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Abstract: Staphylococcus aureus, a major opportunistic pathogen in humans, produces extracellular
vesicles (EVs) that are involved in cellular communication, the delivery of virulence factors, and
modulation of the host immune system response. However, to date, the impact of culture conditions
on the physicochemical and functional properties of S. aureus EVs is still largely unexplored. Here,
we use a proteomic approach to provide a complete protein characterization of S. aureus HG003,
a NCTC8325 derivative strain and its derived EVs under four growth conditions: early- and late-
stationary growth phases, and in the absence and presence of a sub-inhibitory concentration of
vancomycin. The HG003 EV protein composition in terms of subcellular localization, COG and KEGG
categories, as well as their relative abundance are modulated by the environment and differs from that
of whole-cell (WC). Moreover, the environmental conditions that were tested had a more pronounced
impact on the EV protein composition when compared to the WC, supporting the existence of
mechanisms for the selective packing of EV cargo. This study provides the first general picture of
the impact of different growth conditions in the proteome of S. aureus EVs and its producing-cells
and paves the way for future studies to understand better S. aureus EV production, composition,
and roles.

Keywords: membrane vesicle; exosome; virulence factors; vancomycin; proteomics; communication;
adaptation

1. Introduction

Staphylococcus aureus is a Gram-positive bacterium acting both as a commensal and as
an important opportunist pathogen. This versatile bacterium causes a broad spectrum of
diseases ranging from minor to severe infections in several mammalian species, particularly
humans and cattle [1–3]. The ability of S. aureus to colonize a diversity of hosts and niches
in its hosts as well as to cause a vast array of diseases is reflected by the expression of
numerous virulence factors, such as adhesins, toxins, and other elements that are capable
of promoting host cell invasion, evasion, and pathogenesis [4–7]. Several virulence factors
are secreted in the extracellular milieu, while others are surface-exposed in the S. aureus
cell wall. Therefore, extracellular vesicles (EVs) are vehicles for transporting and delivering
these elements. Indeed, this long-known phenomenon was first described in Gram-positive
bacteria in 2009, when Lee et al. reported EV release by S. aureus [8].

EVs can be described as biological bubbles for intercellular communication that are re-
leased by cells in all domains of life [9–11]. Even though they were first judged as simple cell
trash, they are currently recognized as essential elements in cell-to-cell interactions [12–15].
EVs are spheres that are formed of a lipid bilayer ranging from 20 to 300 nm that wraps
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and protects biological compounds such as nucleic acids, metabolites, and proteins from
the action of external elements [9,11]. These bioactive molecules gain a ticket to a bubble
ride in EVs, which can travel through close or distant sites from where they were produced
to exert their functions [16,17]. Bacterial EVs play roles in bacterial physiology, resistance,
competition, and host-pathogen interactions [13,18–22].

The study of EVs is an emerging field in medical and veterinary medicine of S. aureus
since several reports have highlighted their contribution to cargo delivery, signaling, and
cell–cell communication, contributing to physiological and pathological processes [23].
Indeed, S. aureus EVs carry several virulence factors (e.g., β-lactamases, toxins, adhesins)
that exert essential functions, including the transfer of antibiotic resistance to suscep-
tible bacteria, host cell death, immunomodulation, and exacerbation of inflammatory
processes [8,24–38].

During infection, S. aureus undergoes several physiological states (e.g., growth phases)
and stresses (e.g., antibiotic treatment) that affect bacterial metabolism, gene expression,
and consequently, EV production and composition. Indeed, significant differences in par-
ticle size and/or concentration were reported in response to different conditions, such
as growth media [39], growth phases [40], and growth temperatures [27,40], as well as
after exposure to environmental stresses, such as iron-depletion, ethanol, oxidative, os-
motic stresses [27], and antibiotics [41–43]. Concerning EV composition, a recent study
by Briaud et al. demonstrated that temperature variations affect the EV protein and RNA
cargo quantitatively and qualitatively, which is also reflected in different EV cytolytic
activities towards host cells [40]. Culture media, growth phase, and antibiotic treatment
were also shown to alter S. aureus EV content [39,43–45]. However, studies comparing
the impact of different environmental conditions on both S. aureus producing cells and its
derived EVs are still lacking.

In this context, this work aims to explore the protein content of S. aureus strain HG003
and its derived EVs under the influence of four conditions: early- and late-stationary growth
phases, and in the absence and presence of a sub-inhibitory concentration of vancomycin.
The protein cargo was compared between producing cells and EVs, shedding light on how
the environment influences S. aureus EV cargo packing.

2. Materials and Methods
2.1. Bacterial Strains and Cultures

The S. aureus strain that was used in this work was the model strain HG003 [46], a
derivative of NCTC8325 that was isolated in 1960 from a sepsis patient. HG003 contains
functional rsbU (coding for an activator of the sigma factor B) and tcaR (coding for an
activator of protein A transcription) genes, two global regulators missing in the NCTC8325
parent strain. The HG003 genome is well documented [47] and this strain is widely used as a
reference to investigate staphylococcal regulation and virulence [48]. Here, S. aureus HG003
was grown in four experimental conditions: early- and late-stationary growth phases (6
and 12 h, respectively), an in the absence (V−) and presence (V+) of a sub-inhibitory
concentration of vancomycin (0.5 µg/mL) that do not affect the HG003 growth [44]. Note
that the minimum inhibitory concentration (MIC) of vancomycin for HG003 strain is
0.5 mg/mL [49]. Pre-inoculums and cultures were grown overnight in BHI broth at 37 ◦C
under 150 rpm/min agitation. The bacterial growth was determined by the measurement
of the optical density at 600 nm.

