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Abstract
Moment-to-moment fluctuations in brain signal assessed by functional magnetic resonance imaging blood oxygenation
level dependent (BOLD) variability is increasingly thought to represent important “signal” rather than measurement-related
“noise.” Efforts to characterize BOLD variability in healthy aging have yielded mixed outcomes, demonstrating both
age-related increases and decreases in BOLD variability and both detrimental and beneficial associations. Utilizing BOLD
mean-squared-successive-differences (MSSD) during a digit n-back working memory (WM) task in a sample of healthy
adults (aged 20–94 years; n = 171), we examined effects of aging on whole-brain 1) BOLD variability during task (mean
condition MSSD across 0–2–3-4 back conditions), 2) BOLD variability modulation to incrementally increasing WM difficulty
(linear slope from 0–2–3-4 back), and 3) the association of age-related differences in variability with in- and out-of-scanner
WM performance. Widespread cortical and subcortical regions evidenced increased mean variability with increasing age,
with no regions evidencing age-related decrease in variability. Additionally, posterior cingulate/precuneus exhibited
increased variability to WM difficulty. Notably, both age-related increases in BOLD variability were associated with
significantly poorer WM performance in all but the oldest adults. These findings lend support to the growing corpus
suggesting that brain-signal variability is altered in healthy aging; specifically, in this adult lifespan sample,
BOLD-variability increased with age and was detrimental to cognitive performance.
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Introduction
Marked increases in intraindividual variability of cognitive per-
formance across trials occurs with aging and is associated with
poorer cognitive performance in both normal aging and in indi-
viduals with neurodegenerative or related disorders (for reviews,
Hultsch et al. 2008; MacDonald et al. 2006). This pattern of
increased variability of cognitive function has been attributed
to increased noise in the system of an aging brain. Intraindi-
vidual variability of brain function, as measured by the blood
oxygenation level dependent (BOLD) signal, has historically been

considered as related to image acquisition or other non-neural
nuisance effects (Smith et al., 2005); thus, traditional methods
for examining the BOLD response have relied upon central ten-
dency or mean parameters of interest. The central nervous sys-
tem is inherently noisy (Faisal et al. 2008; Stein et al. 2005), con-
sequently, variability in the BOLD signal is frequently considered
“noise” to be accounted for, rather than a meaningful signal for
study. There has been a recent shift in empirical work, however,
suggesting that variability of the BOLD signal is meaningful in
its own right, demonstrated in studies of development, aging,
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disease status, task performance, and even pharmacological
intervention (Garrett et al. 2010; McIntosh et al. 2010). Indeed,
the variability of brain function may show utility as a novel
individual difference measure in cognitive neuroscience (Mohr
and Nagel 2010).

A handful of studies to date have examined BOLD variability
in healthy aging individuals, utilizing mostly multivariate meth-
ods (Garrett et al. 2013; Grady and Garrett 2014 for reviews), and
largely suggest that moment-to-moment fluctuations in BOLD
variability are altered with increasing age and associated with
cognitive performance as well as real-world cognitive outcomes.
Compared to (and independent of) mean-BOLD amplitude, BOLD
variability demonstrates 5 times greater power in predicting age,
supporting the notion that BOLD variability contains unique
and important age-related information (Garrett et al. 2010). Evi-
dence also suggests differential regional BOLD variability is age-
dependent, with older adults generally demonstrating lower
BOLD variability cortically, but greater levels of BOLD variability
subcortically, relative to younger adults, at least during cross-
hair fixation (Garrett et al. 2010). In this early examination of
BOLD variability, older relative to younger adults also displayed
greater cortical BOLD variability in superior frontal and inferior
temporal gyri and in the cerebellum (Garrett et al. 2010 Fig. 4A
warm color scale), pointing against a strictly cortical versus
subcortical aging-related delineation of BOLD variability differ-
ences. In another study, comparing task to fixation, older adults
demonstrated greater BOLD variability than younger adults in
primarily cortical regions, providing further evidence for age-
related increases in variability (Garrett et al. 2013 Fig. 3A, cool
scale regions). Similarly, at the network level, BOLD variability
during resting state increased across the lifespan in the insula
and ventral temporal regions, whereas regions in most other
large-scale networks such as the thalamic, basal ganglia, visual,
sensorimotor, central executive, and default mode networks,
linear decreases were observed with increased age (Nomi et al.
2017). Thus, an admixture of age-related directionality has been
reported, highlighting the importance of anchoring brain to
behavior in the interpretation of these findings.

