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SUMMARY

Two-phase sampling design, where biomarkers are subsampled from a phase-one cohort sample represen-
tative of the target population, has become the gold standard in biomarker evaluation. Many two-phase
case–control studies involve biased sampling of cases and/or controls in the second phase. For example,
controls are often frequency-matched to cases with respect to other covariates. Ignoring biased sampling
of cases and/or controls can lead to biased inference regarding biomarkers’ classification accuracy. Con-
sidering the problems of estimating and comparing the area under the receiver operating characteristics
curve (AUC) for a binary disease outcome, the impact of biased sampling of cases and/or controls on
inference and the strategy to efficiently account for the sampling scheme have not been well studied.
In this project, we investigate the inverse-probability-weighted method to adjust for biased sampling in
estimating and comparing AUC. Asymptotic properties of the estimator and its inference procedure are
developed for both Bernoulli sampling and finite-population stratified sampling. In simulation studies,
the weighted estimators provide valid inference for estimation and hypothesis testing, while the standard
empirical estimators can generate invalid inference. We demonstrate the use of the analytical variance for-
mula for optimizing sampling schemes in biomarker study design and the application of the proposed AUC
estimators to examples in HIV vaccine research and prostate cancer research.
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1. INTRODUCTION

Recent advances in lab techniques have provided researchers with a rich resource of biomarkers poten-
tially useful for disease diagnosis and risk prediction. It is essential to use proper statistical methods to
rigorously evaluate these biomarkers. The receiver operating characteristics curve (ROC) is a standard
graphic tool to characterize a biomarker’s classification accuracy. The area under the ROC curve (AUC)
has been commonly used to gauge and compare biomarker’s performance. In this paper, we consider
the evaluation and comparison of biomarkers with respect to AUC for a binary disease outcome using
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data from two-phase sampling designs. In the first phase, a cohort sample representative of the target
population relevant to clinical application is drawn, from which participants’ disease status and easy
to measure covariates are obtained; in the second phase, a subsample is drawn randomly, without
replacement from the phase-one cohort sample for biomarker measurement, where sampling probability
of each individual can depend on other covariates available. In particular, we consider studies where cases
and controls in the second phase are separately sampled from the phase-one cohort. This is different
from, for example, a case–cohort design for failure time, where cases and a random cohort are separately
sampled. These types of designs prospectively collect bio-specimens before outcome ascertainment to
minimize systematic difference in specimen collection, and retrospectively sample cases and controls
for measuring biomarkers from the stored specimens to save costs. They have been proposed as gold
standards for biomarker evaluation (Pepe and others, 2008).

In the second phase of a two-phase study, oftentimes cases and/or controls are not simple random
samples from their respective distributions. For example, controls are often frequency-matched to cases
with respect to other covariates, such as an individual’s demographic characteristics (i.e., gender, age
group, etc.); or cases and controls can be randomly sampled within some covariate strata. The effect of
biased sampling on biomarker evaluation varies with the parameter of interest. Janes and Pepe (2009)
showed that frequency matching does not invalidate inference on a biomarker’s classification accuracy
within matching covariate stratum; however, when the parameter of interest is the biomarker’s clas-
sification accuracy in the general population, ignoring biased sampling can lead to invalid inference
(Pepe and others, 2012). Inverse probability weighting provides a natural solution to account for biased
sampling of cases and/or controls when evaluating marker classification performance in the popula-
tion, e.g., in Pepe and others (2012) for binary disease outcome, and in Cai and Zheng (2011) for fail-
ure time outcome. Similar strategies of weighting to estimate classification accuracy under biased sam-
pling have been adopted by other authors in a different problem setting: for correcting verification
bias when true disease status (instead of the biomarker) is ascertained only from a subset of subjects
(He and others, 2009).

However, asymptotic theories for estimators of AUC or difference in AUC for binary disease out-
come in two-phase studies where expensive biomarkers are only measured in a subset of the study
cohort, are lacking, despite the commonality of AUC in characterizing and comparing diagnostic tests
in biomarker research. Our research in this paper aims to fill in this gap. In particular, we will develop
inverse-probability-weighted (IPW) AUC estimator in two-phase study designs and develop inference pro-
cedures for comparing two diagnostic biomarkers. The closed-form expressions of asymptotic variances
we develop for the proposed estimators will be valuable for understanding the implication of frequency
matching on efficiency of biomarker evaluation.

This paper will consider two types of two-phase sampling designs: the finite-population stratified sam-
pling (Neyman, 1938) and the Bernoulli sampling (Manski and Lerman, 1977). The former design is com-
monly used in biomarker research and is the major focus of this paper. The latter design has the advantage
of simplicity and will be introduced as a pathway for studying the results in finite-population stratified
sampling design. The two designs differ in how individuals are sampled for biomarker measurement in
phase two. Finite-population stratified sampling requires pre-specification of a finite number of covariate
strata: fixed number of cases and/or controls are then sampled from each stratum. It has the advantage that
the number of cases and controls sampled from each stratum in phase two can be fixed at the outset. In
Bernoulli sampling, each individual is selected with a known sampling probability that can depend on one’s
disease status and covariate value, independently of other individuals. It works in more general settings
without the need to pre-specify a finite number of strata, e.g., when outcome and/or auxiliary covariates
observed in phase one are continuous. The number of cases and/or controls sampled in phase two are ran-
dom in Bernoulli sampling design. Despite the differences between the two designs, theoretical results of
their estimators are closely connected.
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In Section 2, we will start with the problem setting in Bernoulli sampling design and propose IPW
estimators of AUC and difference in AUC using estimated sampling weights. We will then investigate esti-
mation under finite-population stratified sampling design and show the connection in theoretical results
of AUC estimators between the two designs. In Section 3, we conduct simulation studies to demonstrate
performance of our estimators and subsequent inference procedures, compared with the empirical AUC
estimator and hypothesis test ignoring biased sampling. In Section 4, we demonstrate, using a numeri-
cal example, the use of the analytical variance formula to guide the optimization of biomarker sampling
scheme. The application of our proposed AUC estimators will be demonstrated by data examples in HIV
vaccine research and prostate cancer research in Section 5. Concluding remarks are made in Section 6.

2. METHODS

Let D be a binary outcome of interest to differentiate. In this paper, we consider D to be a binary disease
outcome, with value 0 and 1 indicating non-diseased and diseased, respectively. We use subscript D and D̄

to indicate case and control, respectively. Let X be a continuous biomarker that is expensive to measure
such as a lab assay, assuming that increase in X is associated with increased likelihood of disease. Suppose
we have data collected from a two-phase study to evaluate the marker’s classification accuracy. In the first
phase, subjects’ disease status and covariates that are easy to measure such as demographics are collected
from a random sample of size N from the target population, with ND and ND̄ the number of cases and
controls, respectively. In the second phase, the phase-one cohort is further subsampled to measure the
biomarker value. Our first objective is to estimate AUC for marker X : AUCx = P(X D > XD̄). In addition,
suppose there is another continuous marker Y measured together with marker X . Let AUCy = P(YD > YD̄).
Our second objective is to make inference about the difference in AUC between markers Y and X , i.e.,
� AUC = AUCy − AUCx .

2.1 Bernoulli sampling

2.1.1 Evaluation of a single marker. First, consider the standard Bernoulli sampling where in phase
two individuals are selected independently of others with pre-specified probabilities. For case i in the
phase-one cohort, let δDi be the indicator that one’s biomarker value is collected in the second phase, with
pDi the corresponding sampling probability. Similarly, for control j in the phase-one cohort, let δD̄ j

and
pD̄ j indicate whether he/she is sampled in the second phase and the corresponding sampling probability.
Note that pDi and pD̄ j are individual-specific, whose values can depend on covariate value for case i and
control j . For example, suppose phase-two sampling probabilities of cases and controls depend on discrete
covariate strata: among phase-one samples, cases are allocated into KD strata with NDkD cases in stratum
kD ∈ {1, . . . , KD}, and controls are allocated into KD̄ strata with ND̄kD̄

controls in stratum kD̄ ∈ {1, . . . , KD̄};
in the second phase, cases in stratum kD are independently sampled with probability πDkD and controls in
stratum kD̄ are independently sampled with probability πD̄kD̄

. Let nDkD and nD̄kD̄
denote the number of

phase-two cases and controls sampled from strata kD and kD̄ . They are random numbers with expected
values NDkD × πDkD and ND̄kD̄

× πD̄kD̄
, respectively. We have pDi = πDkD for case i belonging to stratum

kD and pD̄ j = πD̄kD̄
for control j belonging to stratum kD̄ j .

