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Abstract

Background: Chlamydiaceae are a family of obligate intracellular pathogens causing a wide range of diseases in animals and
humans, and facing unique evolutionary constraints not encountered by free-living prokaryotes. To investigate genomic
aspects of infection, virulence and host preference we have sequenced Chlamydia psittaci, the pathogenic agent of
ornithosis.

Results: A comparison of the genome of the avian Chlamydia psittaci isolate 6BC with the genomes of other chlamydial
species, C. trachomatis, C. muridarum, C. pneumoniae, C. abortus, C. felis and C. caviae, revealed a high level of sequence
conservation and synteny across taxa, with the major exception of the human pathogen C. trachomatis. Important
differences manifest in the polymorphic membrane protein family specific for the Chlamydiae and in the highly variable
chlamydial plasticity zone. We identified a number of psittaci-specific polymorphic membrane proteins of the G family that
may be related to differences in host-range and/or virulence as compared to closely related Chlamydiaceae. We calculated
non-synonymous to synonymous substitution rate ratios for pairs of orthologous genes to identify putative targets of
adaptive evolution and predicted type III secreted effector proteins.

Conclusions: This study is the first detailed analysis of the Chlamydia psittaci genome sequence. It provides insights in the
genome architecture of C. psittaci and proposes a number of novel candidate genes mostly of yet unknown function that
may be important for pathogen-host interactions.
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Introduction

Chlamydia psittaci is the pathogenic agent of ornithosis or

psittacosis, a primarily avian respiratory disease with sizeable

impact on poultry farming and bird breeding economic returns

[1]. It belongs to the family Chlamydiaceae, a small group of

extremely successful obligate intracellular pathogens that efficient-

ly colonize mucosal surfaces and thrive within a wide variety of

animal hosts, including humans [1].

Although birds are the primary targets of C. psittaci infections

[2], transmissions from birds to humans have been reported,

especially where humans come into close contact with infected

birds on a regular basis, as in the case of veterinarians, poultry

farmers, or bird breeders [3–5]. Moreover, C. psittaci has been

isolated from a variety of other mammalian hosts, including cattle

and other ruminants, horses, and pigs [1,6].

Other medically important members of the family Chlamydiaceae

are the human-specific C. trachomatis and the wide-host-range C.

pneumoniae. Worldwide, C. trachomatis is a leading cause of sexually

transmitted bacterial diseases and ocular infections (trachoma),

potentially leading to blindness [7]. C. pneumoniae is transmitted by

respiratory droplets and the causative agent of an atypical

pneumonia and other acute respiratory illnesses [8].

Currently, within Chlamydiaceae a total of nine species are

organized in the single genus Chlamydia: C. trachomatis, C. muridarum,

C. pneumoniae, C. pecorum, C. suis, C. abortus, C. felis, C. caviae, and C.

psittaci. All Chlamydiaceae need to infect eukaryote host cells for

replication. Despite major differences in host range, tissue tropism,

and disease pathology they all share a characteristic biphasic

developmental cycle unique among prokaryotes [9,10]. The

infectious chlamydial form, the elementary body (EB), enters the

eukaryotic cell and becomes internalized in a vacuole in the

cytoplasm of the host cell. In this so called inclusion, the EB

differentiates into a non-infectious, metabolically active form, the

reticulate body (RB). The RB multiplies by binary fission [1,10].

Depending on the strain, two to three days after infection the RBs

transform back into EBs, which get released by lysis of the host cell

or exocytosis [9].

As a consequence of this life style, the arguably most important

driving force for the evolution of these pathogens is the interaction

with their peculiar ecological niche, the inclusion within the

cytoplasm of a eukaryotic host. Specific genomic manifestations of
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the obligate intracellular lifestyle have long been recognized, e.g. a

strong trend towards reduced genome sizes, a dramatical

reduction of effective population size relative to environmental

bacteria making purifying selection comparatively less efficient,

extreme sequence divergence in proteins that mediate the

interaction with the host environment such as outer surface

proteins and secretion systems (reviewed in [11]). Hence, a

comparison of genes involved either directly or indirectly in

interactions with the host cell is most likely to shed light on the

evolution of the intracellular life style of the Chlamydiaceae, and their

adaptation to different eukaryote hosts.

Currently, relatively little is known regarding the chlamydial

factors involved in virulence, host interaction, or host specificity.

Genes for which functions in relation to niche adaptation have

been implicated are mainly (i) the polymorphic membrane

proteins (pmps), a large family of proteins probably unique to

the phylum Chlamydiae [12,13], and considered to be important in

adhesion of the EB to the host cell, molecular transport, and cell

wall associated functions [14]; (ii) genes located in the chlamydial

‘‘plasticity zone’’, a distinct region close to the terminus of

replication, characterized by unusually high levels of inter- and

intraspecific polymorphism [15]; and (iii) the so called type III

effector proteins, a highly variable class of proteins potentially

secreted into the host cell by the molecular machinery of the type

III secretion (T3S) apparatus.

The T3S apparatus and the effectors translocated by it form a

sophisticated mechanism of bacterial pathogenesis found in a

number of Gram-negative bacteria. It is characterized by the

direct translocation of effector proteins into the host cytoplasm to

mediate colonization and parasitation of susceptible hosts [16,17].

T3S effector proteins display little sequence homology across

species. Although the N-terminal regions of T3S effectors show

unusual amino acid compositions (e.g. [18]) no unambiguous

common motif among different T3S signal sequences has been

established, making the computational prediction of putative T3S

effectors a difficult challenge [18,19].

Whole-genome comparison between phylogenetically distant

chlamydial species that parasitize a range of host species, vary in

their host specificity and pathogenicity can provide a foundation

from which to comprehend factors involved in chlamydial niche

adaptation. For this study we sequenced the genome of the

pathogenic avian type strain Chlamydia psittaci 6BC. Meanwhile two

additional C. psittaci genome sequences have become available

[20,21]. This study represents the first detailed analysis of the C.

psittaci genome sequence, however. Our results show a typical

chlamydial genome with a coding capacity of 967 CDSs. The

comparative analysis of the C. psittaci genome with those of other

Chlamydiaceae confirms the exceptional roles of the family of

polymorphic membrane proteins and the chlamydial plasticity

zone as source of most interspecies variation. The prediction of

putative type III secreted effectors and a genome-wide analyses of

non-synonymous to synonymous substitution rate ratios yield a

number of novel candidate genes likely involved in host-pathogen

interactions and adaptive divergence between C. psittaci and their

relatives.

Results and Discussion

Genome sequence of the avian isolate 6BC of C. psittaci
Chlamydia psittaci 6BC possesses a single circular chromosome of

1.172 Mb and a plasmid of 7553 bp. The bacterial chromosome is

predicted to contain 967 coding sequences (CDSs) and the plasmid

is predicted to harbour eight coding sequences. 26% of the CDSs

are annotated as encoding hypothetical products. The general

features of the C. psittaci genome in comparison to other sequenced

chlamydial genomes are summarized in Table 1.