Some evidence suggests that these age-related differences in
brain signal variability may be related to cognitive performance.
Older age and greater BOLD variability in the nucleus accumbens
have been associated with suboptimal financial decision-
making performance (Samanez-Larkin et al. 2010); however,
younger, faster, and more consistent cognitive performers
demonstrated greater BOLD variability during perceptual
matching, attentional cueing, and delayed match-to-sample
tasks as compared to their older counterparts (Garrett et al.
2011). Finally, there is some limited evidence that suggests that
BOLD variability may illustrate modulatory properties, and scale
in response to increasing task difficulty (Garrett et al. 2015;
younger adult placebo effects) and with the level of internal or
external task demand, albeit less so in older, relative to younger,
adults (Grady and Garrett 2018).

As it currently stands, it is unclear whether greater or lesser
BOLD variability is detrimental or beneficial in the context of
healthy cognitive aging. Interestingly, in a small group of healthy
older individuals, lower memory scores and higher volume of
white matter hyperintensities (WMH) were associated with
greater BOLD variability in a mix of cortical and subcortical
regions, including cerebellum, orbital frontal and superior
temporal gyri and thalamus (Scarapicchia et al. 2018), suggesting
that greater BOLD variability might be detrimental during aging.
However, this seems to be in contrast to age-group comparison

studies that indicate greater BOLD variability in younger, better
cognitively performing adults (Garrett et al. 2011; for review
see Grady and Garrett 2014). Potentially, instances of greater
and lesser BOLD variability could occur differentially across
the adult lifespan, vary by brain region or neural network,
and may exhibit differential cognitive consequences among
these. Further investigation of the association between BOLD
variability and other well-known aspects of healthy aging is
warranted. Establishing an adult lifespan trajectory of BOLD
variability and its association with cognitive function will
provide additional evidence for some of these questions
and aid future investigations into pathological or disordered
populations.

Previous work from our lab and others investigates how
the aging brain responds functionally to incrementally increas-
ing cognitive difficulty (e.g., Rieck et al. 2017; Kennedy et al.
2017; Hakun and Johnson 2017). Specifically, with increasing
age, modulation of activation decreases in both fronto-parietal
cognitive control regions as well as default mode regions, and
this reduction in modulation is associated with poorer perfor-
mance during the task, as well as poorer cognitive performance
measured outside the scanner. Thus, dynamic modulation of
(mean amplitude) BOLD in response to difficulty may be a reli-
able marker of healthy aging. However, it is unknown whether
alterations in BOLD variability in response to cognitive challenge
occur throughout the adult lifespan, or whether they relate to
cognitive performance.

Therefore, the current study sought to investigate age-related
differences in BOLD variability, as indexed by the mean square of
successive differences (MSSD, von Neumann et al. 1941), during a
digit n-back task (0-, 2-, 3-, 4-back) across an adult lifespan sam-
ple of healthy adults. Given the prevalence of bidirectional find-
ings within normal aging, including increases in BOLD variability
subcortically and at times in cortical regions (Garrett et al. 2010,
2013), coupled with the fact that increased variability within
a system is generally detrimental (e.g., in the cognitive aging
literature and in AD, Scarapicchia et al. 2018), we hypothesized
that BOLD variability would mirror behavioral intraindividual
variability and increase across the adult lifespan, or be bidirec-
tional, demonstrating different patterns in subcortical regions
compared to cortical regions. Additionally, we hypothesized that
BOLD variability would up-modulate in response to increasing
difficulty (i.e., WM load), and these modulatory effects would
depend upon age (Garret et al. 2015; Garrett et al. 2011; Grady
and Garrett 2018). Finally, we expected that age-related increases
in BOLD variability would be associated with poorer cognitive
function, as measured by in-scanner task accuracy and outside-
of-scanner WM ability.