For estimation of population AUC, when phase-two case and control samples are representa-

tive of their respective populations, standard empirical AUC estimator (Bamber, 1975) ̂AUC
em

x ={∑ND
i=1

∑ND̄
j=1 δDiδD̄ j I (X Di > XD̄ j )

}
/
{∑ND

i=1

∑ND̄
j=1 δDiδD̄ j

}
using phase-two biomarker data provides a

valid estimate. However, when phase-two case and control samples are not representative of their respec-

tive populations, ̂AUC
em

x can be severely biased. For example, it is common in biomarker study designs
that simple random samples of cases are drawn in the second phase, while controls are matched to cases
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by covariate strata such that control biomarkers are not representative of their population. To take care of
the biased sampling, we propose the use of a weighted estimator of AUC based on the idea of inverse-
probability weighting (Horvitz and Thompson, 1952). In particular, we construct IPW versions for the
numerator and denominator of the empirical AUC estimator, where the contribution of each participant to
a case–control pair is weighted by inverse of the estimated sampling probability of the participant in phase
two:

̂AUCx ( p̂) =
ND∑
i=1

ND̄∑
j=1

δDi

p̂Di

δD̄ j

p̂D̄ j

I (X Di > XD̄ j )

/
ND∑
i=1

ND̄∑
j=1

δDi

p̂Di

δD̄ j

p̂D̄ j

, (2.1)

where p̂Di and p̂D̄ j indicate estimated phase-two sampling probabilities for case i and control j . For contin-
uous covariate, pDi and pD̄ j can be estimated by parametric models such as the logistic regression model.
For discrete covariate strata, their empirical estimates can be derived. That is, for a case i belonging to
stratum kD , his/her sampling probability pDi is estimated with p̂Di = π̂DkD = nDkD /NDkD , the proportion
of phase-one cases sampled in phase two from stratum kD; similarly one can estimate pD̄ j for control j in
stratum kD̄ with p̂D̄ j = π̂D̄kD̄

= nD̄kD̄
/ND̄kD̄

.
In Bernoulli sampling, the true sampling probability for each individual is known, but using “estimated”

weight can improve efficiency (Web Appendix A&B, see supplementary material available at Biostatistics
online). This has also been recommended in other problem settings such as the weighted likelihood esti-
mators (Robins and others, 1994; Breslow and Wellner, 2007). Intuitively it holds because using known
sampling weights only involves data for subjects sampled at phase two but estimation of the weights allows
incorporation of phase-one data available for all subjects, e.g., the number of phase-one cases/controls in
each strata in scenarios where sampling probability in phase two varies across discrete strata.

Suppose we model sampling probabilities of the biomarker among cases and controls separately with
finite-dimensional parameters θD and θD̄ . Let θ̂D and θ̂D̄ be maximum likelihood estimators. Asymptotic
distribution of the IPW AUC estimator based on corresponding estimates of p̂D and p̂D̄ is stated below in
Theorem 1 (proof in Web Appendix B, see supplementary material available at Biostatistics online).

THEOREM 1 Suppose ND/N → λ ∈ (0, 1) as N → ∞ and 0 < pD, pD̄ � 1 for each case and control; then√
N {̂AUCx ( p̂) − AUCx } converges asymptotically to a normal random variable with mean 0 and variance

�x = 1

λ
×

[
var{FD̄x (XD)} + E

{
pD(1 − pD)

p2
D

F2
D̄x (XD)

}]

+ 1

1 − λ
×

[
var{SDx (XD̄)} + E

{
pD̄(1 − pD̄)

p2
D̄

S2
Dx(XD̄)

}]

− AUCx ×
(

1

λ
×

[
E

{(
1

pD
− 1

)
FD̄x (XD)

}
+ cov

{
FD̄x (XD),

1

pD
− 1

}]

+ 1

1 − λ
×

[
E

{(
1

pD̄

− 1

)
SDx (XD̄)

}
+ cov

{
SDx (XD̄),

1

pD̄

− 1

}])

− 1

λ
(AUCx × Q D − RDx )

T I −1
D (AUCx × Q D − RDx )

− 1

1 − λ
(AUCx × QD̄ − RD̄x )

T I −1
D̄

(AUCx × QD̄ − RD̄x ),
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where

ID = E

{(
1

pD
+ 1

1 − pD

)
∂pD

∂θDkD

∂pD

∂θDk ′
D

}
, ID̄ = E

{(
1

pD̄

+ 1

1 − pD̄

)
∂pD̄

∂θD̄kD̄

∂pD̄

∂θD̄k ′
D̄

}

are information matrices for estimating θD and θD̄ , Q D = E((1/pD)(∂pD/∂θ)), RDx = E
{I (XD > XD̄)(1/pD)(∂pD/∂θD)}, QD̄ = E((1/pD̄)(∂pD̄/∂θD̄)), and RD̄x = E{I (XD > XD̄)(1/pD̄)

(∂pD̄/∂θD̄)}.

2.1.2 Comparison of two markers. For marker Y measured together with X , we can similarly estimate
its AUC as ̂AUCy( p̂) = ∑ND

i=1

∑ND̄
j=1(δDi/pDi )(δD̄ j/pD̄ j )I (YDi > YD̄ j )/

∑ND
i=1

∑ND̄
j=1(δDi/ p̂Di )(δD̄ j/ p̂D̄ j ),

and estimate the difference in AUC between the two markers with � ̂AUC( p̂) = ̂AUCy( p̂) − ̂AUCx ( p̂).

Asymptotic distribution of � ̂AUC( p̂) is shown in Theorem 2 (proof in Web Appendix C, see supplemen-
tary material available at Biostatistics online).

THEOREM 2 Suppose ND/N → λ ∈ (0, 1) as N → ∞ and 0 < pD, pD̄ � 1 for every case and control;
then

√
N {� ̂AUC( p̂) − �AUC} converges asymptotically to a normal random variable with mean 0 and

variance

�xy = �x + �y − 2 × 1

λ
×

[
cov{FD̄x (XD), FD̄y(YD)} + E

{
1 − pD

pD
FD̄x (XD)FD̄y(YD)

}]

− 2 × 1

1 − λ
×

[
cov{SDx (XD̄), SDy(YD̄)} + E

{
1 − pD̄

pD̄

SDx (XD̄)SDy(YD̄)

}]

− � AUC ×
{

1

λ
×

(
E

[(
1

pD
− 1

)
× {

FD̄y(YD) − FD̄x (XD)
}]

+ cov

{
FD̄y(YD) − FD̄x (XD),

1

pD
− 1

})

+ 1

1 − λ
×

(
E

[(
1

pD̄

− 1

)
× {SDy(YD̄) − SDx (XD̄)}

]

+ cov

{
SDy(YD̄) − SDx (XD̄),

1

pD̄

− 1

})}

− 1

λ
× [� AUC × Q D − (RDy − RDx )]

T I −1
D [� AUC × Q D − (RDy − RDx )]

− 1

1 − λ
× [� AUC × QD̄ − (RD̄y − RD̄x )]

T I −1
D̄

[� AUC × QD̄ − (RD̄y − RD̄x )].