A phylogenetic tree was reconstructed for all species within

Chlamydiaceae for which full-length genomic sequences have

become available, including intraspecific variants (Figure 1). The

inferred topology is consistent with previous phylogenies of the

Chlamydiaceae (e.g. [22,23]), and shows the close relationship of C.

psittaci with the three chlamydial species originally considered as

the ‘‘mammalian’’ Chlamydia psittaci abortion, feline, and Guinea

pig strains (i.e., C. abortus, C. felis, and C. caviae; here referred to as

‘‘psittaci-group’’).

A comparison of the genomes of the psittaci-group shows that all

four species are highly conserved in terms of size, in the number of

coding sequences and in nucleotide composition (Table 1). The

degree of conservation is illustrated by a comparison of the coding

capacity of these genomes: 872 of the predicted CDSs of C. psittaci

are shared among all four species of the psittaci-group (with a total

CDS count ranging from 967 to 1005), 82 are divergent, and only

13 genes are unique to C. psittaci (Figure 2A). Notably, six of the 13

C. psittaci genes identified as having no significant homology to any

other chlamydial species encode polymorphic membrane proteins

(pmps) of the G family, most others encode hypothetical proteins

with unknown functions (Table 2). Four of these unique genes

(CPSIT_0306, CPSIT_0429, CPSIT_0605, and CPSIT_0846)

are predicted type III secreted effector proteins (Table 3 and Table

S1). Three of these genes are located in the hypervariable

chlamydial plasticity zone (CPSIT_603, CPSIT_605, and

CPSIT_607, Figure 3), a region at the terminus of replication

Table 1. Summary of Chlamydiaceae genome features.

C. psittaci 6BC C. abortus S26/3 C. felis Fe/C-56 C. caviae GPIC C. pneumoniae LPCoLN
C. trachomatis L2/434/
Bu

Genome size [bp] 1,171,660 1,144,377 1,166,239 1,173,390 1,241,020 1,038,842

No. of CDSs 967 932 1005 998 1097 874

Coding density [%] 89.39 87.62 91.22 89.42 89.44 89.09

Average gene size
[bp]

1083 1075 1059 1051 1012 1059

% G+C content 39.06 39.87 39.38 39.22 40.55 41.33

% G+C of CDSs 39.46 40.24 39.95 39.82 41.26 41.66

tRNA 38 38 38 38 38 37

rRNA operons 1 1 1 1 1 2

doi:10.1371/journal.pone.0035097.t001

Comparative Genome Analysis of Chlamydia psittaci
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Figure 1. Phylogenomic relationships among sequenced chlamydial genomes. The maximum-likelihood tree is based on 100 randomly
chosen conserved orthologous genes. Bootstrap values are displayed at the branches. The panels show the within-species phylogenetic relationships
of the sequenced genomes of Chlamydia pneumoniae (upper panel) and C. trachomatis (lower panel).
doi:10.1371/journal.pone.0035097.g001

Comparative Genome Analysis of Chlamydia psittaci
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that contains an array of chlamydial niche-specific genes putatively

important in host-specific interactions [24].

When the more divergent species C. pneumoniae and C. trachomatis

were included in the comparison, 736 of the predicted CDSs

(ranging from 874 to 1097) were common to all Chlamydiaceae

(Figure 2B). 64 genes were shared exclusively by C. psittaci, C.

abortus, and C. pneumoniae, all members of the recently deprecated

genus Chlamydophila [23,25] (Figure 2B).

Whole-genome comparisons with the other published Chlamyd-

iaceae genomes show that the C. psittaci 6BC genome is essentially

syntenic to sequences from C. abortus, C. felis, and C. pneumoniae

(Figure 4).

A high degree of genomic rearrangement, however, becomes

apparent with respect to C. trachomatis (Figure 4). Major deviations

from synteny and/or sequence conservation are found in a

hypervariable region near the replication terminus that has been

termed ‘‘plasticity zone’’ (PZ) [15] and among the family of

polymorphic membrane protein (pmp) genes [26] (Figure 4).

These regions are suspected to harbour key genomic correlates to

species-specific adaptation to different environmental niches,

differential tissue tropism and differences in virulence and

pathogenicity [27]. Additionally, putative virulence factors, e.g.

proteins mediating the chlamydial attachment to the host cell, or

those related to the chlamydial inclusion membrane and

development, may play a crucial role in niche adaptation, such

as members of Inc/Tmh protein family (inclusion membrane

proteins and transmembrane head proteins) and type III secreted

effector proteins (T3SE) [15,28].

It is interesting to note, that a recent revision of the taxonomy of

the Chlamydiaceae saw the genus Chlamydia retained as the sole genus

in the family [25], thus deprecating the usage of the genus

Chlamydophila introduced by Everett et al. in 1999 [29]. However,

the phylogenetic analysis based on concatenated protein sequences

(Figure 1), the numbers of shared orthologous genes (Figure 2B),

and the level of synteny between genomes (Figure 4) all clearly do

support the separation of Chlamydiaceae into two groups that

correspond to the former genera, Chlamydia and Chlamydophila.

Thus, irrespective of whether by any formal criteria Chlamydophila

can be considered a genus, the label does remain useful as a

moniker for an evolutionarily distinct branch within the

Chlamydiaceae.

Plasticity zone and polymorphic membrane proteins
The size and organisation of the plasticity zone differs

substantially among Chlamydiaceae (Figure 3). This high level of

genetic diversity is thought to correspond to rapid evolution of a

set of putative virulence factors which have accumulated in

chlamydial PZs. Thus, a number of the genes contained in the

chlamydial PZs have been linked to host-pathogen interactions/

pathogenesis, e.g., a MAC/perforin domain gene [30], a cytotoxin

gene similar to the EHEC adherence factor and clostridial large

cytotoxins [24,31], tryptophan biosynthesis genes [31,32], or

phospholipase D family enzymes [33].

In C. psittaci 6BC the PZ spans about 29 kb and encodes 16

genes. It has less gene content than the respective plasticity zones

of C. caviae and C. felis (22 and 29 genes) but is larger than the PZ of

C. abortus (11 genes). These differences arise because C. psittaci and

C. abortus lack the complete tryptophan biosynthesis operon

(trpABFCDR, kynU, prsA) present in the C. felis and C. caviae

genomes. In contrast to C. abortus, C. psittaci shares a putatively

functional 10074 bp EHEC-like adherence factor (CPSIT_0606),

a 2466 bp MAC/perforin domain gene (CPSIT_0608), and a

guaAB-add cluster serving purine nucleotide interconversion with C.

caviae and C. felis (Figure 3). Three of the hypothetical proteins in

Figure 2. Venn diagrams showing the numbers of predicted CDSs that are unique or shared among two or more taxa. A. Number of
shared genes among the closely related C. psittaci, C. abortus, C. caviae, and C. felis; B. number of shared genes among the wider range of
Chlamydiaceae. Pseudogenes were scored as absent in this analysis.
doi:10.1371/journal.pone.0035097.g002

Table 2. Predicted CDSs unique to C. psittaci 6BC.

