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Abstract

Objective: To investigate whether previously curated chronic lymphocytic leukemia (CLL) risk

genes could be leveraged in gene marker selection for the diagnosis and prediction of CLL.

Methods: A CLL genetic database (CLL_042017) was developed through a comprehensive

CLL-gene relation data analysis, in which 753 CLL target genes were curated. Expression

values for these genes were used for case-control classification of four CLL datasets, with a

sparse representation-based variable selection (SRVS) approach employed for feature (gene)

selection. Results were compared with outcomes obtained by using analysis of variance

(ANOVA)-based gene selection approaches.

Results: For each of the four datasets, SRVS selected a subset of genes from the 753 CLL target

genes, resulting in significantly higher classification accuracy, compared with randomly selected

genes (100%, 100%, 93.94%, 89.39%). The SRVS method outperformed ANOVA in terms of

classification accuracy.

Conclusion: Gene markers selected from the 753 CLL genes could enable significantly greater

accuracy in the prediction of CLL. SRVS provides an effective method for gene marker selection.
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Introduction

Chronic lymphocytic leukemia (CLL) is the

most frequent B-cell leukemia, which

affects men more frequently than women.1

The disease often occurs in elderly patients,

and rarely affects children.2 Despite the

efforts of many genetic studies, the molec-

ular abnormalities and genetic mechanics of

CLL remain largely unknown.3 Most CLL

patients are diagnosed without symptoms,

with the exception of a high white blood cell

count in a routine blood test. Consequently,

early CLL could easily remain untreated.4

Therefore, there is an urgent need for bio-

marker identification to facilitate early pre-

diction of CLL.5

In the past, hundreds of genes/proteins

have been linked to CLL. Mutations of

some risk genes, including IL4 and TP53,

have been frequently reported as important

markers for the pathogenic development of

CLL.6,7 These genes may serve as bio-

markers for multiple other diseases,7,8 thus

decreasing their specificities as biomarkers

for the prediction of CLL. Additionally,

many CLL-gene relationships have been

reported, but few can be replicated (e.g.,

PRKCD and TGFBR29,10), reflecting the

heterogeneity of CLL and the variance of

CLL-related genetic changes among

patients.11 Moreover, a number of novel

CLL risk genes are identified each year,12

facilitating the development of an enriched

genetic database for CLL.

The purpose of this study was to inves-

tigate whether previously reported CLL

genes could be leveraged as a database for

gene marker selection, specifically targeting

early diagnosis of CLL. We hypothesized

that if these CLL genes are effective for

the prediction of CLL, gene markers select-

ed from among them should enable signifi-

cant accuracy in differentiating CLL cases

from controls.

Methods

Development and analysis

of CLL_042017

Figure 1 presents the database schema of the

curated database CLL_042017. The data-

base contains 753 genes (CLL_042017fi
Related Genes) that were collected as CLL

target genes; each of these genes has at least

one reference to support its relationship

with CLL (3,078 references in total; see

CLL_042017fiRef for Disease-Gene

Relation). The CLL-gene relations were

identified by using Pathway Studio (www.

pathwaystudio.com).13 The database also

includes 235 drugs (CLL_042017fiRelated

Drugs), 97 diseases (CLL_042017fiRelated

Diseases), and 88 pathways (CLL_

042017fiRelated Pathways). The informa-

tion of 2,756 supporting references for

CLL-Drug relations is provided in CLL_

042017fiRef for Related Drugs. The refer-

ence information includes titles and related

Figure 1. Chronic lymphocytic leukemia (CLL) genetic database schematic.
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sentences where a relationship has been iden-
tified. The current CLL_042017 is online,

available at http://gousinfo.com/database/

Data_Genetic/CLL_042017.xlsx. For a
more detailed description of the database,

please refer to CLL_042017fiDatabase Note.

SRVS for gene vector selection

A sparse representation-based variable selec-
tion (SRVS) algorithm (described in detail

elsewhere)14 was used to rank the 753 CLL

target genes, on the basis of a given experi-
mental dataset. For each gene, a sparse

weight is assigned by SRVS. The gene

vector, composed of the top n genes by
SRVS, is the genetic marker for a CLL

case/control group, where n is the number

of genes corresponding to the maximum
classification ratio (CR) as defined in Eq. (1).

classification ratio CRð Þ
¼ #correcly classified subjects

#total subjects
(1)

Gene expression data

In this study, we used 4 RNA gene expression

datasets to evaluate classification perfor-

mance with CLL target genes; these datasets
were GSE2466, GSE19147, GSE50006, and

GSE8835. The datasets were selected by
using the Illumina BaseSpace Correlation

Engine (http://www.illumina.com) and are

publicly available at the NCBI Gene

Expression Omnibus (www.ncbi.nlm.nih.
gov/geo/). The data selection criteria were as
follows: 1) Sample organism was Homo sapi-
ens; 2) Data type was RNA expression; 3)
Experiment design was CLL case vs. normal
control. From each dataset, expression data
of normal controls and CLL patients were
extracted and used for case/control classifica-
tion. Genes of each dataset were limited to
CLL target genes curated within the database
CLL_042017. The key statistics of the four
datasets are summarized in Table 1.

