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Widespread high-throughput testing for identification of severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) infection by RT-PCR has been a foundation in the response to the coronavirus disease
2019 (COVID-19) pandemic. Quality assurance metrics for these RT-PCR tests are still evolving as testing
is widely implemented. As testing increases, it is important to understand performance characteristics
and the errors associated with these tests. Herein, we investigate a high-throughput, laboratory-
developed SARS-CoV-2 RT-PCR assay to determine whether modeling can generate quality control
metrics that identify false-positive (FP) results due to contamination. This study reviewed repeated
clinical samples focusing on positive samples that test negative on re-extraction and PCR, likely rep-
resenting false positives. To identify and predict false-positive samples, we constructed machine
learningederived models based on the extraction method used. These models identified variables
associated with false-positive results across all methods, with sensitivities for predicting FP results
ranging between 67% and 100%. Application of the models to all results predicted a total FP rate of
0.08% across all samples, or 2.3% of positive results, similar to reports for other RT-PCR tests for RNA
viruses. These models can predict quality control parameters, enabling laboratories to generate decision
trees that reduce interpretation errors, allow for automated reflex testing of samples with a high FP
probability, improve workflow efficiency, and increase diagnostic accuracy for patient care.
(J Mol Diagn 2021, 23: 1085e1096; https://doi.org/10.1016/j.jmoldx.2021.05.015)
S.L.Y. and A.C.N. contributed equally to this work as senior authors.
Disclosures: None declared.
The coronavirus disease 2019 (COVID-19) pandemic
generated the need to rapidly implement high-throughput,
widespread testing in the United States. The primary method
for detecting severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), the RNA virus responsible for COVID-
19, is RT-PCR. RT-PCR is currently widely used and is the
gold standard for the diagnosis of many infectious diseases.1

RT-PCR has become the predominate diagnostic modality
for viral disease as results are rapidly returned, it demon-
strates high specificity and sensitivity, and it is relatively
inexpensive.2 However, as COVID-19 cases spread, it was
quickly apparent that the need for testing outpaced health
Pathology and American Society for Investiga
departments’ and clinical laboratories’ ability to provide
testing. Thus, a multitude of RT-PCR and transcription-
mediated amplification assays testing for SARS-CoV-2
have received emergency use authorization (EUA) from
the US Food and Drug Administration (FDA) that includes
both closed-platform and high-throughput, open-platform
reactions (FDA, https://www.fda.gov/medical-devices/
coronavirus-disease-2019-covid-19-emergency-use-
authorizations-medical-devices/vitro-diagnostics-euas,
tive Pathology. Published by Elsevier Inc. All rights reserved.
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last accessed March 4, 2021). Indeed, approximately 336
million SARS-CoV-2 tests have been performed in the
United States, with an increased need in current infectivity
hot spots (CDC, https://covid.cdc.gov/covid-data-tracker/
#cases_totalcases, last accessed March 4, 2021). Because
of the rapid development and implementation of these
assays, robust universal rules for interpretation and quality
assurance of results have not been well defined in the
clinical setting.

Guidelines for SARS-CoV-2 testing have been released
by working groups and mainly focus on clinical scenarios of
when to employ testing.3 Many SARS-CoV-2 clinical tests
receiving EUA only have interpretation guidelines for in-
dividuals under investigation, or those patients with an
increased pretest probability of COVID-19 disease. Most of
these same tests have not been validated as a screening
technique for mildly symptomatic or asymptomatic patients,
even though they are widely used in this manner. Testing of
asymptomatic patients is a cornerstone for combating the
spread of SARS-CoV-2 because transmission can be facil-
itated by patients with minimally or presymptomatic in-
fections.4 As these tests have not been fully studied in the
setting of minimally symptomatic individuals, there is a
potential for resultant errors. Attributing a positive SARS-
CoV-2 result to an asymptomatic patient has an impact on
the mental health, physical health, and socioeconomic well-
being of that patient. A positive result also has wide-ranging
impacts on infection control measures in the health care
system and the community, such as isolation procedures in
the hospital, closure of schools and daycares, and the halting
of nursing home visits. In a low-prevalence population with
low pretest probability, there is increased concern that a
positive result is an error and represents a false-positive
result. In addition, a false-positive SARS-CoV-2 result
(FP; defined as a nonreproducible result on repeated
extraction and RT-PCR) in a patient with significant
symptoms due to other causes, such as a congestive heart
failure patient with acutely worsening shortness of breath
and cough, could lead to improper medical management.
Thus, there is a need to understand error rates of SARS-
CoV-2 assays to reduce the risk of false results. External
quality assessments are traditionally performed on molecu-
lar assays by providing clinical laboratories with positive
and negative samples and determining FP and false-negative
rates from these blinded tests. False-negative results due to
poor nasopharyngeal sampling or changes in anatomic viral
replication have been identified and discussed elsewhere.5

However, a recent study analyzing external quality assess-
ments for RNA virus detection found FP rates ranged from
0% up to 16.7%, with a median of 2.3%.6 Therefore, it is
highly likely that a small portion of SARS-CoV-2 RT-PCR
positive results are FPs and should be investigated.

As the need for SARS-CoV-2 testing was increasing,
shortages of testing supplies developed. Thus, our clinical
laboratory established a high-throughput, open-platform
SARS-CoV-2 assay using the CDC developed primers and
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probes that could be easily adapted for multiple extraction
methods.7 To study FP results across multiple extraction
systems, clinical samples with concern for contamination or
those with low viral load, as defined by late CT, underwent
repeated extraction and testing from the primary sample. In
general, FP results from PCR may be due to testing the
wrong sample (due to mislabeling, sample mix-up, or
reporting errors), cross-reactivity of the PCR assay, or
contamination. Contamination is of particular concern in an
open-platform assay when aerosolization from human or
machine handling can cause the transfer of target genomic
material between wells, especially when there are true-
positive (TP; defined as reproducible results on repeated
extraction and RT-PCR) samples that can exhibit as much as
106 range in virus quantity. Results of initial and repeated
testing were compared to determine whether there were
discordant results on repeat. Initially positive samples that
were discordant were considered FP, whereas concordant
samples were considered TP. Next, machine learning
derived models were generated, taking into account the
relative viral load of the index sample, the extraction
method, and relative viral load of surrounding positive
wells. These models were used as a clinical decision support
tool to identify wells with a high probability of being an FP
and to identify technical contributors to FP samples.
Modeling identified FP samples that could be predicted
across different extraction methods, with each model iden-
tifying different variables used to make FP predictions.
From these models, we can identify potential technical im-
provements as well as identify samples with a high proba-
bility of FP results to act as an adjunct for laboratory clinical
decision making and initiate automated sample re-extraction
and repeat.