2.2. EVs Isolation and Purification

EVs were isolated and purified as previously described [44]. Briefly, 1 L of bacterial
cell culture was centrifuged at 6000× g for 15 min and filtered through 0.22 µm Nalgene
top filters (Thermo Scientific, Waltham, MA, United States). Then, the culture supernatant
fraction was concentrated around 100-fold using the Amicon ultrafiltration systems (Milli-
pore, Burlington, MA, United States) with a 100 kDa filter and ultra-centrifuged for 120 min
at 150,000× g to eliminate the soluble proteins. Next, the suspended pellet was applied to a
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discontinuous sucrose gradient (8–68%) and ultra-centrifuged at 100,000× g for 150 min.
The fractions containing EVs were recovered and washed in TBS (150 mM NaCl; 50 mM
Tris-Cl, pH 7.5) for final ultra-centrifugation at 150,000× g (120 min). At last, the EVs
were suspended in cold TBS and kept at −80 ◦C until use. The quality of the EV samples
(i.e., homogeneity, integrity, and reproducibility) was assessed by transmission electron
microscopy (TEM), Nano Tracking Analysis (NTA) and SDS-PAGE.

2.3. Physical Characterization of EVs

The EVs’ size and concentration were determined by NTA (NanoSight NS300, Malvern
Panalytical, Worcestershire, United Kingdom) as previously described [44]. The EVs
were negatively stained with 2% uranyl acetate and analyzed with JEOL 1400 Electron
Microscope (Jeol, Tokyo, Japan) as previously described [44].

2.4. Proteome of S. aureus HG003 and Its Derived Vesicles
2.4.1. Protein Extraction and Visualization

The same bacterial cultures were used for EV and whole-cell (WC) protein extraction.
Aliquots of 10 mL of bacterial cells were centrifuged and rinsed twice with 10 mL of TBS
buffer and suspended in 10 mL of lysis solution (1.52 g Tris-HCL, 0.03 g SDS, 0.3 g DTT,
pH 7.5, 10 mL H2O). For WC, mechanic lysis was performed with Precellys (6500 rpm,
2 × 30 s), and protein extracts were recovered after 30 min centrifugation at 14,000× g rpm.
Since EVs lack cell walls, lysis is achieved with a lysis solution. Using silver staining, the
bacterial WC and EV protein profiles were visualized by SDS-PAGE [50,51].

2.4.2. Protein Identification and Quantification

For NanoLC-ESI-MS/MS analysis, three independent biological replicates of WC and
EV protein extracts (approximately 30 µg per sample) were resolved using 12% SDS-PAGE
and Biosafe Blue Coomassie coloration. Then, gel sections were cleansed with acetonitrile
and ammonium bicarbonate solutions and dried under a SpeedVac concentrator (SVC100H,
Savant Instruments Inc, New York, NY, United States). The samples were submitted to
overnight in-gel trypsinization at 37 ◦C [52,53]. Peptide separation and detection by mass
spectrometry were performed according to Tarnaud et al. [54]. The X!TandemPipeline
software [55] was used to identify peptides (maximum e-value of 0.05) from the MS/MS
spectra. The peptides were searched against the two genomes sequence of S. aureus
NCTC8325 and HG003 (GenBank accessions no. NC_007795.1 and GCA_000736455.1). The
database search parameters were specified as follows: trypsin cleavage was used and the
peptide mass tolerance was set at 10 ppm for MS and 0.05 Da for MS/MS. Methionine
oxidation and serine or threonine phosphorylation were selected as a variable modifications.
For each peptide that was identified, a minimum e-value that was lower than 0.05 was
considered to be a prerequisite for validation. A minimum of two peptides per protein
was imposed, resulting in a protein false discovery rate (FDR) < 0.5% for peptide and
protein identifications. Note that a protein was considered present in a given condition
when it was detected in at least two out of three biological replicates. Each peptide that
was identified by tandem mass spectrometry was quantified using the free MassChroQ
software (MassChroQ 2.2.21, PAPPSO, Jouy-en-Josas, France) [56] before data treatment and
statistical analysis under R software (R 3.2.2, The R Foundation for Statistical Computing,
Vienna, Austria). A specific R package called ‘MassChroqR’ was used to automatically filter
dubious peptides for which the standard deviation of their retention time was longer than
30 s and to regroup peptide quantification data into proteins. For XIC-based quantification,
normalization was performed to take account of possible global quantitative variations
between LC-MS runs. The peptides that were shared between the different proteins were
excluded automatically from the dataset as well as peptides that were present in fewer than
85% of the samples. Missing data were then imputed from a linear regression based on other
peptide intensities for the same protein [57]. Analysis of variance was used to determine
proteins with significantly different abundances between our two culture conditions.
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2.4.3. Proteomic Analysis

Subcellular location and lipoproteins were predicted using SurfG+, PSORTb, and
PRED-LIPO [58–60]. The eggNOG-mapper v2 web tool was used to retrieve clusters of
orthologous groups (COG) and KEGG protein categories [61]. Venn diagrams were obtained
using Draw Venn Diagram [62] and volcano plots were conceived using VolcaNoseR [63].
Functional enrichment analyses were performed with the g: Profiler web server with the
g: SCS multiple testing correction methods [64]. An input list of WC and EV proteins
was compared to a custom-made Gene Matrix Transposed (GMT) file representing the
theoretical proteome of S. aureus HG003 to identify statistically significant enriched COG
and KEGG pathway terms (significance threshold of 0.05).