The gene expression profiles of the four
gene expression datasets are also included
in CLL_042017: CLL_042017fiGSE2466,
GSE19147, GSE50006, and GSE8835.
Within each dataset, the SRVS-generated
weights (SRVSScore) and analysis of vari-
ance (ANOVA)-generated p-value score
(PValueScore; logic transferred p-values:
-10*log(p-value)) are also presented. The
p-value for a gene is generated from the
one-way ANOVA of the case/control com-
parison with the corresponding expression
data. An SRVSScore and a PValueScore
represent the significance of a gene in the
dataset, according to SRVS and ANOVA
methods, respectively.

CLL case/control classification

To identify the best gene vector and the
corresponding classification accuracy
(CR), the CLL target genes were first
ranked by SRVSScore in descending
order. Then, Euclidean distance-based

Table 1. Statistics of four gene expression datasets.

NCBI GEO ID GSE2466 GSE19147 GSE50006 GSE8835

#CLL case/control 72/11 25/8 188/32 42/24

#genes from

CLL_042017

564 624 685 624

Sample source Peripheral

blood

lymphocytes

Peripheral

blood

CD3þT cells

leukemia

cells

Peripheral blood

CD4 T cells

and CD8 T cells

Sample population Austria Germany USA USA
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multivariate classification18 was performed

for each dataset, followed by leave-one-out

(LOO) cross-validation. In each run of

LOO, gene expression data of one subject

were used for testing; the remaining data

were used for training. The inputs of the

classifier are the top n (n¼1, 2 . . .) genes,

such that the CR of using the top n genes

could be identified. A permutation of 5,000

runs was then conducted to test the hypoth-

esis that a randomly selected gene set with a

similar size can reach equal or higher CR.

For each subset of genes, the permutation

p-value was calculated as n0=nT, where n0

was the number of runs generating CR

higher than that of the gene subset; nT

was the total number of runs (5000 in this

study). The gene vector that generated the

highest CR was the best gene subset select-

ed from the gene expression dataset,

according to the SRVS method.
Following the same process, the best

gene subset was identified for each dataset

by the ANOVA approach. For comparison

purposes, a CR baseline was also generated

by using randomly selected gene sets of n

(n¼1, 2 . . .) genes. For each point of the CR

baseline, the value was the mean of 300 CRs

by randomly selected genes from all genes

within the dataset.

Results

CLL case/control classification

Figure 2 presents the classification results.

Table 2 summarizes the results of LOO

cross-validation of the two gene-ranking

methods on four datasets, where the maxi-

mum CRs, corresponding numbers of top

genes, and permutation p-values of the

two methods are provided.
Figure 2 establishes that, compared with

the CRs generated by randomly selected

gene sets, the genes selected from CLL

target genes by both SRVS and ANOVA

can demonstrate significantly higher classifi-

cation accuracies. Notably, by using only the

top genes with highest SRVSScore/

PValueScore, the highest CRs were acquired

(See Figure 2 and Table 2); adding more

genes with lower scores may not necessarily

Figure 2. Comparison of different metrics through leave-one-out (LOO) cross-validation. Genes were
ranked in ascending order according to SRVSScore or PValueScore, for sparse representation-based variable
selection (SRVS) or analysis of variance (ANOVA), respectively. (a) GSE 2466, (b) GSE 19147, (c) GSE 50006
and (d) GSE 8835.

Xiang et al. 3361



improve classification accuracy. These

results revealed the validity of both SRVS

and ANOVA methods. Moreover, it was

noted that SRVSScore outperformed

PValueScore in terms of CR (Table 2).
Table 2 also shows that, for each

dataset, the top genes selected by both

methods could be significantly different

(CLL_042017fiVenn Diagram). For the

SRVS method, the unique genes selected

for the four datasets ranged from 25% to

97.03%; the range was 33.33% to 95.94%

for the ANOVA method (Table 2fiUnique

genes from all datasets (%)). These results

suggested that there were factors that could

affect the gene marker selection, which is

worthy of further study. It is also notable

that, for a given dataset, gene markers select-

ed by SRVS and ANOVA could differ

(Table 2fiOverlap genes of two methods

(%)). This suggests that SRVS performs dif-

ferently and more effectively than ANOVA.