CDS Product description

CPSIT_0309 polymorphic membrane protein, G family

CPSIT_0310 polymorphic membrane protein, G family

CPSIT_03111 polymorphic membrane protein, G family

CPSIT_03121 polymorphic membrane protein, G family

CPSIT_03161 polymorphic membrane protein, G family

CPSIT_0330 putative outer membrane protein

CPSIT_04291 hypothetical protein

CPSIT_0603 conserved hypothetical protein

CPSIT_0605 hypothetical protein

CPSIT_0607 hypothetical protein

CPSIT_0661 conserved domain protein

CPSIT_0668 polymorphic membrane protein, G family

CPSIT_08461 putative TMH-family membrane protein

1predicted T3S effector protein.
doi:10.1371/journal.pone.0035097.t002

Comparative Genome Analysis of Chlamydia psittaci
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the C. psittaci PZ (CPSIT_0603, CPSIT_0605, CPSIT_0607) are

predicted to be type III secreted effector proteins.

Among the recognizable putative toxin genes of the PZ, a full-

length version of a chlamydial MAC/perforin domain gene was

present in the C. psittaci, C. felis, C. pneumoniae koala LPCoLN and

C. trachomatis isolates. A MAC/perforin domain protein was absent

from the C. abortus genome [27], and showed frame disruptions in

C. caviae and the C. pneumoniae human isolates [34] (Figure 3). The

C. psittaci MAC/perforin also shows a MIR (protein nannosyl-

transferase, IP3R and RyR) domain indicative of a possible ligand

transferase function. It shares this feature only with the more

distant orthologs in C. pneumoniae koala LPCoLN and C. trachomatis,

but not C. felis [34].

Many eukaryotic MAC/perforin proteins function as mem-

brane perforation proteins [35], and are known to play important

roles in plant and animal immune response to bacterial infections

[36]. The functional role of the MAC/perforin domain genes in

Chlamydiae is unclear. It has been suggested that proteins with

MAC/perforin structures might help in evading the host immune

response through structural mimicry, e.g. if the assembly of a host

MAC/perforin complex is prevented by pathogen-derived MAC/

perforin molecules present on the pathogen’s cell surface [37,38].

It is likely that the chlamydial MAC/perforin genes were obtained

by horizontal gene transfer from an eukaryotic source [39,40].

A full-length lymphostatin/EHEC adherence factor is present

only in C. psittaci, C. felis, and C. caviae (Figure 3) as well as in C.

muridarum (three orthologs [15]) and C. pecorum [41]. This cytotoxin

is generally absent from the human-specific pathogens C.

trachomatis (except for gene fragments [42,43]) and C. pneumoniae

[15,34].

The second major source of diversity among chlamydial

genomes is the group of polymorphic membrane proteins. The

pmps are a large protein family likely unique to the Chlamydiae

[12,13]. Pmps are characterized by an unusually high level of

mutational change within and across species, suggesting relatively

fast evolutionary rates and high selective pressures potentially

associated with adaptation to different hosts or immune responses

[34,44,45]. They are present in varying numbers ranging from

nine in C. trachomatis and C. muridarum [46] to 21 putative CDSs in

C. pneumoniae [34,47] and C. psittaci (this study; Figure 5). The pmps

group phylogenetically into six basic subfamilies (A, B/C, D, E/F,

G/I, and H; Figure 6; [46]). Of these subfamilies, family G/I is the

largest and the most rapidly evolving with numerous evolutionary

recent independent events of gene duplication and loss in the

various chlamydial lineages (Figure 6). The tendency to a

proliferation of G/I family pmps is especially pronounced among

the species belonging to the former genus Chlamydophila (i.e. the

psittaci-group, C. pneumoniae, and C. pecorum). While there are only

two G/I pmps present in C. trachomatis and C. muridarum, there are

14 pmp G/I family genes present in the C. psittaci genome

(Figure 7).

In C. psittaci 6BC, one pmp gene is predicted to be truncated on

the N-terminal side (CPSIT_0314). Similar to other Chlamydiaceae,

a number of pmps harbour long poly-G tracts. Interestingly, while

these poly-G stretches appeared to be in frame in the sequence

generated by us, in a parallel sequencing effort on C. psittaci 6BC

[21] the three pmp genes corresponding to CPSIT_0305,

CPSIT_0312, and CPSIT_0666 are found to contain frameshifts

in these long homopolymeric tracts. Whether this is a sequencing

artefact or represents rapid change due to slippage mutations is

unclear.

Despite their overall low amino acid and nucleotide similarities,

all pmps share a unique domain structure. They contain a C-

terminal autotransporter-like domain, a central pmp middle
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domain and a varying number of the Chlamydia-specific short

tetrapeptide motifs GGA(I, L, V) and FxxN on the N-terminal side

[14,44,48] (compare Figure 5). In C. psittaci the numbers of

conserved tetrapeptide motifs range from two to 18 for GGA(I, L,

V), and from four up to 23 for FxxN. On average 9 FxxN and 4.8

GGA(I, L, V) motifs are found per pmp gene. These numbers are

similar to other chlamydial species: C. trachomatis (13.6 and 6.5) and

C. pneumoniae (11.3 and 5.0) [44]. Importantly, it has recently been

shown that at least two copies of these repetitive tetrapeptide

motives are essential for chlamydial adhesion to the host cell [49].

Putative type III secreted effector proteins
Like a variety of other Gram-negative pathogens, C. psittaci uses

a conserved type III secretion machinery as a basic mechanism of

virulence determination, that allows transporting specific proteins

known as type III secreted effectors (T3SE) into the cytoplasm of

their host cells [17,50,51]. Many of the chlamydial T3S effectors

are targeted to the inclusion membrane that encapsulates the

pathogen inside their host cell [52]. Hence, these effectors are

thought to play a crucial role for the modification of the

chlamydial environment and for the survival of Chlamydiae in their

inclusion vacuole [15].