3. Results
3.1. Proteome of S. aureus HG003 and Its Derived EVs

Mass spectrometry analyses were performed to investigate the impact of different
growth conditions on the proteome of the laboratory S. aureus HG003 strain and its derived
EVs. WC and EV samples were recovered from early- and late-stationary growth phases (6
and 12 h, respectively) in the absence (V−) and presence (V+) of a sub-inhibitory concen-
tration of vancomycin. Note that these same bacterial cultures were previously employed
to characterize the RNA profile of HG003 and its derived EVs [44]. As previously reported
by Luz et al., the EV preparation showed typical particle shape and size when analyzed
by TEM and NTA (Figure 1A,B) [44]. The SDS-PAGE approach revealed a homogeneous
protein profile between conditions in each group (Figure 1C); however, the EV protein
profile was specific when compared to WC (Figure S1).
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Figure 1. S. aureus HG003 EV characterization. (A) Cup-shaped EVs by transmission electron
microscopy (TEM). (B) Monodisperse profile revealed by nanoparticle tracking analysis (NTA).
(C) Protein profile of EV samples resolved in 12% SDS-PAGE. Molecular weight (MW) standards are
indicated in kDa. Early- and late-stationary growth phases (6 and 12 h, respectively) in the absence
(V−) or presence (V+) of vancomycin.

3.2. Protein Composition and Functional Characterization of S. aureus HG003 and Its EVs

Nano LC-ESI-MS/MS analyses identified 1111 unique proteins in all conditions, of
which 967 were found in WC samples, and 556 were found in EVs samples (Table S1).
Principal component analysis (PCA) was first performed on peptide quantification values
to assess the consistency of the proteomics data (Figure S2). The PCA scatter plot showed
that samples from WC and EVs formed separate clusters. All the WC samples formed a
unique cluster, while the EV samples were grouped into two clusters depending on whether
the EVs were produced at 6 or 12 h. The impact of vancomycin availability on EV protein
composition seemed to be limited compared to the incubation time. The PCA confirmed
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the consistency between biological replicates under each condition and pointed out the
high impact of growth conditions on EV protein composition compared to WC.

Then, analyses were performed to investigate the composition and functions that were
associated with WC and EV proteomes. The predictions of subcellular localization revealed
that cytoplasmic proteins composed from 71 to 84% of the WC proteome, while these values
dropped down to 42–55% for EVs (PSORTb, n = 668 vs. 236; SurfG+, n = 808 vs. 287; PRED-
LIPO, n = 814 vs. 309) (Figure 2A–C). In contrast, WC presented less membrane proteins
(6–10%) when compared to EVs (23–39%) (PSORTb, n = 133 vs. 220; SurfG+, n = 58 vs. 128;
PRED-LIPO, n = 99 vs. 177) (Figure 2A–C). Interestingly, EVs seemed enriched with surface-
exposed proteins (PSE) (SurfG+, n = 108 vs. 67) and lipoproteins (SurfG+, n = 44 vs. 23;
PRED-LIPO, n = 41 vs. 22) (Figure 2B,C). Remarkably, proteins that were identified only
in EVs (n = 144) corresponded mainly to membrane (n = 75) and PSE (n = 45) proteins,
according to SurfG+ analysis.
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Figure 2. Comparative proteome analysis of S. aureus HG003 WC and EVs. The prediction of subcel-
lular locations of proteins with PSORTb (A), SurfG+ (B), and PRED-LIPO (C), and the prediction of
COG functional categories of proteins with eggNOG-mapper (D). Cyt, cytoplasmatic; Mbe, Mem-
brane; CW, cell wall; Ext, extracellular; Unk, unknown; PSE, surface-exposed; Sec, secreted; NS,
no signals found; Lipo, lipoprotein; TM, transmembrane; COG functional categories: D, Cell cycle
control, cell division, chromosome partitioning; M, cell wall/membrane/envelope biogenesis; N, cell
motility; O, post-translational modification, protein turnover and chaperones; T, signal transduction
mechanisms; U, intracellular trafficking, secretion and vesicular transport; V, defense mechanisms; A,
RNA processing and modification; J, translation, ribosomal structure, and biogenesis; K, transcription;
L, replication, recombination, and repair; C, energy production, and conversion; E, amino acid
transport and metabolism; F, nucleotide transport and metabolism; G, carbohydrate transport and
metabolism; H, coenzyme transport and metabolism; I, lipid transport and metabolism; P, inorganic
ion transport and metabolism; Q, secondary metabolites biosynthesis, transport, and catabolism; S,
function unknown; NA, not available.
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Cellular processes that were related to COG also differed between WC and EV
proteomes (Figure 2D). Generally, fewer EV proteins belonged to COG categories that
were associated with “information, storage, and processing” when compared to WC
(13.6% vs. 23.2%). On the other hand, COG categories that were related to “cellular pro-
cesses and signaling” and “metabolism” accounted for more proteins in EVs (23.6% and
42.2%) compared to WC samples (17.8% and 40.8%). Remarkably, some COGs were twice
more represented in EVs when compared to the WC, such as intracellular trafficking, secre-
tion, and vesicular transport (U, 2.1% vs. 1.1%), defense mechanisms (V, 2.4% vs. 1.1%),
and inorganic ion transport and metabolism (P, 12.5% vs. 5.7%) (Figure 2D). Note that
similar results from the composition and functions of WC and EV proteomes were obtained
when each growth condition was analyzed individually (Figures S3–S6).