Previously, many authors have studied inference for comparing AUC between paired
markers (Hanley and McNeil, 1983; DeLong and others, 1988; Wieand and others, 1989;
Obuchowski and McClish, 1997). These tests were developed, however, for scenarios where cases
and controls are randomly sampled from their respective distributions, and thus are not applicable for
settings when there is biased sampling associated with cases and/or controls. In contrast, IPW estimator
of � AUC and its analytical variance as presented in Theorem 2 can be used to construct Wald tests for
equal AUC between markers, as will be shown later in simulation studies.
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2.2 Finite-population stratified sampling

Now we consider the finite-population stratified sampling design, the design commonly used in biomarker
studies. Again suppose cases and controls among phase-one samples are allocated into KD and KD̄ strata,
respectively, with number NDkD and ND̄kD̄

in each stratum. Fixed numbers of cases nkD and controls nkD̄

are then sampled in phase two from these covariate strata to measure the biomarker X . Sampling fractions
nDkD /NDkD and nD̄kD̄

/ND̄kD̄
can be random.

Let WD be the stratum indicator among cases taking unique values wD1, . . . , wDKD and WD̄ be the
stratum indicator among controls taking unique values wD̄1, . . . , wD̄KD̄

. Compute π̂DkD = nDkD /NDkD and
π̂D̄kD̄

= nD̄kD̄
/ND̄kD̄

. In finite-population stratified sampling, sampling probability of a case or control is
constant within their corresponding stratum, i.e., pDi = πDkD for case i in stratum kD and pD̄ j = πD̄kD̄

for
control j in stratum kD̄ . The IPW estimator of AUC for marker X (2.1) can be equivalently represented as

̂AUCx ( p̂) =
ND∑
i=1

ND̄∑
j=1

KD∑
kD=1

KD̄∑
kD̄=1

δDi I (WDi = wDkD )

π̂DkD

δD̄ j I (WD̄ j = wD̄kD̄
)

π̂D̄kD̄

I (X Di > XD̄ j ). (2.2)

Suppose, as N → ∞, sampling fractions for cases among stratum kD ∈ {1, . . . , KD} converge with
nDkD /NDkD → πDkD , and sampling fractions for controls among stratum kD̄ ∈ {1, . . . , KD̄} converge with
nD̄k/ND̄k → πD̄kD̄

. Then the asymptotic variance of the IPW AUC estimator (2.2) in finite-population strat-

ified sampling is identical to the asymptotic variance of ̂AUCx ( p̂) in Bernoulli sampling, if, in phase two of
the latter design, cases in stratum kD are sampled independently with probability πDkD and controls in stra-
tum kD̄ are sampled independently with probability πD̄kD̄

, with sampling probabilities estimated empirically.
A proof is given in Web Appendix C (see supplementary material available at Biostatistics online). The
equality in asymptotic variance of � AUC( p̂) between the two designs can be similarly derived. The same
argument on efficiency of weighted likelihood estimators in Cox regression comparing the two designs
was made earlier (Breslow and Wellner, 2007).

3. SIMULATION STUDIES

In this section, we conduct simulation studies to investigate performance of the proposed IPW estimators
of AUC and � AUC. We consider a binary disease outcome D with prevalence λ = P(D = 1) = 0.1 in
the population. Let W ∗ be a continuous covariate that follows the standard normal distribution among
controls (D = 0) and N (0.6, 1) among cases (D = 1). Let W be a discrete covariate stratum derived from
W ∗ with three levels: W = 1 if W ∗ < 	−1(1/3), W = 2 if 	−1(1/3) � W ∗ � 	−1(2/3), and W = 3 if
W ∗ > 	−1(2/3), where 	 is the CDF of the standard normal distribution. We consider two biomark-
ers X and Y , where (X, Y, W ∗) are jointly normally distributed conditional on D, with ρxy , ρxw∗ , and
ρyw∗ the correlations between X and Y , between X and W ∗, and between Y and W ∗, respectively,
conditional on D. Among controls, X and Y each follows the standard normal distribution. Among
cases, X follows N (μDx , σDx ) and Y follows N (1, 1). The ROC curve based on X and Y individu-

ally is thus ROCx (t) = 	{μDx/σDx + 	−1(t)/σDx } with AUCx = 	(μDx/

√
1 + σ 2

Dx ) and ROCy(t) =
	

{
1 + 	−1(t)

}
with AUCy = 	(1/

√
2) = 0.76.

We generate data from two-phase studies. In the first phase, N = 5000 subjects are randomly sam-
pled from the population, whose D and W values are measured. In the second phase, we considered both
Bernoulli sampling and finite-population stratified sampling of cases and controls for measuring mark-
ers X and Y , assuming that they are measured on the same set of subjects. In Bernoulli sampling, cases
are sampled independently with a constant probability pc, and controls are sampled independently with a
probability that depends on the stratum W . In particular, the sampling probability for a control in stratum
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W = w equals pc × P(W = w, D = 1)/P(W = w, D = 0). This ensures that, on average, biomarkers are
measured on equal numbers of cases and controls within each stratum. In finite-population stratified sam-
pling, nD = N × P(D = 1) × pc cases are sampled without replacement, and then within each W stratum,
the same number of controls as cases in that stratum are drawn without replacement. This type of sampling
design where simple random samples of cases are drawn in the second phase while controls are matched to
cases by covariate strata is common in biomarker research. We also investigate other scenarios where both
case and control sampling probabilities in phase two vary across strata. The comparative performance of
various estimators is similar to the results we will present below (results omitted).

Based on 5000 Monte Carlo simulations in each setting, we evaluate performance of AUC estimators

for individual markers. We compute ̂AUC
em

, and ̂AUC( p̂) with sampling probabilities estimated empir-
ically among cases and among controls conditional on sampling strata. These estimators are compared
with respect to bias, efficiency, coverage of 95% Wald confidence intervals (CIs) based on analytical vari-
ance estimates, and the power to test H0 : AUC = 0.5. We also evaluate performance of corresponding
estimators for � AUC. We compare Wald tests based on � ̂AUC( p̂) and the common Delong–Delong test
(DeLong and others, 1988) with respect to type-I error rate and power for testing H0 : AUCx = AUCy . The
latter is implemented in the R package pROC (Robin and others, 2011).

3.1 Evaluate performance of a single marker

Table 1 gives performance of AUCx estimators for AUCx ∈ {0.5, 0.664, 0.76}, with σDx ∈ {1, 1.5}, ρxw∗ ∈
{0.3, 0.5}, and the constant case sampling rate pc ∈ {0.2, 0.5, 0.8}, for both Bernoulli sampling and finite-
population stratified sampling. For both designs, the empirical AUC estimator is biased (with 5–15%
relative bias), while ̂AUC( p̂) has minimum bias. While negative biases for empirical AUC estimator were
observed for the particular simulation settings presented here, in general this estimator can have both
positive and negative biases depending on the setting. Coverage of 95% Wald CIs for ̂AUC( p̂) is close to
the nominal level, while the CIs based on the empirical AUC has an undercoverage problem. The Wald test
for H0 : AUCx = 0.5 based on ̂AUC( p̂) has type-I error close to the nominal level, while the test based on
empirical AUC has inflated type-I error, the inflation getting worse with the increase in sample size. The
̂AUCx ( p̂) estimators in the two different sampling designs have similar variances.

3.2 Compare performance between markers

Table 2 shows performance of � AUC estimators for both types of sampling designs for settings where X
and Y have the same variance and same correlation with W ∗ conditional on D: σDx = 1 and ρxw∗ = ρyw∗ =
0.5, where we have AUCx ∈ {0.664, 0.76}, ρxy ∈ {0, 0.5}, and pc ∈ {0.2, 0.5, 0.8}. The IPW � AUC esti-
mator has good performance: minimum bias, coverage of 95% CI and type-I error for testing the equiv-
alence in AUC close to nominal level. When markers X and Y have exactly the same distribution (con-
sequently same ROC curve and AUC), the empirical estimator of � AUC is also unbiased: the biases in
AUCx and AUCy are equal and thus cancel out, due to the equality in the distribution of the two markers
and in their correlation with the matching stratum. The coverage of its 95% CI is close to the nominal
level. Type-I error for testing the equivalence in AUC using the Delong–Delong test is also close to the
nominal level. When AUCx = 0.664 and � AUC = 0.096, the empirical � AUC estimator has small bias,
with a magnitude much smaller compared with that of the AUCx estimator; its 95% CI has good coverage
when sample size is small but slight undercoverage when sample size gets large (pc = 0.8). Despite the
bias in empirical � AUC, the Delong–Delong test for equivalence in AUC can have advantage in power
compared with the IPW estimator in this particular setting, due to the positive bias in AUC difference.