Figure 3. Comparison of the plasticity zone of C. psittaci 6BC, C. abortus S26/3, C. felis Fe/C-56, C. caviae GPIC, C. pneumoniae LPCoLN
and AR39, and C. trachomatis L2/434/Bu. Genes are labelled with the published locus tag numbers. Colour-coded genes are discussed in the text.
Pseudogenes are marked by Y.
doi:10.1371/journal.pone.0035097.g003

Figure 4. Global genome comparison between the C. psittaci 6BC, C. abortus S26/3, C. felis Fe/C-56, C. pneumoniae LPCoLN, and C.
trachomatis L2/434/Bu genomes. The figure shows orthologous matches visualized using genoPlotR (compare Methods). The grey tick marks
above and below the sequence lines represent the predicted CDSs on the plus strand and the minus strand of the genomes, respectively. Colour-
marked are (blue) members of the polymorphic membrane protein family (pmp) and (green) the position of the plasticity zone (PZ). The red lines
connecting genome lines represent direct orthologous matches. The blue lines represent reversed matches. Darker colours correspond to a higher bit
scores.
doi:10.1371/journal.pone.0035097.g004
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To predict potential T3S effector proteins in the genomes of C.

psittaci 6BC, C. abortus S26/3, C. felis Fe/C-56, C. caviae GPIC, C.

pneumoniae LPCoLN, and C. trachomatis L2/434/Bu we used a

support vector machine (SVM) classifier developed by Wang et al.

[18] that is based on T3S-specific features extracted from the N-

terminal amino acid composition profile of proteins and the

prediction software EffectiveT3 [19] (see Methods section).

Chlamydia psittaci CDSs predicted by these methodologies to

encode T3S effector proteins and their orthologs in the other

investigated species are presented in Table 3 (and Tables S1, S2,

S3, S4, S5, S6, S7). Using a decision threshold of 0.5, 40 CDSs are

classified as T3S effectors by the SVM algorithm (Table 3) and 68

CDSs are identified by EffectiveT3 (Table S7). 15 CDSs are

identified by both approaches (Table 3).

As can be expected, many of the proteins classified as T3S

effectors in C. psittaci are homologs to experimentally verified

effector proteins from other species. CPSIT_0192, for instance, is

orthologous to the important C. trachomatis T3S effector Tarp

(translocated actin-recruiting protein) [53]. Tarp orthologs are

present in all examined chlamydial species (Table 3). CPSIT_0192

has 100% query coverage and 91% sequence identity to C. abortus

CAB167 and possesses three Chlamydia-specific domains of

unknown function (DUF1547) and an actin-binding I/LWEQ

domain. Query coverage and sequence identity to C. trachomatis

Tarp CTL0716 are 62% and 37%, respectively. This highlights

the high degree of variability in these genes among the

Chlamydiaceae. Even within C. trachomatis variation in the Tarp

sequence has been reported [43]. Despite significant sequence

differences to C. trachomatis, both, the C. psittaci and the C.

trachomatis Tarp are expressed late in the developmental cycle and

may have the same function [54,55].

An important family of T3S effectors tightly associated with the

inclusion membrane are the Inc proteins. Members of this family

show little general sequence similarity, but share a conspicuous

bilobed hydrophobic domain of 60–80 amino acid residues [56].

An enrichment for coiled-coil regions typical for eukaryotic

organisms has recently been described for putative Incs [12].

The C. trachomatis genome contains seven characterized Inc

proteins (Inc A to G). The high sequence diversity in the Inc

protein family makes the occurrence of most Inc proteins largely

strain-specific. Thus, in C. psittaci, of three characterized Inc

proteins A, B, and C only Inc B (CPSIT_0532) is conserved

enough to be identified as an ortholog to C. trachomatis Inc B

(CTL0484) by reciprocal BLAST.

In C. psittaci both Inc A and B were classified as T3S effectors by

both prediction approaches (Table 3). For both proteins, type III

secretion has also been experimentally confirmed in C. psittaci and

C. pneumoniae [54,57]. Based on high immunological activity Inc A

was the first Inc protein identified [58]. Inc B modulates host

immune responses and might be involved in inclusion develop-

ment and prevention of early lysosomal fusion [59]. The C. psittaci

Inc C (CPSIT_0531) has not been classified as a T3SE by the

SVM approach (but it is recognized as a T3SE by EffectiveT3;

Table S7). This is likely explained by the complete lack of

Figure 5. Structure of the pmp-family proteins of C. psittaci 6BC. Proteins are ordered by their position in the genome. The letter codes A to
G/I indicate the pmp protein subfamilies as previously assigned by [44]. CPSIT_0314 has been reconstructed in silico. CPSIT_0300 is a gene remnant.
doi:10.1371/journal.pone.0035097.g005
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sequence homology in the N-terminal region with respect to the C.

trachomatis Inc C (CTL0485; query coverage 53%, sequence

identity 50%), which is an experimentally verified T3S effector.

Another cluster of genes putatively belonging to the larger Inc

protein family and presumably playing similar roles, are the

transmembrane head proteins (TMH) [27]. Transmembrane head

proteins are characterized by a paired N-terminal transmembrane

domain (IncA) followed by alpha-helical coiled-coil domains and

show levels of sequence similarity significantly lower than the

genome average [27].

In C. psittaci the tmh locus encodes 8 CDSs (CPSIT_0841,

CPSIT_0842, CPSIT_0843, CPSIT_0844, CPSIT_0846,

CPSIT_0848, CPSIT_0850, CPSIT_0851), all of which harbour

an N-terminal IncA domain. The TMH proteins CPSIT_0844

and CPSIT_0846 were classified as possible T3S effectors by both

prediction approaches and are orthologous to C. abortus CAB764

and CAB766, respectively (Table 3)

The comparison with C. felis and C. caviae suggest that the genes

encoding the above proteins have arisen from a duplication event

in the common ancestor of C. psittaci and C. abortus. The feline

Figure 6. Phylogenetic relationship of chlamydial pmp-family proteins. The maximum-likelihood tree is based on alignments of the
conserved PMP_M middle domain and autotransporter domain. Species included in the tree are C. psittaci 6BC (CPS), C. abortus S26/3 (CAB), C. felis
Fe/C-56 (CF) , C. caviae GPIC (CCA), C. pneumoniae LPCoLN (CPK), C. muridarum Nigg (TC) and C. trachomatis L2/434/Bu (CTL). Pmps cluster into 6
major subfamilies previously designated A (orange), B/C (purple), D (red), E/F (blue), G/I (yellow), and H (green) [44]. Bootstrap values are displayed at
the branches. Pseudogenes are marked by Y.
doi:10.1371/journal.pone.0035097.g006
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ortholog CF0218 was shown to be distributed throughout the

chlamydial inclusion bodies and confirmed to be immunogenic

[60], but has not been classified as a T3S effector by our approach.