Materials and Methods

SARS-CoV-2 PCR Testing

Detection of SARS-CoV-2 RNA by RT-PCR has been
detailed previously.7 Individual RT-PCRs were performed
in a 384-well plate using the US CDC-designed primers and
probes specific for the N1 and N2 regions of the SARS-
CoV-2 virus and human RNase P (RP). Nucleic acid ex-
tractions were performed using: i) manual, column-based
methods [either Qiagen QIAamp Viral RNA Mini Kit
(Qiagen, Germantown, MD) or Macherey Nagel Nucelospin
RNA Virus kit (Macherey Nagel, Bethlehem, PA)] run in
batches of 16 samples; ii) the semi-automated 16-sample
throughput Promega Maxwell RSC Viral Total Nucleic
Acid kit (Promega, Madison, WI) on the Maxwell RSC
instrument; iii) the automated 96-sample throughput Mag-
MAX Viral and Pathogen Nucleic Acid Isolation kit on the
Thermo KingFisher Flex instrument (Thermo Fisher Sci-
entific, Waltham, MA); or iv) the automated 96-sample
throughput Zymo Quick-DNA/RNA Viral Mag Bead kit
(Zymo Research, Irvine, CA) on the Tecan Fluent
jmdjournal.org - The Journal of Molecular Diagnostics

https://covid.cdc.gov/covid-data-tracker/#cases_totalcases
https://covid.cdc.gov/covid-data-tracker/#cases_totalcases
http://jmdjournal.org


Predicting FP SARS-CoV-2 Results
instrument (Tecan Group, Männedorf, Switzerland). Note
that the Maxwell RSC viral protocol has multiple manual
pipetting steps of individual samples and was considered a
manual protocol for modeling purposes. Extractions were
performed per manufacturer’s protocols, except as noted
with the following modifications. For the Qiagen extraction,
modifications included use of 100 mL of primary patient
specimen and an elution volume of 50 mL. For the Macherey
Nagel extraction, modifications included use of 100 mL of
primary patient specimen and use of 650 mL of lysed sample
loaded onto extraction columns. For extraction using Qia-
gen, Macherey Nagel, or Promega kits, batches of 16 pri-
mary nasopharyngeal samples were inactivated in a
biosafety hood and extracted in parallel within a biosafety
cabinet or on the Maxwell instrument and transferred to
individually capped, two-dimensionalebarcoded tubes ar-
ranged in two rows of eight samples for transport to the
physically separate PCR setup facility; there, samples were
opened with automated instrumentation and transferred into
96-well plates (combining six extraction batches of 16
samples) using automation-assisted pipetting instruments.
Automation-assisted pipetting instruments were then used to
aliquot a 384-well PCR assay plate from the 96-well sample
master plates. For the automated extraction processes using
KingFisher or Zymo kits, racks of 93 primary nasopharyn-
geal samples plus three controls were manually transferred
in a biosafety cabinet into 96-well plates for viral inactiva-
tion, and then placed on the automated RNA extraction
instrument to complete the procedure. Following comple-
tion of automated extraction, plates were sealed and trans-
ferred to the physically separate PCR setup facility; there,
96-well plates were unsealed and used for 384-well PCR
assay plate setup as above. The assay limit of detection
(LOD) is between 500 and 1600 viral copies per milliliter,
with minor variation between extraction methods. A total of
500 viral copies correlated to CT values of between 37 and
37.5 across 20 replicates performed using the EUA pro-
tocols (data not shown).

For studies on follow-up testing after a predicted or
repeated FP result, PCR results were performed by one of
four tests: the CDC N1/N2 PCR test described above,
Xpert Xpress SARS-CoV-2 PCR assay (Cepheid, Sunny-
vale, CA), Aptima SARS-CoV-2 transcription-mediated
amplification assay (Hologic, Marlborough, MA), or
Simplexa SARS-CoV-2 PCR assay (DiaSorin, Cypress,
CA). All tests were performed as per manufacturer’s
instructions.
Interpretation of Results

Results were initially interpreted by an automated algorithm
following CDC and FDA recommendations as follows:

N1 and N2 CT � 40 Positive for SARS-CoV-2

Only N1 or N2 CT � 40 Inconclusive for SARS-CoV-2
The Journal of Molecular Diagnostics - jmdjournal.org
N1 and N2 CT Undetected
and RP CT � 38 Negative for SARS-CoV-2