Functional enrichment analysis relative to the theoretical proteome of S. aureus HG003
also identified different enriched COG and KEGG categories for WC and EVs (adjusted
p-value < 0.05). While both shared proteins that were related to metabolism, translation,
and energy production, EVs were exclusively enriched with proteins that were linked to
cell wall biogenesis, two-component systems, and transport systems (Figure 3). In sum-
mary, the vesicular proteome differs from that of WC, showing less cytoplasmic and more
surface-exposed-, membrane-, and lipoproteins, being ~25% exclusive to EVs. Additionally,
COG/KEGG enrichment analyses reinforce that functional protein profiles that are found
in EVs significantly differ from those of the WC.
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Figure 3. KEGG and COG categories that are enriched in S. aureus HG003 WC and EV proteomes.
(A) Significantly enriched COG and KEGG terms that were associated with WC and/or EV groups.
Darker colors represent more significant p-values (in logarithm scale) and bubble sizes represent the
number of proteins in that category that were identified in the respective sample (the intersection
size). (B) Enrichment map for EV-related KEGG terms, showing significant functional categories,
their total sizes, and relationships (protein sharing).

3.3. Cellular and EV Protein Composition Varies with Growth Conditions

The WC and EV protein compositions were compared between early- and late-
stationary phases, in the absence or presence of vancomycin. From 1111 unique proteins
identified with Nano LC-ESI-MS/MS experiments, 555 and 144 were exclusive to WC
and EVs, respectively (Figure 4A, Table S1). Proteins that were identified only in EVs
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included the enzymes thermonuclease (Nuc) and lipase (Lip), the adhesin Eap, and the
Hld toxin. Although the different environmental conditions that were tested in this study
resulted in several variations in protein content, the EV core proteome was represented
by 340 proteins (61.1%), while this portion was higher for the WC core proteome (78.8%,
n = 762) (Figure 4B,C). Proteins that were shared by EVs in all conditions comprised of vir-
ulence factors (Atl, Sbi, EbpS, Lip), metabolic enzymes (pyruvate dehydrogenase complex
PdhABCD, Enolase), survival elements (SirA, FhuD1, FtnA), and resistance proteins (VraS,
FmtA, PBPs).
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Similar to a recent report that was published by our group on the RNA content of
HG003 EVs in the same conditions, EV protein loads were higher at 6 h than at 12 h
(515 vs. 433 proteins identified) [44]. EV proteins that were found at 6 h (n = 123), but
not at 12 h, included autolysins (Sle1 and AcmB), the immunogenic protein SsaA, and
the toxin LukH. Remarkably, proteins that were exclusive to EV samples at 12 h (n = 41)
included Hld and PSMβ1. On the other hand, WC presented more proteins at 12 h than
at 6 h (936 vs. 873). The analysis identified Pbp4, SepF, and GroES among those that were
exclusive to WC at 6 h (n = 31), while RsfS, linked to ribosomal activity, the transcription
regulator FapR, and the virulence factors Emp, SCIN, and LukG were present only in
late-stationary growth phase samples (n = 94). Our data indicated a moderate antibiotic
effect in both groups (EVs = 508 vs. 516; WC = 934 vs. 925, for the presence and absence
of vancomycin, respectively). In EVs, 40 proteins were identified only in the presence of
vancomycin (e.g., IsaB, FhuD1), with only 3 proteins that were found at both 6V+ and 12V+
conditions: the ribosomal protein RplQ, the cation/H+ antiporter MnhG, and the putative
PitA protein that were linked to inorganic phosphate transport. Among the 48 EV proteins
that were found only in the absence of vancomycin, 24 belonged to metabolic-related COG
groups. In WC, the division protein DivlC belonged to the group of 33 proteins that were
found only in the absence of vancomycin, while proteins that were related to DNA repair
such as Nfo and Fpg were among the 42 proteins that were found only in the presence
of vancomycin.