Besides a number of experimentally confirmed T3S effectors,

some proteins with functional annotations that suggest a role in

host-pathogen interactions and/or pathogenicity have been

classified as T3S effectors. Among this group are a number of

genes belonging to the pmp G family (CPSIT_0313, CPSIT_0314

[predicted by SVM], CPSIT_0311, CPSIT_0312, CPSIT_0316

[predicted by EffectiveT3]) and four of the 16 genes located in the

plasticity zone. Thus, the adherence factor (CPSIT_0606) located

in the PZ (Figure 3) is predicted as T3SE with a high SVM score

and by EffectiveT3. Although the adherence factor has orthologs

in C. caviae GPIC, C. abortus S26/3 (only a small gene remnant

showing 2% query coverage, but 93% sequence identity) and C.

felis Fe/C-56 (Table 3), the adherence factor is only predicted to be

type III secreted for C. psittaci and C. caviae orthologs. The

adherence factors of C. felis (CF0442) and C. caviae (CCA_00558)

show in comparison to the psittacine adherence factor a query

coverage of 90%, and a DNA sequence identity of 45% and 44%,

respectively, suggesting a high evolutionary turn over.

Selection pressure on chlamydial genomes
The basic measure of selective pressure acting on protein coding

sequences is the dN=dS-ratio. Generally, low values of dN=dS (i.e.,

values ,1) are indicative of purifying selection acting on a given

protein coding gene, while values .1 are usually interpreted as

evidence for positive selection. Theoretically, the strength of

purifying selection depends on the effective population size and the

specific mutation and recombination rates of the compared

lineages. Smaller effective population sizes and less recombination

will lead to relatively larger dN=dS-values [61].

To characterize differences in selective pressure among

chlamydial lineages on a genome-wide scale, we constructed the

distributions of dN=dS for pairs of chlamydial species over their

respective sets of orthologous genes. In agreement with previous

findings [62,63], the shapes of these distributions were highly

similar and best fitted by a log-normal distribution (Figure 8).

Figure 8. Distributions of dN=dS for orthologous genes from
pairs of chlamydial genomes. A. Distributions for comparisons
among the closely related species C. psittaci, C. abortus, C. felis, and C.
caviae. B. Distributions for comparisons among the more distantly
related species C. psittaci and C. caviae vs. C. pneumoniae and C.
trachomatis, respectively. As a point of reference the comparison C.
psittaci vs. C. abortus is included in both plots. Probability density curves
were estimated by Gaussian-kernel smoothing.
doi:10.1371/journal.pone.0035097.g008

Figure 7. Organization of the pmp-family proteins compared between C. psittaci 6BC, C. abortus S26/3, C. felis Fe/C-56, C. pneumoniae
LPCoLN, and C. trachomatis L2/434/Bu. Arrows indicate the gene orientation. The colour code denotes the membership to a pmp-subfamily.
CDSs are designated by the numeric part of the published locus tags. Orthologous genes as inferred from the phylogenetic analysis shown in Figure 6,
are connected by grey bars. Pseudogenes are marked by Y.
doi:10.1371/journal.pone.0035097.g007
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Median dN=dS-values fell in the range between 0.06 and 0.1

(Figure 9) and are indicative of the strong evolutionary constraints

typical for the compact genomes of prokaryotes [63].

It has been observed that dN=dS correlates negatively with

evolutionary distance, i.e. the smaller the distance between

genomes the larger the estimates of dN=dS , thus leading to an

overestimation of positive selection [64]. Such a pattern is not

apparent among the chlamydial lineages compared here (Figure 9).

In fact, with the notable exception of C. psittaci vs. C. abortus,

pairwise comparisons between the closely related lineages within

the ‘‘C. psittaci-group’’ show dN=dS-distributions shifted towards

lower values, indicative of higher levels genomic conservation,

than comparisons across larger genomic distances (compare

Figures 8A vs. 8B and Figure 9). In addition to exhibiting less

genomic constraint than other comparisons within the same group

of lineages, the C. psittaci/C. abortus comparison also shows the

highest overall variance in dN=dS-ratios (interquartile

range = 0.106; interquartile ranges for all other comparisons range

from 0.057 to 0.080)

The median dN=dS-values for pairwise comparisons among

chlamydial lineages range between 0.066 and 0.096, and fall thus

in the upper third of the range for global median dN=dS-values

typically reported for prokaryotes (0.01–0.1 [63]). This is in line

with a trend that the weakest purifying selection pressures are seen

in obligate parasites, and is probably explained by their relatively

small effective population sizes, frequent bottlenecks and low

recombination rates [65].

Although no clear phenotypic correlates are apparent, the

variability in purifying selection pressure affecting the evolution of

different chlamydial lineages may thus also be a reflection of

differences in their effective population sizes and/or the frequency

of bottlenecks associated with differences in their life styles (e.g.

host preferences or differences in pathogenicity may influence the

numbers of infected carriers and thus the effective populations

sizes of the pathogens).

Using an (arbitrary) cut-off value of a gene-wide dN=dS-ratio

greater than 0.75 for at least one of the nucleotide substitution

models, the C. psittaci/C. abortus comparison is the only one to give

a list of potential candidate genes under positive selection (Table 4).

Metabolic pathways
The C. psittaci 6BC genome encodes for all central metabolic

pathways such as the glycolytic pathway and the tricarboxylic acid

(TCA) cycle. The TCA cycle of obligate intracellular pathogens

varies from complete, in e.g. Coxiella burnetii [66] and Rickettsia

prowazekii [67] to absent, in e.g. Mycoplasma [68]. Like all other

chlamydial species [69], C. psittaci 6BC lacks a number of core

components of the tricarboxylic acid cycle, namely citrate

synthase, aconitase, and isocitrate dehydrogenase. How Chlamyd-

iaceae compensate for these deficiencies is not clear.

Chlamydiaceae also vary in the completeness of the biotin

pathway. Like C. abortus S26/3, C. felis Fe/C56, and C. pneumoniae

LPCoLN, the C. psittaci 6BC genome contains all genes necessary

for the production of biotin from pimeloyl-CoA (Figure S1). In

contrast, C. trachomatis L2/434/Bu has lost several genes from this

pathway such as adenosylmethionine-8-amino-7-oxononanoate

aminotransferase bioA, dethiobiotin synthetase bioD, and biotin

synthase bioB (Figure S1). Also C. muridarum and C. caviae exhibit an

incomplete biotin gene cluster [27].

Biotin is an essential cofactor involved in many pathways [70].

The phylogenetic distribution of the deficiencies in the biotin

biosynthesis pathway within Chlamydiaceae suggests at least two

independent events of gene loss (one in the common ancestor of C.

trachomatis and C. muridarum, and one in C. caviae). This correlates

with differences in host specificity. While for C. trachomatis, C.

muridarum, and C. caviae only one (or, in the case of C. muridarum two

closely related) host species has been reported, the host range is

markedly broader for the other species [71]. Intracellular

organisms generally are prone to loss of function of metabolic

genes due to a relaxation of selective constraints in their

metabolite-rich environment [72]. This trend may, however, be

Figure 9. Dependence of median dN=dS on the genetic distance between genomes estimated as the median non-synonymous
substitution rate, dN .
doi:10.1371/journal.pone.0035097.g009
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exacerbated if a restricted host range leads to a reduced effective

population size, and thus to a less efficient selection against

deleterious mutations.