Undetected and RP CT > 40 Invalid

Pathologists reviewed all autogenerated positive,
inconclusive, and invalid results and multicomponent plots
to confirm data quality and result interpretation; this re-
view determined the need for repeated analysis based on
data quality or plate layouts, indicating proximity of other
positive samples. Inconclusive results with multicompo-
nent plots demonstrating exponential amplification above
a positive threshold (normalized reporter value > 0.5) with
no concern for contamination were not repeated and
resulted as positive, as per FDA recommendations. Posi-
tive or inconclusive samples with concern for contamina-
tion were re-extracted and repeated. Open-platform testing
can be more prone to contamination of viral products due
to aerosolization, plate seal removal, or pipettor drag
during extraction or PCR setup.8 To combat the risk of FP
results in this open-platform laboratory-developed test
(LDT), samples underwent repeated extraction and PCR if
there was concern for contamination from surrounding
wells, as indicated by a low relative viral load (RVL; see
below for calculation) in the index well and high RVL in
surrounding wells. Low RVL was defined at approxi-
mately <0.015 (e1.80 after log10 transformation), which
correlates with N1/N2 CT values of 34 and an RP CT value
of 28. RP CT of 28 was selected as it was approximately
the average value, and the N1/N2 CT 34 value was
empirically determined as it was approximately 50-fold
less abundant than RP. Extraction method was also
taken into account when selecting wells for repeat as
manual and automated extractions empirically demon-
strated different patterns of potential contamination in
early quality control (QC) analyses (Supplemental
Figure S1). Inconclusive samples with poor amplifica-
tion, identified by multicomponent plot review, were re-
extracted and repeated. Negative samples with RP CT

between 38 and 40 are re-extracted once to confirm the
negative result. All invalid results were repeated once.
Data Preparation

Multiple data sets were generated from the analysis of the
raw PCR data. The raw data set was first parsed for techni-
cally valid runs with no errors. Next, RVL was calculated for
all autoscored positive and inconclusive samples (as defined
by the interpretation algorithm described above) using the
following formula: [2(RP CTeN1 CT) þ 2(RP CTeN2 CT)]/2.
This formula provides a normalized relative value of the
amount of viral RNA in comparison to total human nucleic
acid within each sample and was adapted from previous
reports showing normalization was needed for reliable
estimation of viral load across multiple samplings.9 The
formula used was adapted to incorporate both the N1 and N2
1087
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measurements as well as transform the CT data to a linear
scale. Next, geographic parameters were calculated that
included east-west RVL, north-south RVL, surrounding
RVL, and diagonal RVL (Supplemental Figure S1). For
manually extracted samples, the extraction batch RVL of 16
samples was calculated by summing the individual RVLs for
all positive samples in that batch, as these samples were
handled simultaneously in a biosafety cabinet throughout the
entire extraction procedure. The Tecan platform had specific
plastic consumables with 16 compartments containing six
pipette tips in a compartment (three horizontal, two vertical);
the protocol included tip re-usage to minimize utilization of
scarce plastic consumables, and these compartments were
noted to contribute to contamination in experimental opti-
mization and validation experiments. For Zymo/Tecan
extracted samples, horizontal row RVL, vertical row RVL,
and Tecan six-pack compartment RVL were calculated to
account for movement of the automated pipetting heads
across reagent and sample plates onboard the instrument. An
example of geographic plate calculations is illustrated in
Supplemental Figure S1. Some variables were derived from
multiple wells (eg, east-west) with the RVLs of the wells
summed to generate the final variable. For mathematical
purposes, undetected CT values were assigned a value of 46
as this was one cycle higher than the total number of 45 PCR
cycles performed. Finally, a fold-change variable was
generated by calculating the sum of the surrounding wells’
RVL and dividing it by the index well RVL. This parsed and
calculated data was defined as the cleaned data set. From the
cleaned data set, four new parallel data sets were generated
that included the following: i) primary data set, ii) final
resulting data set, iii) repeated data set, and iv) modeling data
set.

For the primary data set, samples were grouped on the
basis of their unique sample identification number and
parsed for only the first PCR result autocalled using the
interpretation algorithm described above. Thus, the primary
data set represents the preliminary test result generated by
automated result classification without technologist or
pathologist review for data quality and contamination po-
tential before any human-determined repeated analysis was
performed. For the final resulting data set, samples were
grouped on the basis of their unique sample identification
number and parsed for the final pathologist-reviewed result,
which included the final result for samples subjected to
repeated extraction and analysis. To generate the repeated
data set, the cleaned data set was parsed and filtered spe-
cifically for samples that were repeated following re-
extraction and linked by the unique sample identification
number. Samples that underwent repeated PCR without
repeated extraction were excluded from the analysis, as
these were mostly due to PCR anomalies unrelated to
concern for contamination. To generate the modeling data
set from the repeated data set, any result initially autocalled
as inconclusive in the primary data set was reclassified to
positive, because the modeling approach needed a binary
1088
dependent variable for the result (positive or negative). No
other result interpretations were modified. Repeated sample
pairs in the modeling data set were then parsed on the basis
of the results’ interpretations for TP status (positive primary,
positive repeat), which was assigned a value of 1; and for FP
status (positive primary, negative repeat), which was
assigned a value of 0.

Modeling

All RVL calculated variables in the modeling data set un-
derwent further log10 transformation for modeling and
graphical representation. Variables with a value of 0 were
assigned the smallest value for that variable from the
repeated data set before log10 transformation. Samples were
separated into either manual or automatic extraction, and
modeling was performed on centered and scaled data. FPs
were predicted using a gradient boosting machine model
using the caret version 6.0-8610 package with a 10-fold
repeated cross-validation. Partial dependence plots were
generated using the pdp package version 0.7.0.11 To
generate confusion matrix tables, cutoff values for the
probabilities were set to 0.5. For analysis of the final
resulting data set, FP events were defined as a probability of
�0.15 for manual, 0.1 for automated-KingFisher extraction,
and 0.25 for automated-Tecan extraction. Data were
analyzed in R version 4.0.2; code is available (https://
github.com/nelsonac-umn-lab/covid, last accessed June 2,
2021). Statistical testing and graphical representation were
performed using GraphPad Prism version 8.4.3 for
MacOS (GraphPad Software, San Diego, CA) or using
FlowJo Software for MacOS version 10.7.1 (Becton,
Dickinson and Company, Ashland, OR).

Regulatory Statement and Data Availability

Utilization of clinical test results for the purposes of test
validation and quality improvement was reviewed and
approved by the Institutional Review Board
(STUDY00009560 and STUDY00010603). The repeated data
set used for modeling is included (Supplemental Table S1).