3.4. Cellular and EV Protein Abundance Varies with Growth Conditions

Quantitative analysis provided interesting information on the state of the cell and its
derived EVs in different growth conditions (Table S2). Regarding to the growth phase, 64
and 110 proteins were differently abundant in WC samples in the absence and presence
of vancomycin, respectively. In WC samples without vancomycin, 25 proteins were more
abundant at 6 h (e.g., Atl, IsaA, VicK), while 39 were more abundant at the late-stationary
growth phase (e.g., IsaB, ModA, MreC) (Figure 5A). In the presence of vancomycin, 57 WC
proteins were more abundant at 6 h (e.g., IsaA, PrkC, DltD), while 53 were more abundant
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at 12 h (e.g., Asp23, CcpA, IsaB, MreC) (Figure 5B). Compared to the WC samples, the
protein content of EVs were less impacted by the growth phase, with only 23 and 9 proteins
differently abundant in the absence and presence of vancomycin, respectively (Figure 5C,D).
In both conditions, the virulence factor regulator SarR was more abundant at 6 h, and
proteins AtpG, GlpF, TreP, and YqeZ were more abundant at 12 h (Figure 5C,D). In the
absence of vancomycin, SitA, TagF1, and PTS transporters were among the 16 proteins that
were richer at 12 h, while FusA was less abundant (Figure 5C). The presence of vancomycin
hardly affected the protein abundance in either WC or EVs, with only a few exceptions. In
WC, HemB and the lactonase Drp35 were less abundant at 6V− when compared to 6V+,
presenting log2 fold change (log2FC) values of −2.14 and −5.01, respectively (Table S2).
In EVs, proteins that were more abundant in the presence of vancomycin at 12 h were the
polypeptide cell division protein DivIVA (log2FC = 3.36) and the S-ribosylhomocysteine
lyase LuxS (log2FC = 3.20) (Table S2).
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Astonishing differences were mainly observed in the relative protein abundance
between WC and its derived EVs. Table 1 displays the top ten more and less abundant
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proteins in EVs relative to WC in different conditions. Ribosomal components and other
proteins that were related to translation and transduction were generally less abundant
in EVs when compared to WC (Table S2). Conversely, key virulence factors that were
related to adhesion and colonization, resistance, and survival were more abundant in
S. aureus HG003-derived EVs than in the bacteria. Some proteins were more abundant in
EVs whatever the condition that was tested (e.g., Atl, CamS, CydB, DltD, FatB, FecB, FtsH,
HtrA, LtaS, ModA, SitA, YidC) (Figure 6, Table S2). Other virulence factors such as the
adhesin EbpS, the protein kinase PkrC, the multidrug resistance efflux pump EmrA, ABC
transporters (e.g., AdcA, FhuD), the quinol oxidase complex QoxAB, and PBPs were more
abundant in EVs in multiple conditions (Figure 6, Table S2).

Table 1. The top ten most abundant and less abundant proteins in EVs compared to WC in all
conditions that were tested. Ratios correspond to the relative abundance of proteins (log2FC) between
EVs and WC (EV/WC) conditions at 6 h without vancomycin (6V−), 6 h with vancomycin (6V+),
12 h without vancomycin (12V−), and 12 h with vancomycin (12V+).

6V− 6V+ 12V− 12V+

Protein Ratio Protein Ratio Protein Ratio Protein Ratio

RplV −3.08 Hup −4.35 RpsJ −3.62 Ctc −3.38

RpsJ −2.91 RplK −3.91 RplM −3.23 RplQ −3.24

RpsI −2.91 RplQ −3.85 RpsE −3.17 RpsE −3.07

TraP −2.87 Ldh −3.27 RplR −3.13 Ldh −3.04

RplO −2.82 PyrH −2.88 RplL −3.09 AtoB −2.99

RpsE −2.56 Ddh −2.68 RplS −2.58 RplM −2.54

Ald −2.43 RplL −2.66 RpsK −2.51 Pgk −2.37

RplS −1.78 RpsQ −2.65 RpsD −2.48 RpsD −2.36

GluD −1.52 RpsI −2.41 Ddh −2.4 Ddh −2.31

RpsC −1.29 RplO −2.25 Pgk −2.17 AdhP −2.17

Atl 3.61 CyoA 3.14 Atl 4.38 * 00356 5.06

NupC 3.79 Pbp4 3.78 FatB 4.66 LpdA 5.1

CamS 4.01 ModA 4.02 SrtA 4.71 RecN 5.12

YidC 4.11 SrtA 4.05 SpsB 4.78 * 00717 5.16

* 00356 4.41 AgcS 4.61 PonA 5.18 SitA 5.22

SitA 4.56 PdhB 4.8 TcyA 5.21 SpsB 5.25

TcyA 4.64 TcyA 4.86 * 02587 5.34 TcyA 5.34

PdhB 4.67 LpdA 4.94 FhuD 5.38 FhuD 5.42

FhuD 5.05 * 00356 5.17 SitA 5.45 * 02587 5.5

LpdA 5.13 * 02650 6.13 PdhC 6.54 * 02650 5.83

* = SAOUHSC_ (locus tag). Example: SAOUHSC_00356.
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Some differences that were observed in the relative protein abundance between EVs
and WC seemed to be affected by growth conditions. For instance, the immunoglobulin-
binding protein Sbi, the secretory antigen SsaA, and the transcriptional regulator SarR
were relatively more abundant in EVs than WC only at 6 h, while no significant differences
were observed at 12 h (Figure 6). On the other hand, the histidine kinase VicK and the
protein SecA were relatively enriched in EVs only at 12 h. Some differences were also
observed regarding to the presence of vancomycin. PBP4 was relatively more abundant
in EVs than WC at 6V+ vs. 6V− (log2FC = 3.78), while PBPX was more abundant in EVs
compared to WC at V+ vs. V− in both growth conditions (Log2FC at 6 h = 2.96 and Log2FC
at 12 h = 3.87). The moonlighting protein enolase was less abundant in EVs only in the
presence of vancomycin (6V+ and 12V+), while EF-Tu and GAPA1 were less abundant
in EVs than in the WC at 12 h (V− and V+). Our data showed that the protein content
and abundance of S. aureus HG003 and its derived EVs vary according to the growth
conditions. Moreover, important virulence factors were differentially abundant in WC and
EVs, suggesting the selective packing of proteins into HG003 EVs.