Differences between the chlamydial species also exist in the

purine and pyrimidine pathways (Figures S2 and S3). The genome

of C. psittaci 6BC contains a gene cluster consisting of IMP

dehydrogenase guaB, GMP synthase guaA, and adenosine deam-

inase add relevant for purine interconversion (Figure S2). These

genes are also present in C. felis, C. caviae, C. pneumoniae AR39 (with

a guaB pseudogene, however), and C. muridarum [24], but lack from

C. abortus (only a guaB pseudogene), C. pneumoniae LPCoLN, and C.

trachomatis L2/434/Bu [27,34]. With respect to pyrimidine

interconversion, the genomes of C. psittaci 6BC and all other

Chlamydiaceae encode the conversion of UMP to CTP (uridylate

kinase pyrH, nucleoside diphosphate kinase ndk, and CTP synthase

pyrG, Figure S3). With the exception of C. trachomatis L2/434/Bu

all Chlamydiaceae examined here also encode orotate phosphor-

ibosyltransferase pyrE (Figure S3). Only C. pneumoniae encodes

uridine kinase udk, responsible for the conversion of uridine or

cytidine into uridine monophosphate or cytidine monophosphate

(UMP/CMP). Also these patterns suggest multiple independent

events of loss of function, possibly due to a reduction of selective

constraints on metabolic genes, but lack any clear correlation to

known differences in host adaptation.

Several studies maintain that Chlamydiaceae do not import host

dNTPs for DNA synthesis, but convert NTPs to dNTPs [73–75].

Both C. psittaci 6BC and C. trachomatis L2 can obtain all NTPs from

the host cell [75–77]. In C. trachomatis nucleoside phosphate

transporters Npt1 and Npt2 are present [74,78]. Npt1 mediates

the exchange of host ATP and bacterial ADP, and Npt2 transports

NTPs into the bacterium. An ATP/ADP translocase that enables

the RBs to supply themselves with ATP from the host cell, has also

been reported for C. psittaci 6BC [79]. Our genomic data support

this finding. The C. psittaci 6BC genome encodes for an ATP/ADP

translocase (CPSIT_0474) with 79% sequence identity and 93%

query coverage compared to C. trachomatis Npt1.

Chlamydial species differ, however, in their requirements with

respect to the availability of external sources of NTPs or

precursors. While all chlamydial species investigated here are able

to synthesize CTP from UTP, only C. psittaci and C. felis can

potentially also interconvert ATP and GTP, because only these

two species encode a complete guaAB-add cluster. In other words,

all Chlamydiaceae deficient in the guaAB-add cluster have to import

ATP, GTP, and UTP or precursors from the host cell [78,80]. C.

psittaci and C. felis crucially only depend on an external source of

UTP and either ATP or GTP or the respective precursors.

Uniquely among Chlamydiaceae, C. pneumoniae possesses a uridine

kinase udk (EC 2.7.1.48), converting uridine or cytidine to UMP or

CMP [34]. This potentially makes C. pneumoniae independent from

an external source of UTP if it can take up its precursors, i.e.

uridine or cytidine.

Interestingly, it has recently been shown, that a cytosolic 59-

nucleotidase can have phosphotransferase activity in addition to

hydrolase activity [81,82]. For the chlamydial isolates examined in

this study, a 59-nucleotidase (EC 3.1.3.5) has been predicted. If the

phosphotransferase activity extends to the chlamydial 59-nucleo-

tidases, it potentially allows a conversion of (deoxy)guanosine,

xanthosine, inosine, (deoxy)adenosine, uridine, and cytidine into

their respective monophosphates (Figure S2 and S3). If these

precursor molecules can be obtained from the host cell the guaAB-

add cluster is rendered redundant, decreasing the selection pressure

to maintain functional copies of these genes. However, whether

Chlamydiaceae have the ability to obtain NMP precursors from

external sources at all is contentious. While Tribby and Moulder

[83] asserted that C. psittaci Cal10 incorporates adenine, guanine,

their (deoxy)ribonucleosides, later studies [75,76,84] found that

only precursors which the host cell has converted to nucleotides

can successfully be incorporated.

Conclusions
With the sequencing of the genome of Chlamydia psittaci the

complete genomic sequences for all species but one (C. suis) of the

Chlamydiaceae has become available. The comparative study of

these genomes provides important insights into evolutionary

history of this group of closely related intracellular pathogens

and allows the identification of genomic differences that may

account for the observed variation in virulence, pathogenicity, and

host specificity among the species. In this study we made use of the

Table 4. Genes potentially under positive selection between C. psittaci and C. abortus.

CCCL CDS1 CDS2 mean dN=dS ratio product description

CPSIT_0350 CAB314 0.974233 putative serine-rich exported protein

CPSIT_0844 CAB764 0.957362 putative TMH-family/IncA-family protein

CPSIT_0161 CAB139 0.911909 putative lipoprotein

CPSIT_0604 CAB549 0.904697 conserved hypothetical protein (plasticity zone)

CPSIT_0469 CAB416 0.821031 putative exported protein

CPSIT_0036 CAB032 0.741458 conserved hypothetical protein

CPSIT_0034 CAB030 0.697462 conserved hypothetical protein

CPSIT_0336 CAB302 0.680659 conserved hypothetical protein

CPSIT_0390 CAB351 0.671977 putative inner membrane protein

CPSIT_0876 CAB793 0.669905 hypothetical protein

CPSIT_0841 CAB760 0.598583 putative TMH-family/IncA-family protein

CPSIT_0685 CAB614 0.595976 co-chaperonin GroES

CPSIT_0545 CAB491 0.582204 hypothetical protein

CPSIT_0207 CAB180 0.537288 small cystein-rich outer membrane protein

CPSIT_0513 CAB460 0.484486 putative lipoprotein

doi:10.1371/journal.pone.0035097.t004
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C. psittaci genome to focus on the most prominent genomic regions

outside of the well-conserved chlamydial core genome: the

polymorphic membrane proteins, the chlamydial plasticity zone,

and the type III secreted effector proteins. We have shown that the

genetic differences of C. psittaci with respect to other Chlamydiaceae

includes an array of unique pmp genes of the G/I subfamily, the

lack of a tryptophan operon in the plasticity zone (similar to its

sister taxon C. abortus), the presence of an uninterrupted adherence

factor and a MAC/perforin in the plasticity zone, and a number of

candidate type III secreted effectors some of which are not present

in all Chlamydiaceae or have not been classified as T3SEs in all

species. In addition, a number of genes with functional annotations

indicative of a role in host-pathogen interactions show some

indication of recent positive selection after the split of the C. psittaci

and C. abortus lineages. Further investigation of these genes may

provide insights in what enables some species to exploit a wide

range of hosts while others seem restricted few closely related host

species, or whether these genes indeed may account for differences

in virulence and pathogenicity.