Results

Testing with our laboratory-developed RT-PCR assay for
detection of SARS-CoV-2 viral RNA began on March 22,
2020. By August 12th, 2020, 206,445 samples were resulted
with an overall 3.5% positive rate (Table 1) (see Materials
and Methods for description of data generation). Results
are composed of samples from both symptomatic and
asymptomatic patients. The primary results generated before
repeat of any samples demonstrated 1.4% invalid and 1.0%
inconclusive results; however, repeated testing and pathol-
ogist review resolved most of these cases, and a much
smaller number of samples remained inconclusive (0.1%)
and invalid (0.4%) (Table 1). Early in this time period,
jmdjournal.org - The Journal of Molecular Diagnostics
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Table 1 Summarized Primary and Final SARS-CoV-2 Results

Result Primary data set* Final resulting data set*

Not detected 194,706 (94.3) 198,153 (96.0)
Positive
SARS-CoV-2

6727 (3.3) 7273 (3.5)

Invalid 2894 (1.4) 777 (0.4)
Inconclusive 2103 (1.0) 202 (0.1)
QNS 14 (0.006) 35 (0.02)
No reaction 1 (0.0005) 5 (0.002)
Total 206,445 206,445

Data are given as n (%).
*See Materials and Methods for description of data set generation.
QNS, quantity not sufficient.

Figure 1 Overview of testing during time of study. A: Number of
samples measured for SARS-CoV-2 as a function of time. B: Frequency of
positive SARS-CoV-2 samples as a function of time. Bars represent a single
day of tests.

Predicting FP SARS-CoV-2 Results
sample RNA was extracted using a manual column-based
method or a low-throughput magnetic bead-based method
for sets of 16 samples. Later, automated 96-well
plateebased methods for RNA extraction were validated
and used regularly. Manual extraction, based on extraction
sets of 16 samples, was still performed daily on a smaller
number of samples left over after plate-based RNA extrac-
tion. In total, three distinct extraction workflows were used
for these clinical samples: manual extraction, automated
KingFisher-based extractions, and automated Tecan-based
extractions. Daily test volume increased as the amount of
automation was increased (Figure 1A). By August, up to
6000 tests were performed daily. As testing volume
increased, the prevalence of positive SARS-CoV-2 tests
decreased from approximately 10% to 20% positivity to
approximately 1.0% to 1.5% by early July, but then began
to increase to approximately 5% in late July (Figure 1B).
Validation, performance, and comparison studies for the
SARS-CoV-2 RT-PCR test are described elsewhere.7 By
using this high-throughput, open-platform LDT RT-PCR
assay with different extraction methods, testing was able to
be rapidly scaled to account for increasing community needs
with fewer supply bottlenecks associated with some pro-
prietary, closed-platform approaches of detecting SARS-
CoV-2.

Of the total samples assayed (36,692 manual, 169,564
automated, and 189 with no extraction method), 3311 were
re-extracted, underwent subsequent PCR, and resulted
(repeated data set) (Table 2). Samples that underwent
automated extraction using either the Tecan or KingFisher
methods are combined herein to compare manual versus
automated methods. On retrospective data review, extrac-
tion methods for 54 repeated samples (4 positive samples, 1
sample with no reaction, and 46 not detected) were not
identified. These samples were removed from modeling
analysis but are present in the total data set. The most
common reason samples were repeated following automated
extraction was invalid primary results, whereas the most
common reason samples were repeated following manual
extraction was inconclusive primary results (Table 2).
Analysis comparing TP and FP results demonstrated
The Journal of Molecular Diagnostics - jmdjournal.org
significantly more FP events when initial manual extraction
methods were used (Fisher exact test, P < 0.0001)
(Figure 2, A and B, and Table 3). Thus, FP events are
identified in the SARS-CoV-2 PCR assay and are generated
at different rates across extraction methods.

We hypothesized that samples with initial positive/
inconclusive results returning negative results on repeat are
likely FP events due to contamination; however, some
samples could represent an initial TP and repeated false
negative because of poor sample quality or inconsistent
detection of low-concentration SARS-CoV-2 RNA. The
data were used to evaluate for these two possibilities. First,
if the FP events were associated with poor sample collec-
tion, the FPs would demonstrate reduced sample quality and
reduced ability to detect viral RNA. The CT values of the
human internal positive control (RP) were compared across
TP and FP samples within the same extraction type, finding
no difference (one-way analysis of variance, manual com-
parison P > 0.99; automated comparison P Z 0.93)
(Figure 2C). This suggested the extent of sampling and/or
sample integrity was not different between TP and FP
samples. To explore the possibility of the inability to
identify inadequate sample collection due to minimal dif-
ference between RP CT values, all measured samples were
1089
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Table 3 Summarized Results of SARS-CoV-2 Modeling Data Set

Results Manual Automated

Positive SARS-CoV-2/not detected 98 (42.0) 330 (10.7)
Not detected/not detected 66 (28.3) 246 (8.0)
Invalid/not detected 25 (10.7) 1718 (55.8)
Positive SARS-CoV-2/positive
SARS-CoV-2

24 (10.3) 343 (11.1)

Invalid/invalid 11 (4.7) 317 (10.3)
Not detected/positive SARS-CoV-2 7 (3.0) 32 (1.0)
Invalid/positive SARS-CoV-2 1 (0.4) 79 (2.6)
Not detected/invalid 1 (0.4) 5 (0.2)
Positive SARS-CoV-2/invalid e 8 (0.3)
Total 233 3078

Data are given as n (%).
e, Not identified in this extraction method.