Table 3 shows results of � AUC estimators for settings again with equal variance between X and Y
conditional on D, i.e., σDx = 1. However, unlike Table 2 where both markers have the same correlation
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Table 1. Performance of different AUCx estimators for the bi-normal marker model described in Section 3.
Disease prevalence is 0.1. Biomarker X is standard normal among controls. By nD and nD̄, we indicate
the expected number of cases and controls sampled in phase two for Bernoulli sampling and exact number
of cases and controls sampled for finite-population stratified sampling. Results are based on 5000 Monte

Carlo simulations

Bernoulli sampling FPS† sampling

σDx AUCx ρxw∗ nD = nD̄
̂AUCx ( p̂) ̂AUC

em
x

̂AUCx ( p̂) ̂AUC
em
x

Bias × 100
1.00 0.50 0.30 100 −0.06 −3.89 −0.05 −3.90

250 0.00 −3.85 −0.04 −3.87
400 0.01 −3.84 −0.04 −3.89

0.50 100 −0.01 −6.51 −0.14 −6.63
250 −0.03 −6.54 −0.09 −6.58
400 −0.04 −6.56 −0.04 −6.55

1.50 0.50 0.30 100 0.01 −2.99 −0.06 −3.08
250 −0.01 −3.03 −0.07 −3.08
400 −0.04 −3.05 −0.05 −3.05

0.50 100 0.02 −5.05 −0.08 −5.17
250 −0.03 −5.10 −0.08 −5.14
400 −0.05 −5.12 −0.03 −5.12

1.00 0.664 0.30 100 −0.05 −3.57 −0.05 −3.58
250 0.00 −3.54 −0.04 −3.57
400 0.01 −3.53 −0.05 −3.59

0.50 100 −0.02 −6.01 −0.11 −6.10
250 −0.02 −6.04 −0.08 −6.08
400 −0.04 −6.05 −0.05 −6.05

1.50 0.664 0.30 100 0.03 −2.73 −0.06 −2.83
250 0.00 −2.77 −0.07 −2.82
400 −0.03 −2.80 −0.04 −2.80

0.50 100 0.03 −4.63 −0.08 −4.76
250 −0.01 −4.68 −0.07 −4.74
400 −0.05 −4.72 −0.02 −4.71

1.00 0.76 0.30 100 −0.04 −3.05 −0.05 −3.07
250 0.00 −3.03 −0.04 −3.05
400 0.01 −3.02 −0.06 −3.07

0.50 100 −0.02 −5.14 −0.09 −5.20
250 −0.02 −5.16 −0.07 −5.20
400 −0.04 −5.17 −0.05 −5.18

1.50 0.76 0.30 100 0.04 −2.31 −0.06 −2.42
250 0.01 −2.36 −0.06 −2.41
400 −0.03 −2.40 −0.04 −2.39

0.50 100 0.03 −3.95 −0.07 −4.06
250 −0.01 −4.00 −0.06 −4.05
400 −0.04 −4.04 −0.02 −4.02

(continued)
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Table 1. Continued

Bernoulli sampling FPS† sampling

σDx AUCx ρxw∗ nD = nD̄
̂AUCx ( p̂) ̂AUC

em

x
̂AUCx ( p̂) ̂AUC

em

x

Var × N
1.00 0.50 0.30 100 9.68 8.26 9.50 7.70

250 3.88 3.42 3.74 3.15
400 2.43 2.16 2.38 2.02

0.50 100 9.00 8.07 8.62 6.83
250 3.55 3.31 3.41 2.65
400 2.17 2.03 2.16 1.66

1.50 0.50 0.30 100 9.72 8.85 9.56 8.16
250 3.88 3.65 3.79 3.29
400 2.36 2.18 2.38 2.10

0.50 100 9.15 8.60 8.72 7.28
250 3.72 3.58 3.52 2.88
400 2.24 2.16 2.25 1.82

1.00 0.664 0.30 100 8.03 7.62 8.00 7.21
250 3.23 3.16 3.14 2.94
400 2.04 2.01 2.00 1.88

0.50 100 7.27 7.80 7.05 6.62
250 2.91 3.21 2.79 2.56
400 1.79 1.97 1.78 1.62

1.50 0.664 0.30 100 8.15 8.01 8.09 7.39
250 3.30 3.32 3.23 3.01
400 2.03 2.01 2.03 1.92

0.50 100 7.64 8.08 7.35 6.84
250 3.13 3.36 2.96 2.70
400 1.92 2.05 1.89 1.71

1.00 0.76 0.30 100 6.04 6.13 6.06 5.85
250 2.44 2.54 2.38 2.39
400 1.55 1.63 1.52 1.53

0.50 100 5.38 6.43 5.32 5.58
250 2.17 2.66 2.08 2.14
400 1.34 1.64 1.33 1.35

1.50 0.76 0.30 100 6.17 6.38 6.24 5.97
250 2.52 2.65 2.47 2.42
400 1.57 1.62 1.55 1.54

0.50 100 5.73 6.52 5.69 5.70
250 2.38 2.74 2.25 2.22
400 1.48 1.69 1.45 1.41

(continued)
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Table 1. Continued

Bernoulli sampling FPS† sampling

σDx AUCx ρxw∗ nD = nD̄
̂AUCx ( p̂) ̂AUC

em

x
̂AUCx ( p̂) ̂AUC

em

x

Coverage of 95% CI
1.00 0.50 0.30 100 94.3 83.4 94.1 84.2

250 94.2 67.9 94.7 67.5
400 94.5 53.3 94.4 51.6

0.50 100 94.2 63.9 94.4 63.2
250 94.6 28.2 95.0 24.4
400 94.7 10.2 95.0 8.00

1.50 0.50 0.30 100 93.8 88.0 94.1 88.5
250 93.9 78.0 94.5 78.7
400 94.5 69.3 94.4 68.7

0.50 100 94.3 76.3 94.8 77.4
250 94.5 50.3 95.1 49.7
400 94.5 31.0 94.9 28.8

1.00 0.664 0.30 100 93.9 86.2 94.0 86.6
250 94.1 70.6 94.7 70.6
400 94.2 56.7 94.5 55.3

0.50 100 94.2 68.6 94.7 68.6
250 94.8 33.4 95.1 30.0
400 94.8 13.5 95.1 10.5

1.50 0.664 0.30 100 94.1 90.1 94.2 90.2
250 94.2 79.9 94.3 81.2
400 94.5 71.5 94.4 71.1

0.50 100 94.1 79.8 94.8 81.3
250 94.3 55.4 94.9 54.8
400 94.6 35.0 94.8 33.5

1.00 0.76 0.30 100 93.8 88.1 93.7 88.6
250 94.1 73.8 94.9 73.3
400 94.3 60.6 94.7 58.8

0.50 100 94.1 73.3 94.3 73.3
250 94.9 38.4 95.0 36.2
400 94.9 18.0 95.0 14.4

1.50 0.76 0.30 100 94.2 91.5 94.1 91.5
250 94.6 81.7 94.4 83.1
400 94.2 74.4 94.4 74.5

0.50 100 94.5 82.9 94.3 84.0
250 94.1 59.8 95.0 60.0
400 94.4 39.8 94.7 39.3

(continued)
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Table 1. Continued