Methods

Chlamydial genomes
The avian Chlamydia psittaci isolate 6BC (GenBank accession

number CP002549) was sequenced de novo by a combination of

Roche 454 pyrosequencing, Illumina and Sanger sequencing to,

on average, 487-fold sequence coverage, assembled and annotated

as described in [85].

So far complete genomic sequences of seven other chlamydial

species have been published: C. trachomatis [46], C. muridarum [15],

C. pecorum [41], C. pneumoniae [15,47,86], C. caviae [24], C. abortus

[27], and C. felis [87]. For a phylogenetic analysis based on

complete genomes, sequences and annotations for the following

publicly available chlamydial species were obtained from NCBI:

Chlamydia muridarum Nigg (GenBank: AE002160), Chlamydia

trachomatis (14 strains: AM884176, CP000051, FM872308,

FM872307, CP002052, CP002054, AE001273, CP001886,

CP001890, CP001930, CP001887, CP001889, CP001888,

AM884177), Chlamydia abortus S26/3 (CR848038), Chlamydia caviae

GPIC (AE015925), Chlamydia felis Fe/C-56 (AP006861), and

Chlamydia pneumoniae (5 strains: AE002161, AE001363,

BA000008, AE009440, CP001713).

Comparative analyses where mostly restricted to the following

subset of the above genomes: C. trachomatis L2/434/Bu

(AM884176), C. pneumoniae LPCoLN (CP001713), C. felis Fe/C-

56, C. abortus S26/3, C. caviae GPIC, and C. psittaci 6BC.

Comparative analyses of genome content
For the identification of species- and genus-specific orthologous

genes, an all-vs.-all comparison of the translated coding sequences

(CDSs) of 6 chlamydial genomes (see above) was performed using

BLAT v34 [88]. The BLAT-identified bidirectional hits were

filtered, keeping only those with an expect score less than 10{3

and a cumulative match size of at least one-third of the query

sequence length. Where query sequences yielded multiple

matches, the match with the highest bit score was retained. Best

reciprocal hits by these criteria were considered orthologs for the

purpose of this study. A custom R script was written to construct

multi-genome match tables and to generate four-way Venn

diagrams. Discrepancies from mismatches between putative

orthologs in the multi-genome comparison arose in 13 cases and

were resolved manually by checking local synteny. To visualize the

conservation of genomic context among the Chlamydiaceae, a whole-

genome synteny plot based on best reciprocal BLAT hits was

constructed using the genoPlotR package [89].

Metabolic pathway reconstruction for C. psittaci was performed

with ASGARD v1.5.3 [90], using the KEGG database [91] as a

source for pathway definitions.

For constructing the global phylogeny of the Chlamydiaceae, we

retrieved a set of 478 orthologous genes conserved across all 24

available chlamydial genomes by all-vs.-all BLAT-comparisons of

the CDSs as implemented in the orthology mapping software

mercator (http://www.biostat.wisc.edu/ cdewey/mercator/).

From this set of orthologs, we aligned a random sample of 100

genes with MAFFT v6.717b [92] using the L-INS-i option. The

concatenated alignment, spanning 121,258 positions with a total of

58,523 informative sites was employed to reconstruct an unrooted

phylogeny by maximum likelihood inference, using PHYML v3.0

[93] under a general-time reversible (GTR) model with six rate

categories. To avoid long-branch attraction, intra- and interspecies

phylogenies were estimated separately. Base frequencies, transi-

tion/transversion ratios, and the gamma distribution parameter

(a) were estimated from the data. Topological robustness was

assessed by 100 non-parametric bootstrap replicates.

Comparative analysis of the polymorphic membrane
protein family

Comparative genomics and phylogenetic estimation were used

to characterize evolutionary changes affecting the chlamydial

polymorphic membrane protein (pmp) family. Predicted pmp

sequences were extracted from C. psittaci 6BC, C. abortus S26/3, C.

caviae GPIC, C. felis Fe/C-56, C. pneumoniae LPCoLN, C. trachomatis

L2/434/Bu, and C. muridarum Nigg by searching all translated

putative genes for the pmp-specific C-terminal autotransporter b-

barrel domain and the conserved PMP_M middle domain [27]

motifs using the Pfam HMM database. Interrupted pmp genes (in

C. felis) and annotated pseudogenes (C. abortus and C. pneumoniae)

were reconstructed in silico for phylogenetic and comparative

analyses.

Due to the inter- and intraspecific divergence of pmp-family

proteins and following [27], the phylogenetic analysis of pmp

genes was based on alignments of the conserved PMP_M middle

domain and the C-terminal autotransporter domain alone.

Multiple protein alignments were constructed with MAFFT

v6.717b [92] using the L-INS-i option and the BLOSUM80

substitution matrix. A maximum likelihood tree was reconstructed

using PHYML [93] under the WAG [94] model of protein

evolution. Amino-acid frequencies and the gamma distribution

parameter a were estimated from the data.

Test for positive selection and type III secreted proteins
To characterize the nature and strength of selective pressures

affecting protein sequences, pairs of orthologous genes between the

closely related genomes of C. psittaci, C. abortus, C. felis, and C. caviae

as well as between the more distantly related genomes of C. psittaci,

C. caviae and C. pneumoniae, C. trachomatis were identified as

bidirectional best hits in an all-against-all BLAT search as described

above. Amino acid sequences were aligned using the Needleman-

Wunsch global alignment algorithm and the BLOSOM62 substi-

tution matrix as implemented in R, and subsequently translated

back to the corresponding DNA sequences. Ratios of the rates of

non-synonymous to synonymous nucleotide substitutions per site

(dN=dS ), averaged over the entire alignment, were estimated using

KaKs_Calculator 2.0 [95]. We calculated dN=dS-ratios under four

of the candidate models of codon substitutions implemented in the

software (c-NG, c-LWL, c-MLWL, and c-YN), and used dN=dS-

values averaged over all models as an estimate of the selective
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pressure that affect the compared genomes after their divergence

from their most recent common ancestor.