Table 2 Summarized Results of SARS-CoV-2 Repeated Data Set

Results Manual Automated

Inconclusive/not detected 93 (40.0) 321 (10.4)
Invalid/not detected 39 (16.7) 1785 (58.0)
Not detected/not detected 37 (15.9) 187 (6.1)
Inconclusive/positive SARS-CoV-2 21 (9.0) 244 (7.9)
Invalid/invalid 14 (6.0) 287 (9.3)
Positive SARS-CoV-2/not detected 13 (5.6) 35 (1.1)
Positive SARS-CoV-2/positive
SARS-CoV-2

11 (4.7) 84 (2.7)

Invalid/positive SARS-CoV-2 2 (0.9) 41 (1.3)
Not detected/inconclusive 1 (0.4) 3 (0.1)
Positive SARS-CoV-2/inconclusive 1 (0.4) 2 (0.06)
Inconclusive/inconclusive 1 (0.4) 33 (1.1)
Invalid/QNS e 21 (0.7)
Not detected/positive SARS-CoV-2 e 4 (0.1)
Not detected/invalid e 5 (0.2)
Invalid/inconclusive e 21 (0.7)
Inconclusive/invaild e 4 (0.1)
Positive SARS-CoV-2/invalid e 1 (0.03)
Total 233 3078
All samples run (206,445)* 36,692 169,564

Data are given as n (%).
*A total of 189 samples were not coded for extraction method.
e, Not identified in this extraction method; QNS, quantity not sufficient.

Martinez et al
compared. RP CT values were found to be normally
distributed with a mean of 28.1 and an SD of 3.0 (data not
shown), demonstrating approximately 95% of samples were
between 34 and 22 CT. Thus, there is a 2

12 difference in RP
transcript quantity and is likely enough difference between
samples to identify poor quality specimens based on RP CT

value. Next, we hypothesized that the identification of FP
results was due to samples with a viral concentration below
this assay’s LOD. The LOD for this assay is defined as the
viral RNA quantity at which 95% (19 of 20) of replicates for
positive samples are identified, which was associated with
average CT values of approximately 37.5. As the viral
Figure 2 False-positive (FP) results are not explained by sample quality or re
were true positive (TP) and FP. B: Frequency of repeated automatically (Auto) extra
and FP samples that were initially manually or automatically extracted (Tukey bo
Relative viral load (RVL) of repeated TP and FP samples that were initially manua
variance with multiple comparisons).

1090
concentration falls below the LOD, the frequency of repli-
cates producing a positive result will also decrease. To test
this hypothesis, the RVL of all TP and FP samples in the
repeated data set was compared, finding no significant dif-
ference between the manual extraction (one-way analysis of
variance, manual comparison P Z 0.71), but a trend toward
lower RVL for FP in the automated extractions (one-way
analysis of variance, P Z 0.11) (Figure 2D). This does not
rule out that samples with low viral load are contributing to
the initially positive SARS-CoV-2 results that repeat nega-
tive, but it does suggest that low viral concentration is not
clearly the main contributor to nonreproducible results and
justifies detailed study of potential mechanisms driving
contamination.
Sample contamination occurs in either a reproducible or a

probabilistic manner. Technical method may introduce the
risk for reproducible contamination, as most technicians/
technologists, and all automated machines, perform tasks in
an ordered manner (ie, pipetting of samples left to right or
starting at well A1 and going to well A12). Stochastic
contamination can occur due to aerosolization of RNA or
lative viral load. A: Frequency of repeated manually extracted samples that
cted samples that were TP and FP. C: RNase P (RP) CT values for repeated TP
x-and-whisker one-way analysis of variance with multiple comparisons). D:
lly or automatically extracted (Tukey box-and-whisker one-way analysis of

jmdjournal.org - The Journal of Molecular Diagnostics
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amplicon to surrounding wells and has been shown to occur
in plate-based bacterial 16s RNA sequencing.12 Even with
stochastic contamination, there were still reproducible pat-
terns of contamination in the 16s sequencing as abutting
wells were more likely to exchange material than distant
wells.12 To investigate reproducible errors and potential
sources of contamination in this open-platform assay, we set
out to predict samples that had a high likelihood of being FP
to identify the samples for repeat. Our basic assumptions
were that wells directly surrounding a sample were most
likely to contribute to contamination and that the relative
difference in viral concentration between samples would
impact the probability of an FP result. Because of technical
differences across the three extraction methods, we hy-
pothesized that certain directional relationships between
neighboring samples could be more prominent contributors
to the manner of contamination. On the basis of these as-
sumptions, 12 different variables (Supplemental Table S2
and Supplemental Figure S1) were defined for analysis
and data were modeled from each of the three extraction
methods separately. The models’ predictions showed a
positive predictive rate of 87%, 93%, and 65% for detecting
FPs using the manual, automated-KingFisher, and
automated-Tecan extraction methods, respectively
(Figure 3, AeC). Sensitivity of the models for the three
extraction methods were 96%, 100%, and 67%, whereas the
specificity was only 36%, 90%, and 66%, respectively
(Figure 3, AeC). Identification of the top variables
contributing to the models’ predictions demonstrated that
N2 CT value contributed substantially in all three models,
whereas unique extraction-specific values, such as the
extraction batch RVL (manual) and the horizontal and
Tecan shared pipette RVLs (automated-Tecan), were
Figure 3 Machine learningederived models identify false-positive (FP) sample
events of manually (A), automated-KingFisher (B), or automated-Tecan (C) extract
for the manual (D), automated-KingFisher (E), and automated-Tecan (F) extractio
normalized to the maximal contributor variable. RVL, relative viral load.

The Journal of Molecular Diagnostics - jmdjournal.org
important in their respective methods (Figure 3, DeF).
These results demonstrate that the extraction methods have
different variables associated with prediction of FPs, indi-
cating that contamination is produced in a method-
dependent manner and that models need to be generated
individually when applying this QC method to other assays.

The data used to generate the manual extraction model
was further studied, as the manual method may be most
broadly applicable to other laboratories and potentially the
most likely to demonstrate reproducible error. The top three
variables contributing to the manual model were studied
first: N2 CT, extraction batch RVL, and the calculated fold
change of the measured well to the surrounding well RVL.
Comparison of these three variables showed that the FPs
exhibited higher values across all variables when compared
with the TPs (Figure 4, AeC). These results support our
hypothesis about potential sources of intersample contami-
nation. First, the presence of multiple positive samples,
particularly those with higher viral loads within a single
manual extraction batch (n Z 16 samples), is associated
with FPs. Second, samples with higher or undetected viral
N2 CT values are more likely to be FPs. Last, large differ-
ences in the collective viral load of all adjacent samples
surrounding an index well, compared with the index well
itself, are more likely to identify an FP sample. However,
none of these three variables was able to fully separate TP
and FP samples, indicating the need for a more nuanced
model.

