells. (B-F) The cell type enrichment results inferred by enrichR platform. Enrichment results for module red (B), module magenta (C), module blue (D), module brown (E), and
module grey (F). The color represents the �log(p-value) and the dot size represents the combined score inferred by enrichR. pDC for plasmacytoid dendritic cells; NK for
natural killer; mDC for monocyte-derived dendritic cells. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 2
Hub genes of key modules.

Module Module IX (Red) Module VII (Magenta) Module III (Blue) Module VI
(Brown)

Module XI (Grey)

Cell Type B cell pDC CD8 + T Mega Mono/Macro CD4 + T mDC NK cd T

Hub Genes IGHM HSP90B1 HIST1H1B RGS18 CST3 HBA1 TRGV4 HBB DUSP2
ISG20 SEC11C DHFR MMD ANXA5 TRGV4 HSPA1A HSPA1B TNFAIP3
HSP90B1 SPCS3 PCNA RUFY1 ANXA2 HBA2 TRGV5 HBA2 CXCR4

MYDGF SMC2 CA2 PPT1 TRGV5 HSPA1B HSPA1A
LMAN1 DUT PLA2G12A CTSH HSPA1B CXCR4 TRGV5

Main
Function

ER stress, activation
of B cells

Cell cycle, apoptosis, damage
repair

Coagulation, HCMV
infection

Immunity Oxygen transport and oxidative stress

A. Li, J. Yang, J. Qian et al. Computational and Structural Biotechnology Journal 20 (2022) 3545–3555
enriched in items related to HCMV infection (Fig. 5H). This is pos-
sibly because epigenetic modifications such as histone acetylation
are closely related to HCMV infection and reactivation [33], and
such modifications also occur during SARS-CoV-2 infection [34].
Megakaryocytes, on the other hand, could release histone-rich pla-
telets to promote clotting [35,36], which may be one of the mech-
3550
anisms for thrombosis in COVID-19 patients [37]. Furthermore, the
development of abnormal coagulation (DIC) and thrombosis is
highly correlated with the poor prognosis of COVID-19 [38,39].
Here, the dynamic expression of blue module was consistent with
the change of the proportion of megakaryocytes, which might
reflect the degree of clotting in the patient.



Fig. 4. The results of module dynamic analysis. (A-I) represents the network modules of B, pDC, CD8 + T, megakaryocyte, monocyte/macrophage, CD4 + T, mDC, NK, and cd T
cells, respectively. Edges represent the association, and the nodes represent the genes. The node color indicates whether the gene expression level is higher (red) or lower
(blue) than the control group. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Enrichment items and PPI network of each key module inferred by Metascape. (A-E) The enriched biological process terms by module red, magenta, blue, brown, and
grey, respectively. The color represents the �log(p-value) and the bar size represents the number of genes involved. (F-J) The inferred PPI network (left side). The order of
modules was the same as those in (A-E). Each MCODE’s top three enrichment items are shown on the right side. MCODE for identified ‘‘Molecular Complex Detection”. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The function of the brown module was closely related to immu-
nity, which was consistent with the well-known function of corre-
sponding Mono/Macro cells (Fig. 5D). In particular, we obtained a
term named ‘‘Network Map of SARS-COV-2 Signaling Pathway”,
suggesting the important role of the brown module in regulating
immune response in COVID-19. Densely correlated HLA genes indi-
cated a higher antigen presentation function of MHC class II mole-
cules (Fig. 5I). Other MCODEs were also related to immunity. SARS-
CoV-2 induces cytokine storm, impels interferon response, and
inhibits the function of MHC class I and II molecules [40]. The alter-
ation of MHC II presentation might further contribute to immune
escape [41]. This was consistent with the downregulation of the
brown module in SP. In addition, the module participated in the
process of apoptosis, which might explain the proliferation and
decrease of monocytes and macrophages.

The grey module was closely related to oxygen transport and
oxidative stress (Fig. 5E). Acute respiratory distress syndrome
(ARDS) is one of the results of severe COVID-19 [42], which may
be related to the downregulation of oxygen transport-related
genes in the severe stage. In addition, oxidative stress plays an
important role in the inflammatory response of innate immune
cells [43], which explains the critical effect of this module on
CD4 + T, mDC, NK, and cd T cells. Hub genes of the grey module,
such as HBA1, CXCR4, and HSPA1B, were located at the center posi-
tion of the PPI network and participated in oxidative stress regula-
tion (Fig. 5J).