3.5. Comparison between Protein and RNA Content of HG003 EVs

Comparative analyses between previously published HG003 EV RNome and pro-
teomic data showed that of a total of 220 mRNAs [50], 116 (52.7%) were not found in
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the corresponding protein form in HG003 EVs. Another 88 mRNAs (40%) were present
in HG003 EVs in at least one of the four conditions in their corresponding protein form.
Finally, 16 elements (7.3%) were present in all conditions that were tested in both RNA and
protein forms, including Eno, DnaK, Atl, QoXB, SecY, FusA, and PdhABC (Table 2).

Table 2. S. aureus HG003 elements that were found in EVs in both RNA and protein form in all the
conditions that were tested.

Locus Tag Product Gene SurfG+ COG

SAOUHSC_00994 bifunctional autolysin precursor, putative atl Sec M

SAOUHSC_01683 molecular chaperone DnaK dnaK Cyt O

SAOUHSC_00799 phosphopyruvate hydratase eno Cyt G

SAOUHSC_00529 elongation factor G fusA Cyt J

SAOUHSC_00206 L-lactate dehydrogenase ldh1 Cyt C

SAOUHSC_01040 pyruvate dehydrogenase α subunit, putative pdhA Cyt C

SAOUHSC_01041 pyruvate dehydrogenase β subunit, putative pdhB Cyt C

SAOUHSC_01042 branched-chain α-keto acid dehydrogenase pdhC Cyt C

SAOUHSC_00796 phosphoglycerate kinase pgk Cyt F

SAOUHSC_01002 quinol oxidase AA3, subunit II, putative qoxA PSE C

SAOUHSC_01001 quinol oxidase, subunit I qoxB Memb C

SAOUHSC_02478 50S ribosomal protein L13 rplM Cyt J

SAOUHSC_02506 30S ribosomal protein S3 rpsC Cyt J

SAOUHSC_00528 30S ribosomal protein S7 rpsG Cyt J

SAOUHSC_00527 30S ribosomal protein S12 rpsL Cyt J

SAOUHSC_02491 preprotein translocase subunit SecY secY1 Memb U

4. Discussion

Since the first observation describing the EV release by S. aureus in 2009 [8], various
studies have reported the EV production and secretion by several human clinical isolates
and by strains that were isolated from other mammalian species [44]. The study of EVs
biogenesis, release, and cargo sorting provides insight into the importance of these parti-
cles for bacterial physiology and survival, in addition to a better understanding of how
EVs exert their functions [19,65–67]. However, to date, few S. aureus EV studies have
considered the impact of different environmental conditions on vesicle production and
composition [27,39,40,43,68]. A previous report by our group provided the first extensive
characterization of the S. aureus HG003 EV RNome under four growth conditions: early-
and late-stationary growth phases, and in the absence and presence of a sub-inhibitory
concentration of vancomycin (0.5 µg/mL) [44]. Here, we used a proteomic approach to
investigate how these conditions impact HG003 EV protein content. We also provide the
first comparison of protein composition and abundance between EVs and their producing
bacterial cells.

Our data indicated that HG003 EV proteome composition differed from that of the
producing cells, presenting a higher proportion of membrane, surface-exposed and lipopro-
teins, and less cytoplasmic proteins compared to bacteria. Nevertheless, cytoplasmic
proteins composed almost 50% of the EV proteome, an interesting feature that allows the
secretion of proteins lacking export signals. The proportions that were observed here have
already been reported in a study comparing EVs that were derived from five different
S. aureus clinical and animal isolates, which presented similar protein compositions [25]. In
addition to the different proportions that were observed in protein subcellular localization,
HG003 EVs also presented exclusive features. We found that one-quarter of the total EV pro-
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teins were not detected in the bacterial proteome, although they were analyzed under the
same conditions. It has already been suggested that Gram-negative bacteria manage to ‘ex-
clude’ from EVs proteins that are abundant in the outer membrane (OM), which are usually
associated with outer membrane vesicles (OMVs) biogenesis and composition [65,69,70].
In fact, EVs that are derived from various Gram-positive bacterial species are especially
loaded with virulence factors [71–74]. Here, we demonstrate that most HG003 EV exclusive
elements are membrane-associated or surface-exposed proteins, including the adhesin
Eap and the δ-hemosylin toxin, which are key staphylococcal virulence factors. These
differences in protein identification suggest differential cargo yield in EVs and bacteria,
which may help EVs exert specific functions during infection.