Next, it was investigated whether more specific physical
relationships between positive samples and the surrounding
wells impacted the final result. First, the association of more
specific geographic variables relating the RVLs of neigh-
boring samples on east-west, north-south, and diagonal axes
s. Confusion matrix from machine learningederived models of predicting FP
ed samples. Bar graph of the variable contribution to the models generated
n methods. For each model, individual variables used in the modeling were
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Figure 4 Identification of variables contributing to false positives (FPs) in manual extraction. A: Scatterplot of log10 transformed extraction batch relative
viral load (RVL) of true-positive (TP) and FP samples (samples represented by a single point, two-tailed t-test, bar at median). B: Scatterplot of N2 CT values of
TP and FP samples (samples represented by a single point, two-tailed t-test, bar at median). C: Scatterplot of log10 transformed fold change of TP and FP
samples (samples represented by a single point, two-tailed t-test, bar at median). DeF: Scatterplot of log10 transformed east-west (D), north-south (E), and
diagonal (F) RVL of TP and FP samples (samples represented by a single point, two-tailed t-test, bar at median). GeI: Enumeration of TP and FP samples with
(þ) and without (�) a positive sample present in the east-west (G), north-south (H) or diagonal (I) position (for each bar graph, an individual Fisher exact
test was performed for the unique geographic data and the P value is noted within the graph). J: Scatterplots of RVL by fold change for manually extracted
samples that were repeated because of concern for FP results (points represent single sample), with gates showing the frequency of samples with positive
surrounding wells (high fold change and low RVL; oval) and negative surrounding wells (low fold change and range of RVL; rectangle). K: Scatterplots of RVL by
fold change for manually extracted samples that were predicted to be FP (left panel) or TP (right panel) (points represent single sample) with gates showing
the frequency of samples with positive surrounding wells (high fold change and low RVL; oval) and negative surrounding wells (low fold change and range of
RVL; rectangle). *P < 0.05, **P < 0.01, and ****P < 0.0001; yP < 0.05, yyP < 0.01 with a positive sample versus without a positive sample.
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to the incidence of FP and TP results (Figure 4, DeF) were
analyzed. The east-west RVL was higher in FP events,
whereas the north-south and diagonal RVLs were not
significantly different between TP and FP (Figure 4, DeF).
Reasons for these directional differences associated with FP
results are not certain but may suggest that the process of
aliquoting into and out of two-dimensionalebarcoded tubes
for sample transfer to PCR setup may be a source for
technical improvement based on our quality review of this
specific workflow. It was also tabulated whether the wells
surrounding TP and FP events did or did not contain a
positive sample, irrespective of the relative viral load
(Figure 4, GeI). Indeed, the presence of positive samples in
the east-west, north-south, or diagonal wells increased the
likelihood a sample was FP, suggesting the mere presence
of a positive well of any RVL may be able to contaminate
1092
an adjacent well. Interestingly, though, a proportion of FPs
demonstrated no positive samples in the immediately
neighboring wells, suggesting contamination may also occur
from outside the directly surrounding samples during pro-
cessing. To determine how many FP and TP samples were
adjacent to a positive well, the RVL and fold change mea-
surements were correlated for manually extracted repeated
samples (Figure 4J). Samples without surrounding positive
wells were represented at the lowest RVL values (within
rectangle gate), whereas those with positive adjacent wells
were above this line of samples (within oval gate). Analysis
revealed 40% of TP results did not have a surrounding
positive sample, whereas 10% of FP results did not have a
surrounding positive well (Figure 4J). Analysis of the RVL
and fold change values for the full manually extracted data
set with FP predictions showed 6% of samples had empty
jmdjournal.org - The Journal of Molecular Diagnostics
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surrounding wells, whereas 44% of TP samples had directly
adjacent empty wells (lower box) (Figure 4K). Thus, the
model predicts samples of low RVL with adjacent samples
of high RVL are more likely to be predicted FP, whereas
samples of high RVL without adjacent positive samples are
more likely to be TP.

Next, the manual extraction model was interrogated to
understand how the model variables predicted FP samples.
First, the FP probability of manually extracted repeated
samples was evaluated as a function of N1 and N2 CT

values (Figure 5, A and B). Samples with N1 and N2 CT

values of less than approximately 38 typically repeated as
positive when extracted and measured again, whereas values
greater than approximately 38 were more likely to not be
detected on repeat. To compare the experimental and model
data, one-dimensional partial dependency plots were
generated for variables in the model (Figure 5, CeG).
Partial dependency plots show the model’s probability of
predicting an FP sample as a function of the input variable.
The N2 CT (Figure 5D) and extraction batch RVL
(Figure 5E) variables both show approximately 20% to 30%
increases in the model FP probability at higher values. N1
CT (Figure 5B), fold change (Figure 5F), and RVL
(Figure 5G) also show increases in the probability of an FP
sample at higher values, but the model prediction only
changes minimally over the variable range. Comparison of
the experimental data and model reveals the model assigns
increased likelihood of FP results to a CT value of >38 for
both N1 and N2 and that even though the experimental N1
Figure 5 Identification of variables used for predicting false positives (FPs) in
(A) and N2 CT (B). The points represent the FP probability between that point a
events. CeG: Partial dependency plots showing the probability of predicting an F
batch relative viral load (RVL; E), fold change (F), and RVL as a function of variab
predicting an FP event (red, low probability; blue, high probability) in the model a
N2 CT (middle panel), and fold change versus N2 CT (right panel).