Materials and Methods
Participants

Study participants included 171 healthy individuals aged 20–
94 (mean age = 53.03 ± 19.13 years; 100 women, 71 men), who
were part of a larger study recruited from the greater Dallas-
Fort Worth metro area (Kennedy et al. 2017). Participants were
screened against neurological, psychiatric, metabolic, cardio-
vascular disease (except for controlled essential hypertension,
n = 32), head trauma with loss of consciousness, diabetes, and
cognition-altering medications. Participants completed the
Mini Mental State Examination (MMSE) (Folstein et al. 1975)
and the Center for Epidemiological Study Depression Scale
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Table 1 Participant demographics by age group

Age group N (F/M) Edu (SD) MMSE (SD) CESD (SD)

Younger (20–35) 42 (24/18) 15.62 (2.17) 29.19 (0.94) 4.48 (3.62)
Middle (36–55) 47 (26/21) 15.28 (2.52) 29.26 (0.87) 4.98 (4.48)
Older (56–69) 38 (22/16) 15.84 (2.34) 28.89 (0.76) 3.40 (2.93)
Oldest (70–94) 44 (28/16) 15.73 (2.82) 28.77 (0.83) 3.77 (3.73)
Total 171 (100/71) 15.60 (2.47) 29.04 (0.87) 4.19 (3.79)

Notes: Edu, years of education; F, female; M, male; SD, standard deviation. Age is used as a continuous variable in all analyses, but is presented here in arbitrary age
groups to provide demographic information throughout the sample.

(CES-D; Radloff, 1977), with exclusion cutoffs ≤ 26 and ≥ 16
(mean MMSE = 29.04 ± 0.87, mean CES-D = 4.19 ± 3.79) to screen
against dementia and depression, respectively. Participants
were fluent English speakers, right-handed, had a mini-
mum of high school education or equivalent (mean educa-
tion = 15.60 ± 2.47 years), and normal or corrected-to-normal
vision (at least 20/40). See Table 1 for sample demographics by
arbitrary age group for display purposes (age is treated as a
continuous variable in all analyses). All participants provided
written informed consent in accord with the University of Texas
at Dallas and University of Texas Southwestern Medical Center
review board guidelines and participants received compensation
for their time.

Cognitive Measures

Prior to the scanning visit, participants completed a compre-
hensive cognitive examination that spanned multiple cognitive
domains. In this report, we focused on WM span utilizing the
Wechsler Adult Intelligence Scale-Digit Span subtest (WAIS-DS;
Wechsler 2008) as a measure of WM. The task contains three
subsections, requiring participants to listen to a string of digits
and/or letters and then repeating them back in either Forward,
Backward, or letter-number Sequencing order. For each of these
three subtests, the total number of correct trials served as the
index of performance.

Blood Pressure Measures

Participants’ blood pressure was measured at each of the three
study visits using brachial cuff automatic sphygmomanometers
via a Panasonic EW3153 at each of the two cognitive sessions
and a Welch Allyn Spot Vital Signs 420 TB at the MRI session.
Each measurement was taken after the participant had been in
a seated position for a minimum of 5 min, arm horizontal, and
legs uncrossed. Systolic and diastolic pressure were recorded in
mm/Hg, as well as heart rate (HR) in beats per minute (bpm).
Mean HR was calculated as the average bpm across the three
visits.

MRI Protocol

MRI Scan Acquisition
Participants were scanned on a single 3 T Philips Achieva
scanner equipped with a 32-channel head coil using SENSE
encoding. BOLD data were collected using a T2∗-weighted echo-
planar imaging sequence with 29 interleaved axial slices per
volume providing full brain coverage and acquired parallel
to the AC-PC line, (64 × 64 × 29 matrix, 3.4 × 3.4 × 5 mm3,
FOV = 220 mm2, TE = 30 ms, TR = 1.5 s, flip angle = 60◦). Cerebral
blood flow (CBF) was estimated using arterial spin labeled

images from a pcASL sequence (labeling time = 1516 ms,
postlabeling delay = 1500 ms, labeling plane offset = 20 mm,
two-dimensional pcASL readout parameters TR = 4460 ms,
TE = 17 ms, 64 × 64 × 29 matrix; voxel size = 3.44 × 3.44 × 5 mm3,
FOV = 220 mm2, EPI factor = 35, 35 label-control pairs, M0
image = mean of control images, 5:20 min). High-resolution
anatomical images were also collected using a T1-weighted MP-
RAGE sequence with 160 sagittal slices, 1 × 1 × 1 mm3 voxel size;
256 × 204 × 160 matrix, TR = 8.3 ms, TE = 3.8 ms, flip angle = 12◦.