Variations in the protein content of both WC and EVs were detected in different
conditions. Regarding the growth phase, proteins that are exclusive to WC at 6 h included
SepF, linked to cell division and GroES, a co-chaperonin that is essential in assisting protein
folding [75,76]. These proteins are related to active dividing cells, corresponding to a
bacterial population in the exponential growth phase. In contrast, the presence of the RsfS
ribosomal silencing protein [77] and the FapR repressor of membrane lipid biosynthesis [78]
at 12 h indicates S. aureus arrested cell division. In EVs, we found that immunogenic
proteins such as SsaA are present only at the early-stationary growth phase. It has already
been demonstrated that pre-inflamed lungs allow bacteria to hijack and resist host defense
mechanisms in allergic asthma [79,80]. In this line, the presence of immunostimulatory
molecules in EVs at lower cell densities could help to activate host cells even before bacterial
arrival at distant sites, favoring S. aureus survival and persistence. It is also remarkable to
note that LukH is present in EVs only at 6 h and in WC at all conditions, while LukG is
found only in WC at 12 h. It has been demonstrated that individual components of LukH
and LukG cannot promote host cell lysis, yet they each induce high levels of IL-8 release [81].
EVs may serve as vehicles to induce the host immune response at early infection states,
while functional pore-forming toxin LukGH appears only later. Accordingly, Hld and
PSMβ1 are exclusive to EVs at 12 h, which corresponds to the known toxin production by
bacteria at stationary phases [6,82]. These pore-forming toxins promote host cell death and
immunomodulation [83,84], a role that could be complementary played by EVs.

Regarding to the impact of antibiotics on the protein cargo, we observed that Nfo and
Fpg proteins that were linked to DNA repair were identified in WC only in the presence of
vancomycin. Accordingly, it has already been demonstrated that SOS response in S. aureus
is slightly upregulated when facing cell wall inhibitory antibiotics [85,86]. Curiously, the
putative inorganic phosphate PitA transporter that is found in EVs only in the presence of
vancomycin has been previously associated with S. aureus tolerance to several antibiotics,
including vancomycin [87,88].

Globally, our data showed that the conditions that were tested here had a more
pronounced impact on the EV protein composition than on the WC. These results show that
EV cargo is not an exact reflection of the protein cargo of producing cells. Slight variations
applied to EVs may serve as a fine-tuning mechanism to help the bacterial population
rapidly and efficiently respond to external conditions. Yet, despite the variations that were
found, the EV core proteome still carries proteins that are linked to virulence (e.g., Ebps,
Sbi), metabolism (e.g., Eno, PdhABCD), survival (e.g., FhuD), and resistance (FmtA, PBPs).
Many of these elements are also found across several S. aureus strains [23,25] and may play
active roles in the infection and pathogenesis of this bacterium.

Interestingly, differences in protein abundance were observed when comparing growth
phases in WC and EVs. In WC, the Asp23 protein was more abundant at 12 h V+ compared
to 6 h V+, but not in the absence of antibiotics. Accordingly, a 10-fold expression increase of
the asp23 gene has been shown after treatment with vancomycin [89]. The fact that Asp23
is more abundant at 12 h may reflect the accumulation of this protein after exposure to
this antibiotic. In EVs, PTS transporters were more abundant at the late-stationary growth
phase. Considering that bacteria face nutriment stress at high cell densities, EVs could
help bacteria to improve sugar uptake. Finally, the impact of the absence and presence of
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antibiotics on protein abundance in the same conditions (either 6 h or 12 h) was scarce. In
WC, the protein Drp35 was more abundant at 6 h in the presence of vancomycin. Accord-
ingly, this protein acts in cells with perturbed membrane integrity, and its activation has
been consistently reported in response to certain antibiotics, including vancomycin [90].
Moreover, it was interesting to note that LuxS was more abundant in EVs at 12 h in the
presence of vancomycin. LuxS is involved in the synthesis of autoinducer 2 (AI-2), an
essential element of the S. aureus agr quorum-sensing (QS) system [91]. Dysfunctional agr
has been associated with glycopeptide intermediate-level resistant S. aureus (GISA) [92,93],
and the use of QS inhibitors increases S. aureus susceptibility to vancomycin [94,95]. In
addition, the QS also contributes to biofilm structuring and detachment through the ac-
tivation and expression of proteases and other molecules with surfactant-like properties,
such as PSMs [82,96–98]. In light of this, EVs that are derived from the stationary growth
phase containing exclusive elements such as PSMβ1 may play a role in biofilm formation.
It has already been shown that EVs that are purified from S. aureus BWMR22 strain that are
grown in the presence of a sub-inhibitory concentration of vancomycin are able to increase
bacterial adhesion and cell aggregation, contributing to S. aureus biofilm formation [99].
Interestingly, S. aureus EVs’ ability to increase surface hydrophilicity confers a competitive
advantage by reducing biofilm formation by several other pathogenic bacteria, including
Acinetobacter baumannii, Enterococcus faecium, and Klebsiella pneumonia [100]. Together, our
data suggests that EVs may play a role in response to vancomycin stimuli and in biofilm
formation through QS. The role of EVs in the physiology and fitness of the S. aureus global
population may be addressed in future studies.

To our surprise, the most remarkable differences that were observed in this study
were related to the relative protein abundance in EVs and bacteria. Even though ribosomes
are highly abundant in cells [101], we found that proteins that are related to translation
were relatively less abundant in EVs when compared to bacteria, while key virulence
factors were more abundant. Highly loaded proteins in EVs included those that are
involved in adhesion, colonization, survival, resistance, and modulation of the host immune
response. One example is the Sbi protein, which was relatively more abundant in EVs at
6 h. This immunoglobulin-binding protein could interfere with complement activation,
opsonophagocytosis and neutrophil killing [102,103]. In fact, it has been proposed that
surface-localized Sbi protein in S. aureus ATCC14458 EVs may favor binding to host cells [8].
Interestingly, PBPX and PBP4 were relatively more abundant in EVs compared to bacteria
only in the presence of vancomycin. We could speculate that the information that is
perceived by bacteria in response to slight stimuli may somehow be transferred into EVs
without largely affecting bacterial composition. These modified EVs could act as vehicles
to promote bacterial resistance to antibiotics, among other important functions. Indeed,
recent studies demonstrated that antibiotic stress contributes to the increased loading of
β-lactam degrading proteins in S. aureus EVs, which protect ampicillin-susceptible bacteria
in a dose-dependent manner [24,43].