Bernoulli sampling FPS† sampling

σDx AUCx ρxw∗ nD = nD̄
̂AUCx ( p̂) ̂AUC

em

x
̂AUCx ( p̂) ̂AUC

em

x

Power for testing H0 : AUCx = 0.5
1.00 0.50 0.30 100 5.7 16.6 5.9 15.8

250 5.8 32.1 5.3 32.5
400 5.5 46.7 5.6 48.4

0.50 100 5.8 36.1 5.6 36.8
250 5.4 71.8 5.0 75.6
400 5.3 89.8 5.0 92.0

1.50 0.50 0.30 100 6.2 12.0 5.9 11.5
250 6.1 22.0 5.5 21.3
400 5.5 30.7 5.6 31.3

0.50 100 5.7 23.7 5.2 22.6
250 5.5 49.7 4.9 50.3
400 5.5 69.0 5.1 71.2

1.00 0.664 0.30 100 96.7 89.2 97.1 90.3
250 100 99.9 100 99.9
400 100 100 100 100

0.50 100 98.3 74.1 98.5 74.5
250 100 98.2 100 99.1
400 100 100 100 100

1.50 0.664 0.30 100 97.4 92.0 97.70 92.4
250 100 100 100 100
400 100 100 100 100

0.50 100 98.0 82.3 98.4 83.8
250 100 99.3 100 99.7
400 100 100 100 100

1.00 0.76 0.30 100 100 100 100 100
250 100 100 100 100

0.50 100 100 100 100 100
250 100 100 100 100

1.50 0.76 0.30 100 100 100 100 100
250 100 100 100 100

0.50 100 100 100 100 100
250 100 100 100 100

†Finite-population stratified sampling.

with the covariate stratum, here we fix ρyw∗ to be 0.5 but vary ρxw∗ from 0.4 to 0.1. When markers X and
Y have the same distribution and AUC, the empirical estimator of � AUC is biased because the magnitude

of bias is different between ̂AUC
em

x and ̂AUC
em

y due to the difference in correlation between each marker
and the covariate stratum. Bias is also observed when � AUC = 0.096. Corresponding 95% CI based on

� ̂AUC
em

has an undercoverage problem. The Delong–Delong test also has an inflated type-I error rate.
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Table 2. Performance of various estimators of � AUC = AUCy − AUCx for scenarios where the two mark-
ers have same variability and same correlation with covariate W ∗ conditional on D, for the bi-normal
model described in Section 3. Disease prevalence is 0.1. Marker X and Y is each standard normal among
controls. Here we have σDx = σDy = 1, AUCy = 0.76, ρxw∗ = ρyw∗ = 0.5. By nD and nD̄, we indicate,
respectively, the expected number of cases and controls sampled in phase two for Bernoulli sampling and
exact number of cases and controls sampled for finite-population stratified sampling. Results are based

on 5000 Monte Carlo simulations

Bernoulli sampling FPS† sampling

AUCx � AUC ρxy nD = nD̄ � ̂AUC( p̂) � ̂AUC
em

� ̂AUC( p̂) � ̂AUC
em

Bias × 100
0.76 0.00 0.00 100 0.12 0.11 0.12 0.13

250 0.03 0.02 0.07 0.09
400 −0.00 −0.00 0.05 0.07

0.50 100 0.08 0.06 −0.01 0.01
250 0.03 0.03 −0.02 −0.02
400 −0.01 0.01 −0.03 −0.03

0.664 0.096 0.00 100 0.12 0.98 0.14 1.03
250 0.03 0.90 0.08 0.97
400 0.01 0.88 0.05 0.94

0.50 100 0.11 0.96 0.00 0.90
250 0.04 0.92 −0.01 0.86
400 −0.01 0.89 −0.03 0.85

Var × N
0.76 0.00 0.00 100 11.66 13.31 11.94 13.63

250 4.78 5.48 4.72 5.34
400 2.94 3.42 2.92 3.36

0.50 100 6.44 7.26 6.42 7.05
250 2.51 2.88 2.62 2.91
400 1.59 1.84 1.62 1.82

0.664 0.096 0.00 100 13.79 14.68 13.92 14.97
250 5.59 6.02 5.50 5.86
400 3.42 3.75 3.42 3.69

0.50 100 7.55 7.96 7.57 7.73
250 2.94 3.16 3.08 3.21
400 1.85 2.00 1.91 2.01

Coverage of 95% CI
0.76 0.00 0.00 100 94.6 94.8 94.8 95.1

250 94.7 94.8 94.7 95.0
400 95.0 94.7 94.7 95.1

0.50 100 94.8 94.8 94.7 95.0
250 95.3 94.9 94.6 94.8
400 95.2 95.0 95.0 95.0

(continued)
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Table 2. Continued

Bernoulli sampling FPS† sampling

AUCx � AUC ρxy nD = nD̄ � ̂AUC( p̂) � ̂AUC
em

� ̂AUC( p̂) � ̂AUC
em

0.664 0.096 0.00 100 94.8 94.4 94.8 94.6
250 94.3 94.0 94.7 93.8
400 94.9 93.3 94.8 93.1

0.50 100 94.6 94.2 94.5 94.5
250 95.2 93.5 94.4 93.1
400 95.1 92.4 94.6 92.8

Power for testing H0 : AUCx = AUCy

0.76 0.00 0.00 100 5.4 5.1 5.2 4.8
250 5.3 5.2 5.3 5.0
400 5.0 5.2 5.3 4.9

0.50 100 5.2 5.1 5.3 4.9
250 4.7 5.1 5.4 5.1
400 4.8 5.0 5.0 5.0

0.664 0.096 0.00 100 46.7 48.9 46.7 49.4
250 82.5 85.6 83.3 86.5
400 95.4 96.6 95.9 96.9

0.50 100 71.4 75.1 70.7 75.5
250 97.6 98.8 97.6 98.6
400 100 100 99.9 100

†Finite-population stratified sampling.

The inflation gets more severe as the difference between ρxw∗ and ρyw∗ increases: type-I error can become
similar to power for some settings in Table 3 or become even larger than power in some other constructed
settings (details omitted). This is due to the bias in the empirical � AUC estimator such that the observed
difference between two markers equivalent in AUC can appear similar or even larger compared with the
observed difference between two markers that differ in AUC. In practice, when difference in correlations
between marker and stratification variable exists, its magnitude is likely on the small to medium side, and
thus we expect some inflation of type-I error when applying Delong–Delong’s test but not extreme. In
contrast, the IPW estimator of � AUC are approximately unbiased with coverage of 95% CIs close to the
nominal level; corresponding Wald tests for equivalence in AUC between markers have well-controlled
type-I error rates.

Table 4 presents results for settings with σDx ∈ {1.5, 2}. That is, the variability of marker X is larger
than that of Y among cases. Note that when μDx =

√
(1 + σDx )2/2, we have AUCx = AUCy , although

the two markers can have different ROC curves when σDx |= 1. When this happens, the Delong–Delong
test has an inflated type-I error, even when correlation with the stratification variable is the same for
both markers; whereas the Wald test based on the IPW estimator of � AUC has a well-controlled type-I
error rate. For both the scenarios with � AUC = 0 and � AUC = 0.096, the empirical � AUC estimator is
biased; corresponding 95% CI undercovers the true parameter value. In contrast, the IPW estimators have
minimum bias and good coverage of 95% CIs.