In general, we provided potential molecular mechanisms under
dynamic cell heterogeneity of COVID-19 using scDisProcema.
4. Discussion

The COVID-19 pandemic poses serious health threats and eco-
nomic costs to people worldwide. This disease leads to severe
immune response and inflammatory factor storms, affecting the
development and outcome of the disease. scRNA-seq has been uti-
lized to study COVID-19 immunopathology because of its ability to
delineate more detailed cell expression profiles than the traditional
bulk RNA-seq. In this study, scRNA-seq data of COVID-19 patients
under different states were collected to explore dynamic changes
of immune regulation, providing a new perspective for the treat-
ment and recovery of COVID-19.

The difference in gene regulation among different biological
conditions, such as samples with different treatment doses or
under different disease stages, is worth studying. As a traditional
and uncomplicated tool for constructing a gene co-expression net-
work, WGCNA has been widely used in studying immune regula-
tion in COVID-19 patients. However, among these works [12,44–
46], only the most common features of WGCNA were used. By
using bulk RNA-seq data, the DEGs-samples matrix was extracted
and used to identify gene modules for function and pathway
enrichment [45,46]. The calculated ME values were used to com-
pare differences between groups. Then key modules were selected
by measuring the correlation between phenotypic traits and mod-
ules, and hub genes could be considered as important targets. Cells
will be analyzed instead of samples when using single-cell data
[44] to study COVID-19, and pipelines that apply WGCNA to
scRNA-seq or other single-cell omics data have also been proposed
[47,48]. In these pipelines, pseudocells or metacells that combine
information of multiple cells were used instead of samples as input
to WGCNA, which could moderately eliminate the problem of
excessive dimensionality. However, there is no clear clinical mean-
ing for pseudocells, so it is not reliable to explain underlying bio-
logical processes based upon WGCNA module analysis.
Particularly, it is important to identify genes associated with
dynamic changes during disease development or embryogenesis
3553
[49], which is a difficult task for these methods. To address these
challenges, we proposed scDisProcema, which, on the one hand,
utilized the information obtained from upstream analysis of
single-cell data. On the other hand, key modules that changed
dynamically for COVID-19 across different states were identified.

Here, we conduct a follow-up exploration based on the analysis
results of the Seurat package. Using the average expression of all
major cell types in different states as input for scDisProcema, we
obtained 11 gene modules. Considering the dynamics of gene
expression and the correlation with changes in cell proportion,
we identified the key modules that best reflected the specific bio-
logical changes in each cell type during disease development, that
is, the red module for B cells and pDCs, magenta for CD8 + T cells,
blue for megakaryocytes, brown for monocytes or macrophages,
grey for CD4 + T, mDCs, NK and cd T cells. In the screening of
hub genes, different from the previous methods that only consid-
ered connectivity degree, we also considered the specific expres-
sion of genes in cell types. Therefore, we screened hub genes in
corresponding key modules for each cell type, which might play
an important role in the dynamic process of disease development.

Then we performed functional enrichment analysis and PPI net-
work analysis for each module. The red module is associated with
ER stress, which induces inflammation response, apoptosis, and
angiogenesis [50]. The magenta module contains many histone
genes, which are closely linked to each other, and associated with
DNA damage repair, confirming that DNA damage levels are ele-
vated in COVID-19 patients [51]. The blue module is closely related
to the coagulation function. The significantly enhanced expression
level of this module in severe patients is consistent with the occur-
rence of thrombosis or DIC in severe patients [52]. Brown module
was responsible for the immune responses of various cytokines,
which might play an important role in the progression and progno-
sis of patients [53,54]. The grey module plays a vital role in oxygen
transport and oxidative stress, the latter is an important part of the
pathogenesis of COVID-19 [55] and interacts with the patients’
inflammatory response [56]. In addition, through PPI network anal-
ysis, we found that most of the identified hub genes were involved
in MCODEs related to the cell invasion process induced by viruses,
indicating the significant role of these genes in responding to virus
infection. Moreover, key gene modules showed different expres-
sion levels in healthy and patients under different disease stages,
and regulated corresponding immune cells to undergo different
biological processes, depicting the dynamic changes of the
COVID-19 immune scene from multiple perspectives.

Through scDisProcema, we used the information of single cells
to capture the dynamic change of samples at different time points
or disease stages. With this approach, more applications can be
explored. For example, to capture the dynamic change during
aging, development, and regeneration processes. We can also
explore the modular difference among patients with different clin-
ical outcomes. In general, scDisProcema provides a practical way
for investigating dynamic complex biological systems. However,
in the current state, it has not yet been possible for scDisProcema
to characterize heterogeneity information in disease processes at a
finer granularity, such as the behavior of individual cells and inter-
cellular variation—which was considered of great importance by
some researchers [57]. We believe this could be a good direction
for our future study.
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