Finally, although similar tendencies were observed between the HG003 EV protein
and RNA content [44], such as EVs being more loaded at 6 h than 12 h, matches in coding
mRNAs and proteins were not obvious. More than half of HG003 EV mRNAs [44] were
not found in their corresponding protein forms. Some exceptions include the autolysin Atl,
the moonlighting protein Eno, the elongation factor FusA, and the chaperone DnaK, which
are present in all conditions in both RNA and protein forms. Their constant appearance in
the EV proteome of several S. aureus strains and other species, including Gram-negative
bacteria, suggests their role in EV biogenesis [25]. Indeed, Atl has already been associated
with EVs release in S. aureus [41], while chaperones were shown to participate in selecting
and packing proteins into EVs in Gram-negative bacteria [104,105].

5. Conclusions

This work provides a general proteomic picture of EVs that were derived from the
S. aureus HG003 strain under different growth conditions. Additionally, comparing the
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EV proteome to that of producing cells in the same conditions brought new insights into
S. aureus EV characteristics. Our data demonstrate that HG003 EV content and abundance
are modulated by the environment and differ from that of bacterial cells, supporting the
hypothesis that EV release is a mechanism that is ruled by selective cargo packing. New
and exciting studies will continue to unveil the processes governing S. aureus EV biogenesis
and production, and their role in bacterial physiology and pathogenesis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms10091808/s1, Figure S1: Protein profile of S. aureus
HG003 WC and EVs. SDS-PAGE (12% gel) showing the protein profile of triplicates of WC (A)
and EVs (B) in each condition. Molecular weight (MW) standards are indicated in kDa. Early-
and late-stationary growth phases (6 and 12 h, respectively) in the absence (V−) or presence (V+)
of vancomycin.; Figure S2: Principal component analysis (PCA) of peptide abundance in samples
under each condition and across biological replicates. The percentages of variance that is associated
with each axis are displayed. − and + corresponds to conditions in the absence and presence
of vancomycin, respectively; Figure S3. Comparative proteome analysis of S. aureus HG003 WC
and EVs at 6 h without vancomycin (6V−). Prediction of sub-cellular locations of proteins with
PSORTb (A), SurfG+ (B), and PRED-LIPO (C), and the prediction of COG functional categories
of proteins with eggNOG-mapper (D). Cyt, cytoplasmatic; Mbe, membrane; CW, cell wall; Ext,
extracellular; Unk, unknown; PSE, surface-exposed; Sec, secreted; NS, no signals found; Lipo,
lipoprotein; TM, transmembrane; COG functional categories: D, Cell cycle control, cell division,
chromosome partitioning; M, cell wall/membrane/envelope biogenesis; N, cell motility; O, Post-
translational modification, protein turnover and chaperones; T, signal transduction mechanisms;
U, Intracellular trafficking, secretion and vesicular transport; V, defense mechanisms; A, RNA
processing and modification; J, translation, ribosomal structure and biogenesis; K, transcription;
L, replication, recombination, and repair; C, energy production and conversion; E, amino acid
transport and metabolism; F, nucleotide transport and metabolism; G, carbohydrate transport and
metabolism; H, coenzyme transport and metabolism; I, lipid transport and metabolism; P, inorganic
ion transport and metabolism; Q, secondary metabolites biosynthesis, transport, and catabolism;
S, function unknown; NA, not available; Figure S4. Comparative proteome analysis of S. aureus
HG003 WC and EVs at 6 h with vancomycin (6V+). Prediction of subcellular locations of proteins
with PSORTb (A), SurfG+ (B), and PRED-LIPO (C), and prediction of COG functional categories of
proteins with eggNOG-mapper (D). For legend, please refer to Figure S3; Figure S5. Comparative
proteome analysis of S. aureus HG003 WC and EVs at 12 h without vancomycin (12V−). Prediction of
subcellular locations of proteins with PSORTb (A), SurfG+ (B), and PRED-LIPO (C), and prediction
of COG functional categories of proteins with eggNOG-mapper (D). For legend, please refer to
Figure S3; Figure S6. Comparative proteome analysis of S. aureus HG003 WC and EVs at 12 h with
vancomycin (12V+). Prediction of subcellular locations of proteins with PSORTb (A), SurfG+ (B), and
PRED-LIPO (C), and prediction of COG functional categories of proteins with eggNOG-mapper (D).
For legend, please refer to Figure S3; Table S1: Characteristics of proteins of Staphylococcus aureus
strain HG003 and their detection by mass spectrometry in the whole cell (WC) and extracellular
vesicles (EVs) fractions.; Table S2: Comparative analysis of the relative abundance of proteins that
were identified in Staphylococcus aureus strain HG003 whole cell (WC) and extracellular vesicles
(EVs) fractions.
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