The Journal of Molecular Diagnostics - jmdjournal.org
and N2 data look similar, N2 carries more weight in pre-
dicting FP than N1 in the model. Next, two-dimensional
partial dependency plots were generated to investigate
how two variables interacted within the prediction models
(Figure 5H). As expected, low N1 and N2 CT values were
more likely to be TP, whereas samples with high N1/N2 CT

values are predicted FP. High extraction batch RVL values
led the model to predict the sample as FP, even at low N2
CT values, suggesting that more caution is necessary in QC
review as more positive samples are batch handled in a
biosafety cabinet simultaneously. Last, samples with low
fold change were less likely to be FP, especially at N2 CT

values of less than approximately 38. This analysis better
defines the interaction of variables that can be used to
discriminate manually extracted TP and FP samples. As
well, samples with a summed extraction batch RVL of >105

or a change of 10-fold compared with the positive sur-
rounding wells were more likely to be FP.

Last, the three models were used to identify potential FP
results in the final resulted data set that were not identified
for repeated extraction by pathologist review. The proba-
bility threshold for identifying an FP in the models was
increased such that the accuracy of FP predictions were
maximized. Using this new probability threshold, the
models predicted an additional 170 samples concerning for
an FP result (0.08% of total results, 2.3% of positive/
inconclusive results) that had not been identified for repeat.
FP samples identified by retesting or modeling may repre-
sent low-viral titer samples in the presymptomatic or early
the manual extraction model. A and B: FP probability as a function of N1 CT
nd the next lowest CT value point normalized to the total frequency of FP
P event in the manual extraction model for N1 CT (C), N2 CT (D), extraction
le values (G). H: Partial dependency heat map plots show the probability of
s a function of N1 CT versus N2 CT (left panel), extraction batch RVL versus
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asymptomatic phase of infection that will progress and
become TP results. To address this possibility, manually
extracted FP samples (retested and predicted) were investi-
gated to determine whether the patient received a follow-up
test within the following 14 days. The value of 14 days was
selected to balance the following considerations: allowance
for progression of the viral illness, reduction in the likeli-
hood of new infection, and maximization of the sample
number for assessment. Sixteen patients were identified who
had a second test within 14 days, finding 11 of these patients
(69%) were negative on retesting. Thus, these models can be
used as a decision-support tool when identifying samples
needing repeat because of concerns for contamination.
Given that the model misidentified predictions in the
pathologist-selected repeated data set used for training,
complementary pathologist or technologist review of the
PCR data still serves an essential role in identifying FP
events for the SARS-CoV-2 RT-PCR assay.
Discussion

Using data generated from repeated samples on an LDT
high-throughput test, models were developed to predict
false-positive SARS-CoV-2 PCR results and generate QC
metrics for individual extraction methods. Employment of
these models and identified variables will be used to
improve the assay, as well as support clinical decision
making when performing data quality review of results.
Specifically, the manual extraction model identified high
relative viral loads within each 16-sample extraction batch
as a potential source of contamination. As well, the presence
of a positive result in the surrounding wells, particularly in
the east-west well, helped to identify FP results. From these
findings, the protocol and technique can be altered in an
attempt to reduce contamination during specific steps of
processing. Last, we showed that an additional 2.3% (n Z
170) of positive and inconclusive samples had a high like-
lihood of an FP result but were signed out as positive
without re-extraction and repeated PCR. This highlights the
importance of providing computational decision-support
methods to pathologists or technologists performing QC
review of data for molecular viral testing.

Analysis and identification of the variables likely
contributing to FP results include the extraction batch RVL
in the manual extraction model, as well as individual sample
N2 and calculated fold change values in all models. Spe-
cifically, the proposed QC metrics to identify FP manually
extracted samples are as follows: i) N2 CT value (>38), ii)
extraction batch RVL (>105), and iii) fold change (>10).
These three variables demonstrated the largest contribution
to predicting FPs and demonstrated cutoff values that could
be used quickly for manual evaluation of specimen result
quality. One important caveat of this work is that these
models only inform the FP events generated using the
modeled assay workflow and are not directly applicable
1094
without modification to other SARS-CoV-2 assays. How-
ever, use of this modeling framework to identify technical
components contributing to FP results can be applicable to
all open-platform RT-PCR assays. Monitoring of the vari-
ables identified above was incorporated into our laboratory’s
standard workflows for this assay and was applied to the
analysis of a newly developed extraction-free SARS-CoV-2
RT-PCR assay using the CDC N1/N2/RP targets. A CT

cutoff and fold change variable were used to identify sam-
ples to automatically repeat using an orthogonal testing
method, increasing turnaround time and accuracy of the
assay.
Identification of extraction batch RVL as a potential

predictor of FP results points to contamination that is hy-
pothesized to be caused by aerosolization of samples during
multiple manual extraction handling steps. This finding al-
lows for specific protocol modifications and standardization
of technique among operators to improve results and reduce
contamination rates. In all models, N2 CT values were
identified as a predictor of FP results, whereas high N1 CT

values did not show the same ability to differentiate TP and
FP results. This may point to differences in the efficiency of
detecting N1 and N2 targets and may be a finding applicable
to assays using this primer and probe set. For automated-
Tecan samples, the model was less accurate at discrimi-
nating TP and FP results. Several hypotheses could be made
for this finding. First, it is possible any of the models are
overfit and identify insignificant differences within the
repeated data that can distinguish the two groups but have
no real-world applicability. Recursive feature elimination of
variables was performed in an attempt to avoid overfitting,
but no variables were identified for removal (data not
shown). Second, a complex set of interactions could be
driving FP events that are not easily identifiable using sin-
gle- or two-variable analysis, as shown using partial de-
pendency plots. Last, the results of the automated extraction
model may point to only stochastic FP generation, with little
to no reproducible sources of error, and may be due to
mechanical differences in the specific performance of the
different automated systems utilized in our laboratory.
Nevertheless, this analysis shows the importance of gener-
ating a model to potentially identify and mitigate sources of
error, allowing for improvement of technique and reduction
of erroneous results across multiple methods.
Many of the results flagged by the models as potential