In Web Appendix H (see supplementary material available at Biostatistics online), we also present
additional simulation results when biomarkers follow gamma distributions conditional on disease status.
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Table 3. Performance of different estimators of � AUC = AUCy − AUCx for scenarios where the two
markers have same variability but different correlation with covariate W ∗ conditional on D, for the bi-
normal marker model described in Section 3. Disease prevalence is 0.1. Marker X and Y is each standard
normal among controls. Here we have σDx = σDy = 1, AUCy = 0.76, ρyw∗ = 0.5, ρxy = 0.5. By nD and nD̄,

we indicate, respectively, the expected number of cases and controls sampled in phase two for Bernoulli
sampling and exact number of cases and controls sampled for finite-population stratified sampling. Results

are based on 5000 Monte Carlo simulations

Bernoulli sampling FPS† sampling

AUCx � AUC ρxw∗ nD = nD̄ � ̂AUC( p̂) � ̂AUC
em

� ̂AUC( p̂) � ̂AUC
em

Bias × 100
0.76 0.00 0.40 100 0.07 −0.99 0.01 −1.02

250 −0.01 −1.07 0.03 −1.04
400 −0.04 −1.09 0.01 −1.05

0.30 100 0.03 −2.04 −0.03 −2.13
250 −0.01 −2.10 0.01 −2.10
400 −0.01 −2.10 0.02 −2.09

0.20 100 0.11 −2.98 0.03 −3.09
250 0.04 −3.08 0.02 −3.09
400 0.03 −3.09 0.01 −3.09

0.10 100 0.11 −4.03 0.02 −4.10
250 0.02 −4.10 0.04 −4.09
400 0.03 −4.11 0.01 −4.12

0.664 0.096 0.40 100 0.09 −0.29 0.03 −0.30
250 0.01 −0.36 0.04 −0.33
400 −0.02 −0.39 0.02 −0.35

0.30 100 0.03 −1.52 −0.03 −1.62
250 −0.02 −1.59 0.01 −1.58
400 −0.02 −1.59 0.01 −1.57

0.20 100 0.12 −2.62 0.03 −2.76
250 0.04 −2.74 0.01 −2.75
400 0.02 −2.76 0.01 −2.75

0.10 100 0.11 −3.85 0.03 −3.92
250 0.01 −3.93 0.04 −3.92
400 0.02 −3.94 0.01 −3.95

Var × N
0.76 0.00 0.40 100 6.63 7.18 6.47 6.98

250 2.51 2.78 2.53 2.74
400 1.61 1.77 1.63 1.78

0.30 100 6.62 6.98 6.63 6.81
250 2.57 2.75 2.66 2.69
400 1.62 1.75 1.62 1.67

0.20 100 6.64 6.90 6.44 6.34
250 2.56 2.65 2.64 2.57
400 1.66 1.72 1.62 1.59

(continued)
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Table 3. Continued

Bernoulli sampling FPS† sampling

AUCx � AUC ρxw∗ nD = nD̄ � ̂AUC( p̂) � ̂AUC
em

� ̂AUC( p̂) � ̂AUC
em

0.10 100 6.75 7.00 6.40 5.88
250 2.56 2.71 2.51 2.33
400 1.57 1.66 1.61 1.46

0.664 0.096 0.40 100 7.85 7.92 7.61 7.71
250 2.97 3.08 2.97 3.04
400 1.88 1.95 1.92 1.97

0.30 100 7.92 7.78 7.81 7.66
250 3.05 3.06 3.14 3.03
400 1.93 1.96 1.91 1.88

0.20 100 7.82 7.67 7.70 7.23
250 3.06 2.98 3.11 2.90
400 1.96 1.92 1.91 1.80

0.10 100 7.97 7.81 7.57 6.68
250 3.02 3.02 2.95 2.63
400 1.86 1.85 1.90 1.67

Coverage of 95% CI
0.76 0.00 0.40 100 94.6 94.1 95.0 94.2

250 95.0 92.0 95.0 93.2
400 95.1 90.5 94.4 91.2

0.30 100 94.5 91.4 94.7 90.7
250 94.7 85.7 94.8 85.6
400 94.7 79.1 94.8 79.1

0.20 100 94.2 86.7 94.7 86.9
250 95.0 73.6 94.8 74.1
400 94.2 60.2 94.9 60.7

0.10 100 94.3 79.4 94.3 81.1
250 95.1 57.7 94.8 57.4
400 95.0 38.1 95.1 37.2

0.664 0.096 0.40 100 94.5 95.2 94.7 95.0
250 95.2 94.8 95.0 94.9
400 95.3 94.5 94.5 94.4

0.30 100 94.5 92.6 94.7 92.6
250 95.0 90.1 94.5 89.8
400 94.7 86.7 94.6 87.4

0.20 100 94.1 89.1 94.6 88.9
250 95.1 80.0 94.5 79.9
400 94.2 70.3 94.7 70.6

0.10 100 94.5 82.2 94.2 83.5
250 94.9 63.3 94.8 64.2
400 95.0 46.1 94.8 45.7

(continued)
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Table 3. Continued

Bernoulli sampling FPS† sampling

AUCx � AUC ρxw∗ nD = nD̄ � ̂AUC( p̂) � ̂AUC
em

� ̂AUC( p̂) � ̂AUC
em

Power for testing H0 : AUCx = AUCy

0.76 0.00 0.40 100 5.4 5.6 5.0 7.9
250 5.0 7.9 5.0 6.7
400 4.9 9.5 5.6 8.8

0.30 100 5.5 8.5 5.3 14.2
250 5.3 14.2 5.2 14.3
400 5.3 20.9 5.2 20.7

0.20 100 5.8 13.1 5.0 26.3
250 5.0 26.3 5.2 25.7
400 5.8 39.6 5.1 39.2

0.10 100 5.7 20.3 4.9 42.0
250 4.9 42.0 5.2 42.5
400 5.0 61.7 4.9 62.6

0.664 0.096 0.40 100 70.2 64.7 97.8 95.8
250 97.8 95.8 97.9 96.3
400 99.8 99.6 99.9 99.6

0.30 100 69.4 54.2 97.5 90.1
250 97.5 90.1 97.5 90.1
400 99.8 98.3 99.9 98.6

0.20 100 70.0 43.1 97.7 79.9
250 97.7 79.9 97.7 80.3
400 99.9 94.2 99.8 94.8

0.10 100 70.6 31.7 97.8 64.4
250 97.8 64.4 98.1 65.8
400 99.9 83.8 99.9 84.8

†Finite-population stratified sampling.

The conclusion regarding the performance of the IPW and the empirical AUC estimators is similar to the
bi-normal marker model.

4. IMPLICATION ON EFFICIENCY OF SAMPLING SCHEMES

The analytical variance formula we developed in Section 2 will be valuable to biomarker researchers for
studying the impact of the sampling scheme on the efficiency of biomarker performance estimators. We
demonstrate that using an example comparing two designs with the same number of participants mea-
suring disease outcome, covariate, and biomarker. The setting is similar to that in Section 3, with disease
prevalence λ = P(D = 1) = 0.1. Covariate W ∗ and biomarker X are bivariate normal with correlation ρxw∗

conditional on D. Among controls X and W ∗ are each standard normal; among cases W ∗ ∼ N (0.6, 1) and
X ∼ N (μDx , 1). Let W be a binary covariate stratum derived from W ∗, with W = 1 if W ∗ � 	−1(1/2), and
W = 2 otherwise. We compare two sampling designs. Both are two-phase studies with a random cohort
sample of size N drawn in the first phase. In the second phase, both designs include all cases from a
phase-one sample, i.e., πD = 1; a simple random sample of controls of size nD̄ = nD are drawn without
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Table 4. Performance of different estimators of � AUC = AUCy − AUCx for scenarios where the two
markers have different variability among cases, for the bi-normal model described in Section 3. Disease
prevalence is 0.1. Marker X and Y are each standard normal among controls. Here we have σDy = 1,

AUCy = 0.76, ρyw∗ = 0.5, ρxy = 0.5. By nD and nD̄, we indicate, respectively, the expected number of
cases and controls sampled in phase two for Bernoulli sampling and exact number of cases and controls

sampled for finite-population stratified sampling. Results are based on 5000 Monte Carlo simulations

Bernoulli sampling FPS† sampling

σDx AUCx � AUC ρxw∗ nD = nD̄ � ̂AUC( p̂) � ̂AUC
em

� ̂AUC( p̂) � ̂AUC
em

Bias × 100
1.50 0.76 0.00 0.50 100 0.04 −1.11 0.04 −1.08

250 0.01 −1.13 −0.01 −1.15
400 0.01 −1.12 −0.02 −1.16

0.30 100 0.04 −2.69 −0.03 −2.79
250 0.01 −2.75 −0.01 −2.77
400 −0.01 −2.76 −0.00 −2.76