Discussion

CLL affects approximately one million

people globally, but remains poorly diag-

nosed at early stages. In the past, many

studies have been performed with the aim

of developing targeted molecular therapy

for CLL6,7; hundreds of risk genes have
been identified. Most of these genes are

active within CLL-related genetic path-
ways, and many have been used as drug

targets for the treatment of CLL.
However, patients may demonstrate genetic

variation, even in the same disease, imply-

ing the need for personalized treatment.16

Therefore, for a given CLL patient/patient

group, feature (gene) selection is important
for diagnosis and treatment. Thus far,

few studies have been conducted to test

the validity of curated CLL risk genes for
use as genetic markers in diagnosis and pre-

diction of CLL.
In this study, we first conducted compre-

hensive literature data mining in 3078 scien-

tific articles, which identified 753 CLL target
genes. Gene set enrichment analysis showed

that the majority of these genes (594/753)
were significantly enriched within multiple

genetic pathways that were associated with

CLL (p-value<3e-13; q¼0.001 for false dis-
covery rate (FDR)). For instance, there are

230 genes significantly enriched within eight
cell apoptosis pathways (p-value<5.2e-14;

q¼0.001 for FDR).15 There were also 240
genes enriched within eight pathways/gene

Table 2. LOO cross-validation and permutation results

GSE2466

(case/control:72/11)

GSE19147

(case/control:25/8)

GSE50006

(case/control:188/32)

GSE8835

(case/control:42/24)

SRVS ANOVA SRVS ANOVA SRVS ANOVA SRVS ANOVA

MaxCRs 100.00 100.00 100.00 93.94 98.64 98.18 89.39 84.85

# Selected Genes 4 3 65 3 131 20 101 345

p-value 0.001 0.0002 �0 0.0016 0.0014 0.0012 �0 �0

Unique genes

from all

datasets (%)

25%

(1/4)

66.67%

(2/3)

52.31%

(34/65)

33.33%

(1/3)

75.57%

(99/131)

40%

(8/20)

97.03%

(98/101)

95.94%

(331/345)

Overlap genes

of two

methods (%)

0%

(0/4)

0%

(0/3)

3.08%

(2/65)

66.67%

(2/3)

15.27%

(20/131)

100%

(20/20)

65.35%

(66/101)

19.13%

(66/345)

SRVS, sparse representation-based variable selection; ANOVA, analysis of variance.
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sets related to cell growth and proliferation
(p-value<6.8e-015)16 and 218 genes enriched
within immune response (p-value
<8.7e-029).17 More pathways and related
information can be identified at
CLL_042017fiRelated Pathways.

Sub-network enrichment analysis
(SNEA; http://pathwaystudio.gousinfo.
com/SNEA.pdf) showed that 717 of 753
genes significantly overlapped with risk
genes linked to each of the 97 diseases
(p-value<1.6e-100; q¼0.001 for FDR;
CLL_042017fiRelated Diseases). Many of
these 97 diseases are cancers of different
types, and many were related to CLL,
including rheumatoid arthritis,18 breast
cancer19 and multiple myeloma.20

Within CLL_042017, there were 235
known CLL drugs/small molecules
(CLL_042017fiRelated Drugs) that have
been evaluated within clinical trials and
have demonstrated effectiveness in treating
CLL. These 235 drugs demonstrated
significant overlap (22 overlapped drugs;
p-value¼8.20e-23) with the top 100 poten-
tial drugs/small molecules (CLL_042017fi
Potential Drugs), whose gene subnetworks
were significantly enriched within the 753
CLL genes. Additionally, many of the 753
CLL genes were target genes of known CLL
drugs. For instance, rituximab induces apo-
ptosis of CLL cells by inhibiting the expres-
sion of BCL2.21 These results supported a
possible association between CLL and the
753 target genes.

CLL case/control classification was con-
ducted on four independent gene expression
datasets, with two algorithms for gene
selection within the 753 CLL gene pool:
SRVS method and ANOVA. The basic
theory for feature (gene) selection is that
not all 753 genes will exhibit mutations for
a given CLL patient/patient group; there-
fore, it is not appropriate to use all as
target genes in the diagnosis and treatment.

Compared with randomly selected genes,
these selected by both SRVS and ANOVA

led to significantly higher prediction power

(permutation p-value<0.0014 for SRVS

and permutation p-value<0.0016 for

ANOVA; CRs of SRVS vs. ANOVA:

100% vs. 100%, 100% vs. 93.94%, 98.64%

vs. 98.18% and 89.39% vs. 84.85%, for the

four datasets, respectively), as shown in

Table 2. These results indicated that genetic

markers selected from the 753 CLL target

genes possess significant power for the diag-

nosis and prediction of CLL. Moreover,

SRVS outperforms ANOVA in terms of

CR. This implies the effectiveness of the

SRVS method for gene marker selection

for CLL.
Gene markers selected by both SRVS

and ANOVA methods demonstrated sub-

stantial uniqueness (>25%) across different

datasets (Table 2). This indicates that, in

addition to the genomic specificity of each

patient group, there may be other factors

that affect the gene marker selection,

which merit further study. As shown in

Table 1, the four datasets were acquired

from different blood cells and different

patient populations. This may contribute

to variations in the gene marker selection

results (Table 2).
In conclusion, our study suggested that

gene markers selected from the 753 CLL

genes could provide high accuracy in the

prediction of CLL, and that SRVS is an

effective method for gene marker selection

in CLL diagnosis and prediction.
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