FPs are composed of samples with higher CT values. This is
partially due to the conversion of inconclusive to positive
results for modeling purposes. This finding is also due to the
assumptions made about TP events and the selection of
repeats generated for the training data set: it is unlikely a
sample with high viral load is FP, whereas a sample with
low viral RNA concentration is potentially explainable by
contamination. Because most of the training data and
therefore predictions are approaching the LOD, it is difficult
to confidently distinguish between low viral titer and
contamination. Follow-up testing of patients with predicted
jmdjournal.org - The Journal of Molecular Diagnostics
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and re-extracted FP samples shows minimal conversion to a
TP result over the next 14 days, suggesting that the algo-
rithm identifies contamination and not just early infection.
Distinguishing between these two events may have different
utility in certain clinical situations. For example, missing a
TP with low viral load when performing contact tracing or
during prehospital admission to a nonisolation ward could
have severe consequences as patients in these clinical situ-
ations may be in a presymptomatic phase with low viral
titers and could be at high risk to spread SARS-CoV-2 as
their viral titer increases. Conversely, overcalling FP results
when monitoring health care workers could lead to unnec-
essary staffing shortages in critical service areas. Further-
more, FP results for prehospital or presurgical admissions
could confound patient placement and immediate manage-
ment of emergent noneCOVID-19 health issues, leading to
suboptimal patient care and inefficient utilization of health
care resources. These complexities stress the importance of
clinical correlation in the interpretation of SARS-CoV-2 test
results and highlight the major need for sufficient sample
collection supplies and analytic reagents to offer subsequent
sampling to patients with inconclusive, low viral load
results.

Currently, this LDT defines inconclusive results as
amplification and detection of only one of the two targets. It
is unknown if inconclusive results are at increased risk of
being an FP. Tests receiving EUA approach inconclusive
results differently: some classify them as negative, some
classify them as positive, and some leave it to the discretion
of the laboratory (FDA, https://www.fda.gov/medical-
devices/coronavirus-disease-2019-covid-19-emergency-use-
authorizations-medical-devices/vitro-diagnostics-euas, last
accessed March 4, 2021). These EUA tests also have
different CT cutoff values for the respective positives,
inconclusive results, and negatives. Some SARS-CoV-2
tests allow positives to be assigned with only one target
amplifying at a CT of 45, whereas others are negative at CT

values of >37. The sensitivity and specificity of the tests
change with the alteration of CT cutoff values and PCR
efficiency, whereas the clinical purpose of the test should
reflect how the CT value thresholds are set.13 Currently,
SARS-CoV-2 testing focuses on increasing the sensitivity of
the test and identifying any amount of viral RNA present in
a sample, even if there is a concurrent increase in FPs. If
instead the goal was to identify patients at risk for spreading
infection, reducing the positive CT cutoff would be more
practical. Recent works have found that samples with CT

values of >35 or viral load <105 copies were unable to
generate recoverable, culturable virus.14,15 However, these
results need to be interpreted cautiously as the studies were
performed in vitro and CT values have been shown to be
assay dependent.14,15 To address the questions of CT values,
transmissibility and test sensitivity thresholds, proficiency
testing, and standardized samples may be useful. A recent
SARS-CoV-2 proficiency test has shown 97% consensus for
samples with approximately 5000 copies/mL and negative
The Journal of Molecular Diagnostics - jmdjournal.org
samples,16 but correlating virus quantity with culture
recoverability may be a more useful approach for clinical
laboratories. Nonetheless, until these studies are performed,
inconclusive results are difficult to interpret. In this study,
inconclusive results that underwent repeat testing were
coded as positive in training data sets for the purpose of
modeling. When initially inconclusive results were reviewed
in the repeated data set, 59% (409 of 690) were FP, whereas
41% (281 of 690) were TP. In contrast, review of initially
positive results in the repeated data set showed 35% (55 of
158) were FP, whereas 65% (103 of 158) were TP (Fisher
exact test, P < 0.0001, data not shown), demonstrating that
inconclusive samples were found more frequently to be FP.
Nonetheless, given the overall frequency of TP results in the
initially inconclusive samples for this LDT assay, it would be
inappropriate to simply call inconclusive results negative
because it would result in the misdiagnosis of reproducible,
positive samples. On the basis of these results, we propose
two options for follow-up testing of a positive sample with
high probability of an FP result. First, report the result as
inconclusive and request that the patient is sampled and
measured again in 48 to 72 hours to identify patients with
low viral load early in infection. Second, if the patient cannot
be tested again, perform repeated analysis of the primary
sample either on the same platform or optimally on an
orthogonal method. Clinical scenario will dictate the follow-
up testing options, but this is a reasonable laboratory
approach until more robust data are available to calibrate
assay thresholds with clinical infectivity.

Finally, generation of these models will lead to
improvement in multiple aspects of the test. First, it allows
the laboratory to identify aspects of the technique that are
reproducibly generating errors. Technical modifications will
allow for remediation of these issues, and comparison of
premodification and post-modification results will reveal the
effect on error rates. Second, model implementation can
generate automatic FP flags to improve workflow efficiency
in triaging technical repeats, likely decreasing result turn-
around times. Third, modeling can support clinical decision
making and provide increased ability to identify potential
errors. Anatomic pathology and radiology have begun to
employ artificial intelligence for image analysis as an
adjunct diagnostic tool, but artificial intelligence has not
been widely used for molecular diagnostics clinical decision
support.17,18 For SARS-CoV-2 testing, we propose to use
this method as a clinical decision support artificial intelli-
gence to flag results that have a high FP probability. Of
note, some of the models had poor positive predictive values
(ie, automated-Tecan), and would be unlikely used as an
artificial intelligence decision support. However, this same
model could still be used to identify potential reproducible
contamination issues. This metric could be incorporated into
the clinical decision process and inform the reviewer if the
sample should be repeated. This model may enforce
confirmation bias while training the reviewer to miss other
errors, but future studies will be needed to determine how
1095
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the adjunct tool alters clinical decision making. Nonetheless,
this tool will be helpful for technique troubleshooting and
clinical decision-making support and can be adapted to a
wide variety of molecular diagnostic applications.
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