2.00 0.76 0.00 0.50 100 −0.07 −2.02 0.10 −1.83
250 −0.02 −1.95 0.02 −1.91
400 0.02 −1.90 −0.00 −1.93

0.30 100 0.01 −3.19 −0.04 −3.27
250 −0.00 −3.22 −0.01 −3.23
400 −0.00 −3.21 −0.02 −3.24

1.50 0.664 0.096 0.50 100 0.05 −0.43 0.05 −0.39
250 0.01 −0.45 0.00 −0.46
400 0.01 −0.44 −0.01 −0.47

0.30 100 0.04 −2.29 −0.02 −2.38
250 −0.00 −2.35 0.00 −2.35
400 −0.01 −2.35 0.01 −2.35

2.00 0.664 0.096 0.50 100 −0.04 −1.46 0.11 −1.27
250 −0.02 −1.40 0.03 −1.36
400 0.03 −1.35 0.00 −1.37

0.30 100 0.01 −2.86 −0.03 −2.93
250 −0.01 −2.90 −0.00 −2.90
400 −0.00 −2.89 −0.01 −2.90

Var × N
1.50 0.76 0.00 0.50 100 6.84 7.62 6.57 7.29

250 2.69 3.05 2.71 3.01
400 1.67 1.90 1.70 1.92

0.30 100 6.92 7.55 6.85 7.26
250 2.67 2.94 2.68 2.81
400 1.67 1.84 1.67 1.77

2.00 0.76 0.00 0.50 100 7.27 7.98 6.91 7.82
250 2.89 3.21 2.82 3.17
400 1.81 2.00 1.77 2.01

(continued)
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Table 4. Continued

Bernoulli sampling FPS† sampling

σDx AUCx � AUC ρxw∗ nD = nD̄ � ̂AUC( p̂) � ̂AUC
em

� ̂AUC( p̂) � ̂AUC
em

0.30 100 7.32 8.07 7.20 7.73
250 2.87 3.17 2.85 3.03
400 1.79 1.98 1.79 1.92

1.50 0.664 0.096 0.50 100 7.93 8.39 7.68 8.05
250 3.14 3.37 3.17 3.35
400 1.91 2.07 1.98 2.12

0.30 100 8.07 8.36 7.98 8.13
250 3.14 3.27 3.12 3.15
400 1.95 2.04 1.95 1.98

2.00 0.664 0.096 0.50 100 8.47 8.92 8.03 8.71
250 3.34 3.57 3.28 3.56
400 2.05 2.18 2.06 2.24

0.30 100 8.44 8.96 8.26 8.63
250 3.33 3.52 3.28 3.39
400 2.07 2.18 2.06 2.14

Coverage of 95% CI
1.50 0.76 0.00 0.50 100 94.8 93.6 95.0 94.1

250 94.6 91.9 94.6 92.2
400 94.6 90.5 94.7 90.3

0.30 100 94.2 88.0 94.3 88.1
250 94.8 78.8 94.8 78.5
400 94.6 68.3 94.9 68.4

2.00 0.76 0.00 0.50 100 94.7 91.4 95.3 92.3
250 94.8 87.8 94.6 86.9
400 94.7 83.5 94.4 83.5

0.30 100 94.3 86.4 94.6 85.6
250 94.4 73.6 94.6 73.7
400 94.5 61.8 94.6 60.9

1.50 0.664 0.096 0.50 100 94.7 94.7 94.7 95.0
250 94.8 94.0 94.3 94.2
400 94.9 93.9 94.4 93.6

0.30 100 94.3 90.3 94.4 89.7
250 94.6 84.2 94.9 84.1
400 94.5 77.4 94.8 77.0

2.00 0.664 0.096 0.50 100 94.3 93.0 95.1 93.7
250 94.5 91.2 94.8 91.0
400 94.7 89.5 94.5 89.2

0.30 100 94.6 88.7 94.6 87.9
250 94.3 79.3 94.5 79.3
400 94.7 70.2 94.6 70.0

(continued)
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Table 4. Continued

Bernoulli sampling FPS† sampling

σDx AUCx � AUC ρxw∗ nD = nD̄ � ̂AUC( p̂) � ̂AUC
em

� ̂AUC( p̂) � ̂AUC
em

Power for testing H0 : AUCx = AUCy

1.50 0.76 0.00 0.50 100 5.2 6.3 5.0 5.8
250 5.4 8.0 5.4 7.7
400 5.4 9.5 5.3 9.6

0.30 100 5.8 11.8 5.7 11.8
250 5.2 21.1 5.2 21.3
400 5.4 31.6 5.1 31.5

2.00 0.76 0.00 0.50 100 5.3 8.5 4.70 7.5
250 5.2 12.1 5.4 13.0
400 5.3 16.4 5.6 16.5

0.30 100 5.7 13.4 5.4 14.2
250 5.6 26.3 5.4 26.2
400 5.5 38.1 5.4 39.0

1.50 0.664 0.096 0.50 100 68.9 61.1 69.9 62.3
250 97.0 94.8 97.1 94.6
400 99.9 99.6 99.8 99.3

0.30 100 68.6 44.4 69.6 44.4
250 97.1 81.9 97.6 82.0
400 99.9 95.2 99.9 95.4

2.00 0.664 0.096 0.50 100 66.1 49.1 67.9 50.9
250 96.2 87.5 96.6 87.6
400 99.8 97.6 99.6 97.6

0.30 100 66.4 37.4 66.9 37.2
250 96.3 72.2 96.9 73.0
400 99.8 89.9 99.9 89.9

†Finite-population stratified sampling.

replacement in Design 1, simple random samples of controls with the same number as cases are drawn
without replacement from each W stratum in Design 2. In Design 1, phase-two case and control samples
are representative of their respective distributions; thus the empirical estimator of AUC is valid and is con-
sidered for this design. In contrast, phase-two case and control samples in Design 2 are not representative
of their respective distributions; thus we use the proposed ̂AUC( p̂) with empirically estimated sampling
weights conditional on sampling strata for Design 2.

Following Theorem 1 and Section 2.4, asymptotic variance of ̂AUC( p̂) in Design 2 equals

var{FD̄x (XD)}
N × λ

+ 1

N (1 − λ)

⎧⎨
⎩var{SDx (XD̄)} +

2∑
kD̄=1

var{SDx (XD̄kD̄
)}P(WD̄ = wD̄kD̄

)
1 − πD̄kD̄

πD̄kD̄

⎫⎬
⎭ . (4.1)
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Fig. 1. Efficiency of ̂AUC( p̂) in finite-population stratified sampling (FPS) of controls relative to the empirical AUC
estimator in simple random sampling (SRS) without replacement of controls. Efficiency = asymptotic variance of
empirical AUC estimator in SRS (equation (4.2))/asymptotic variance of ̂AUC( p̂) in FPS (equation (4.1)).

Since ̂AUC
em

in Design 1 can be thought of as an ̂AUC( p̂) estimator where there is only one sampling
stratum for cases and for controls, its asymptotic variance can be similarly derived as

var{FD̄x (XD)}
N × λ

+ 1

N × (1 − λ)

{
var{SDx (XD̄)} + var{SDx (XD̄)} × 1 − πD̄

πD̄

}
, (4.2)

for πD̄ = πD × λ/(1 − λ). The result also follows DeLong and others (1988).