In silico prediction of type III secreted (T3S) effector proteins was

performed using BPBAac [18]. Briefly, BPBAac uses a Bi-profile

Bayes (BPB) approach to feature extraction from training datasets

[96] to extract T3S effector features from the position-specific N-

terminal amino acid composition (Aac) profile of sets of validated

T3S proteins and non-T3S proteins. Bi-Profile Bayes allows

representing both the positive and the negative information

contained in each peptide sequence in a single posterior

probability vector. The posterior probability vectors derived from

the training data sets are then used to train a machine learning

algorithm, called support vector machine (SVM). Fundamentally,

the SVM is a binary classifier that, given two datasets, learns to

distinguish between them and to predict the classification of

previously unseen samples. The robustness of the classification is

expressed by SVM decision values (scores), which indicate the

distance in feature space of data points to the nearest point on the

decision boundary. Following the practice of [18], we shift the

decision threshold from 0 to 0.5 to minimize the number of false

positives reported as candidate type III secreted proteins.

Additionally, T3S effector proteins were predicted using Effecti-

veT3 (http://effectors.org) [19]. This approach relies on a

taxonomically universal and conserved type III secretion signal

sequence in the N-terminus [19]. For prediction we used the

standard EffectiveT3 classification module and a cut-off score of

0.9999.

Supporting Information

Figure S1 Biotin biosyntesis pathways in C. psittaci
6BC. The genomes of C. psittaci 6BC, C. abortus S26/3, C. felis Fe/

C-56, and C. pneumoniae LPCoLN encode for all enzymes needed

to convert pimeloyl-CoA to biotin. These include 8-amino-7-

oxononanoate synthase bioF, adenosylmethionine-8-amino-7-ox-

ononanoate aminotransferase bioA, dethiobiotin synthetase bioD,

and biotin synthase bioB. The genome of C. trachomatis L2/434/Bu

encodes only the first step.

(TIF)

Figure S2 Purine biosynthesis pathway of C. psittaci
6BC. The genomes of C. psittaci 6BC and C. felis Fe/C-56 encode

a guaB/A-add cluster (dehydrogenase guaB, GMP synthase guaA,

adenosine deaminase add) for the conversion of AMP, IMP, and

GMP, while C. abortus S26/3, C. pneumoniae LPCoLN, and C.

trachomatis L2/434/Bu lack this gene cluster. The scheme has been

modified after the KEGG PATHWAY database ( www.genome.

jp/kegg/pathway.html ). Dashed arrows indicate predicted

reaction directions supported by enzyme profiles available from

the KEGG ENZYME database ( http://www.genome.jp/kegg/

kegg3.html ).

(TIF)

Figure S3 Pyrimidine biosynthesis pathway of C. psit-
taci 6BC. (A) A scheme of the pyrimidine biosynthesis pathway of

C. psittaci 6BC, C. abortus S26/3, C. felis Fe/C56, C. pneumoniae

LPCoLN, and C. trachomatis L2/434/Bu modified after the KEGG

PATHWAY database ( www.genome.jp/kegg/pathway.html ).

Only C. pneumoniae encodes uridine kinase udk (EC 2.7.1.48). Only

C. trachomatis L2/434/Bu lacks orotate phosphoribosyltransferase

pyrE (EC 2.4.2.10). (B) Partial view of the pyrimidine biosynthesis

pathway including gene designations: pyrB, aspartate carbamoyl-

transferase; pyrC, dihydroorotase; pyrD, dihydroorotate dehydro-

genase; pyrE, orotate phosphoribosyltransferase; pyrF, orotidine 5-

phosphate decarboxylase; pyrH, uridylate kinase; ndk, nucleoside

diphosphate kinase; pyrG, CTP synthase. Dashed arrows indicate

predicted reaction directions supported by enzyme profiles

available from the KEGG ENZYME database ( http://www.

genome.jp/kegg/kegg3.html ).

(TIF)

Table S1 Predicted type III secreted effectors in
Chlamydia psittaci 6BC.
(DOC)

Table S2 Predicted type III secreted effectors in
Chlamydia trachomatis L2/434/Bu.
(DOC)

Table S3 Predicted type III secreted effectors in
Chlamydia abortus S26/3.
(DOC)

Table S4 Predicted type III secreted effectors in
Chlamydia felis Fe/C-56.
(DOC)

Table S5 Predicted type III secreted effectors in
Chlamydia pneumoniae LPCOLN.
(DOC)

Table S6 Predicted type III secreted effectors in
Chlamydia caviae GPIC.
(DOC)

Table S7 Type III secreted effectors in Chlamydia
psittaci 6BC predicted by EffectiveT3 ( http://www.

effectors.org/ )
(DOC)
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85. Voigt A, Schö G, Heidrich A, Sachse K, Saluz HP (2011) Full-Length De Novo

Sequence of the Chlamydophila psittaci Type Strain 6BC. Journal of

Bacteriology 193: 2662–2663.
86. Shirai M, Hirakawa H, Kimoto M, Tabuchi M, Kishi F, et al. (2000)

Comparison of whole genome sequences of Chlamydia pneumoniae J138 from
Japan and CWL029 from USA. Nucleic Acids Research 28: 2311–4.

87. Azuma Y, Hirakawa H, Yamashita A, Cai Y, Rahman MA, et al. (2006)
Genome sequence of the cat pathogen, Chlamydophila felis. DNA Research 13:

15–23.

88. Kent WJ (2002) BLAT—The BLAST-Like Alignment Tool. Genome Research
12: 656–664.

89. Guy L, Roat Kultima J, Andersson SGE (2010) genoPlotR: comparative gene
and genome visualization in R. Bioinformatics 26: 2334–2335.

90. Alves JaMP, Buck GA (2007) Automated system for gene annotation and

metabolic pathway reconstruction using general sequence databases. Chemistry
& Biodiversity 4: 2593–2602.

91. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and
Genomes. Nucleic Acids Research 28: 27–30.

92. Katoh K, Kuma Ki, Toh H, Miyata T (2005) MAFFT version 5: improvement
in accuracy of multiple sequence alignment. Nucleic Acids Research 33:

51151–8.

93. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. (2010) New
Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies:

Assessing the Performance of PhyML 3.0. Systematic Biology 59: 307–321.
94. Whelan S, Goldman N (2001) A General Empirical Model of Protein Evolution

Derived from Multiple Protein Families Using a Maximum-Likelihood

Approach. Molecular Biology and Evolution 18: 691–699.
95. Wang D, Zhang Y, Zhang Z, Zhu J, Yu J (2010) KaKs Calculator 2.0: a toolkit

incorporating gamma-series methods and sliding window strategies. Genomics,
Proteomics & Bioinformatics 8: 77–80.

96. Shao J, Xu D, Tsai SN, Wang Y, Ngai SM (2009) Computational identification
of protein methylation sites through bi-profile Bayes feature extraction. PloS

One 4: e4920.

Comparative Genome Analysis of Chlamydia psittaci

PLoS ONE | www.plosone.org 16 April 2012 | Volume 7 | Issue 4 | e35097