Figure 1 shows the relative asymptotic efficiency of ̂AUC( p̂) in Design 2 versus ̂AUC
em

in Design
1 for two different AUCx values, as ρxw∗ changes from −0.9 to 0.9. A common U-shape is observed,
where Design 2 is more efficient as the magnitude of the correlation increases, whereas Design 1 can be
more efficient when the correlation is small. Comparing variance formulae of the two estimators, their
difference arises from two components: (i) the difference between (1 − πD̄)/πD̄ and 1 − πD̄kD̄

/πD̄kD̄
, and

(ii) the difference between var{SDx (XD̄)} and var{SDx (XD̄kD
)}. Note that when X and W ∗ are not corre-

lated among controls, the difference in variance between the two estimators is solely due to component (i):
simple random sampling without replacement from controls is more efficient since the weighted average
of 1 − πD̄kD̄

/πD̄kD̄
for kD̄ = 1, 2 is larger than (1 − πD̄)/πD̄ in our example. As X and W ∗ become more

correlated, variance of SDx (XD̄) conditional on the covariate stratum becomes smaller compared with its
variance among all controls, and thus stratified sampling is more efficient. This is consistent with the use
of stratified sampling in survey sampling as a possible way to increase efficiency in estimating parameters
such as the population total when a heterogeneous population can be divided into strata with homoge-
neous units (Cochran, 2007). The same pattern can be observed when biomarkers conditional on disease
status follow gamma distributions (Web Supplementary Figure S3, available at Biostatistics online). In
practice, researchers can evaluate efficiency of different sampling schemes based on prior knowledge in
the relationship between marker, covariate, and disease.
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5. EXAMPLE

5.1 RV144 example

We illustrate the proposed methodology for estimating and comparing AUC with a real example of
biomarker study from the RV144 Thailand HIV vaccine trial. The trial included 16 402 participants aged
18–30 who were 1:1 randomized into a vaccine and a placebo arm. Among vaccine recipients in the RV144
trial who were not yet infected at week 26, an immune response study was conducted to assess vaccine-
induced immune response based on peak immunogenicity at week 26 following a finite-population strati-
fied sampling design (Haynes and others, 2012). Around 1.8% vaccinees were censored before the end of
the study and were treated as non-infected for subsequent sampling. The study includes all 41 vaccinees
infected after week 26 visits. The control vaccinees were selected from a stratified random sample of vac-
cinees free of HIV-1 infection at 42 months, within strata constructed by gender, number of vaccinations
received, and per-protocol status, with five times the number of cases within each stratum.

Two of the primary assays studied, the binding of IgG antibodies to variable regions 1 and 2 (V1V2)
of the gp120 Env, and the binding of plasma IgA antibodies to Env, were found to correlate significantly
with infection risk (Haynes and others, 2012). Here we evaluate and compare AUC of the two markers. In
this application, D will be HIV infection at 42 months, and X and Y are V1V2 and IgA measures at week
26, respectively.

First, the naive empirical AUC estimate is 0.573 (95% CI = (0.483, 0.663)) for V1V2, and 0.596 (95%
CI = (0.499, 0.693)) for IgA. There is around 4% relative increase in AUC for IgA compared with V1V2,
although the difference is not statistically significant (p-value = 0.774 based on the Delong–Delong test).
With empirically estimated sampling weights conditional on the matching stratum, the ̂AUC( p̂) equals
0.588 (95% CI = (0.498, 0.679)) for V1V2 and 0.589 (95% CI = (0.490, 0.687)) for IgA. The difference
in AUC between the two markers becomes even smaller after accounting for the sampling scheme with a
p-value of 0.997 based on the Wald test. In this example, adjusting for the sampling scheme makes a small
difference in point estimates due to the relatively small variability in sampling weights of controls across
strata; the observation that the IPW estimate of the AUC difference between IgA and V1V2 is smaller than

the empirical estimate is consistent with observations made in simulation studies, where bias in � ̂AUC
em

can make two markers look more different when they have equal AUC.

5.2 Prostate cancer study example

In the second example, we consider a prospective study conducted by the Early Detection Research
Network aimed to assess a urine biomarker for prostate cancer, the Prostate Cancer Antigen 3 (PCA3)
(Deras and others, 2008). This study involved 570 men enrolled at four North American sites scheduled
for prostate biopsy, with a prostate cancer (D) prevalence of 36.6%. Urinary PCA3 (Y ) and serum PSA
(prostate-specific agent, X ) are obtained from every participant using specimens collected before biopsy.
Each biomarker is log-transformed and standardized to have mean zero and variance 1 among subjects
without prostate cancer. Among those with prostate cancer, PCA3 and PSA have mean 0.64 and 0.42, and
variance 1.0 and 0.83, respectively. Pearson correlations with age are 0.40 for PCA3 and 0.15 for PSA
among those without prostate cancer, and 0.24 for PCA3 and 0.28 for PSA among those with prostate
cancer. Increase in age also appears to be associated with increased risk of prostate cancer.

To illustrate application of our methodology, we perform a finite-population stratified sampling based
on age strata generated by the first and second tertiles of age distribution among controls, i.e., age <60,
60–67, >67 years. We randomly sampled 120 cases and then sampled the same number of controls as
cases within each age stratum. Based on the case–control sample, the empirical AUC estimate is 0.553
(95% CI = (0.481, 0.626)) for PSA and 0.645 (95% CI = (0.576, 0.715)) for PCA3, with a difference not
statistically significant (� AUC = 0.092 with 95% CI (−0.004, 0.188), and p-value = 0.061 based on the
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Delong–Delong test). In contrast, ̂AUC( p̂) with empirically estimated sampling weights conditional on the
stratum equals 0.553 (95% CI = (0.481, 0.626)) for PSA and 0.671 (95% CI = (0.606, 0.736)) for PCA3,
with a significant difference detected (� AUC = 0.111 with 95% CI (0.017, 0.206), p-value = 0.021
based on the Wald test). Note that there is a significant difference between the two markers if we esti-
mate the empirical AUC based on the full cohort sample (� AUC = 0.117, 95% CI = (0.054, 0.179),
p-value = 0.0003 based on Delong–Delong’s test). Thus, with the case–control sample only, we would
have identified the significant difference with the weighted estimator, but have missed it using the empir-
ical estimator.

6. CONCLUDING REMARKS

In this paper, we developed methods for assessing a biomarker’s classification accuracy for a binary disease
as characterized by the area under the ROC curve in two-phase sampling designs. Finite-population strat-
ified sampling of biomarkers from a phase-one cohort representative of the target population has become
increasingly common in recent years with the availability of large clinical trials and cohort studies. But
statistical methods to properly handle the design components when assessing biomarkers are not yet well
developed. Empirical area under the ROC curve estimated from the phase-two biomarker samples was often
reported in applied literatures even in the presence of biased sampling of cases and/or controls. We showed
in this paper that empirical estimators of AUC ignoring the biased sampling scheme can lead to severely
biased estimates of classification accuracy and invalid inference for comparing biomarkers. We investi-
gated an inverse-sampling-probability-weighted estimator that achieves unbiased estimation of AUC and
developed asymptotic variance formulae applicable to inference in finite-population stratified sampling,
through its connection with the IPW estimator in the standard Bernoulli sampling design. The analytical
variance formulae we developed will provide valuable guidance to biomarker researchers on optimizing the
sampling scheme in designing future biomarker studies, in order to achieve better efficiency in evaluating
biomarkers for classification accuracy. For Bernoulli sampling, we observed analytically and numerically
that using estimated sampling weights is more efficient even when the true sampling weights are known
by design (Web Supplementary Appendix A–C, F–H, see supplementary material available at Biostatis-
tics online). In particular, using estimated weights can lead to much improved efficiency for estimating
performance of a single marker. In contrast, the improvement due to weights estimation is relatively minor
for comparing performance of paired markers; when sample size is small, the CI of the � AUC estimator
based on known sampling weights can have slightly better coverage than that based on estimated weights.

In this paper, we considered simple design-based weights, the estimation of which does not require
more information beyond the sampling strata. In etiology studies, it has been shown that when auxiliary
variables are available from a phase-one cohort, they can be used to further adjust the weights for poten-
tial efficiency gains in estimating the disease odds ratio or hazard ratio (Breslow and others, 2009). It
is interesting in future work to investigate the impact of weight adjustments using auxiliary variables on
biomarker performance measure such as the AUC. Finally, the inverse-probability-weighting methods can
be naturally applied to other performance measures such as the points on the ROC curve and the partial
area under the ROC curve.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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