Functional magnetic resonance imaging (fMRI) Task Procedure
The fMRI task in this study has been described in detail pre-
viously (Kennedy et al. 2017). In short, participants completed
a digit n-back task, that required individuals to monitor the
identity of a series of digits and to indicate with a button
press whether the current digit on the screen was the same or
different from the one presented n trials previously. Prior to each
block, a cue indicated which type of n-back participants would
complete: 0-, 2-, 3-, or 4-back. Digits (“2–9”) were presented in six
pseudo-counterbalanced blocks for 500 ms, with a 2000 ms inter-
stimulus interval, using Psychopy v1.77.02 (Peirce 2007, 2009).
There were three runs total, yielding a total functional scan time
of about 20 minutes.

Task Pretraining Procedure
Just before entering the scanner, participants were trained on
the functional task to ensure their understanding. Each level of
difficulty was demonstrated by a trained lab member; following
the demonstration participants completed a brief practice. After
exposure to each level of difficulty, participants completed a
practice that closely resembled the in-scanner experience to
ensure comfort in responding to task stimuli.

fMRI Data Processing
Utilizing SPM8 (Wellcome Department of Cognitive Neurology,
London, UK) and in-house Matlab R2012b (Mathworks, Natick,
MA) scripts, data were preprocessed and statistically analyzed.
Art Repair toolbox (Mazaika et al. 2007) was used to identify
potential outliers in movement (>2 mm displacement) and
intensity shift (>3% deviation from the mean in global intensity
spikes) in the EPI images. Runs with >15% of total volumes
(∼40 volumes) marked as outliers for movement were excluded
(excluded n = 3). In order to be included in the analysis,
participants were required to have at least two runs (out of three
runs total) with quality data. Three additional participants were
excluded for the following reasons: poor T1 acquisition (n = 2),
no response on >15% of trials (n = 1). Functional images were
adjusted for slice acquisition time and motion correction (using
six directions of motion-estimates from ArtRepair). Individual
participant’s T1-weighted images were used for coregistration
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purposes, to align the functional maps to standardized MNI
space and the resulting normalized images were smoothed with
an isotropic 8 mm FWHM Gaussian kernel.

ASL Data Processing

Preprocessing of the CBF data first required the separation of
labeled and control images. Next, a difference image was calcu-
lated for each of the labeled and control images. The difference
images were utilized to calculate perfusion images with the
Bayesian Inference for Arterial Spin Labeling MRI (BASIL) toolbox
(Chappell et al. 2009), available from the FMRIB Software Library
(fsl.fmrib.ox.ac.uk/fsl/fslwiki/BASIL). Resulting images represent
blood flow in gray matter regions. Each CBF image was coreg-
istered to the participant’s T1-weighted image. Cortical parcels
were obtained using Freesurfer v5.3 (Fischl and Dale 2000) for
each individual for all cortical gray matter regions in the Desikan
atlas (Desikan et al. 2006). Whole-brain CBF was calculated as
the average CBF across these parcels. See Rodrigue et al. (2020)
for further details on the ASL data processing.

Data Analysis Approach

fMRI first-level analyses
In-house MATLAB 2019a scripts were utilized to calculate
MSSD within-voxel (e.g., for each of n images sum((imagen + 1—
imagen)2)/n) for each level of n-back difficulty (0-, 2-, 3-, and
4-back) for each participant. First, white matter and CSF time
series were extracted from each participant’s unsmoothed func-
tional volumes for each run. Next, a set of nuisance regressors
for each run was created using the six motion parameters
estimated from realignment, the white matter and CSF time
series, the square of each of these time series, the derivative of
the raw and squared derivative time series, and dummy-coded
regressors indicating volumes flagged for excessive motion.
The functional volumes were then regressed on the nuisance
regressors to obtain the residual time series using SPM12. Finally,
because each condition occurred noncontiguously, MSSD was
calculated from the start of each task block. Two contrasts of
interest were modeled for each participant: mean condition
MSSD (averaging across all four conditions 0-, 2-, 3-, 4-back),
and linear MSSD (slope of MSSD in response to increasing WM
load from 0- to 4-back; contrast weights −2.25, −0.25, 0.75, 1.75)
to capture the effects of task performance on variability and
effects of difficulty on variability, respectively.

fMRI second-level analyses
Group-level regression models were constructed for the two
contrasts of interest, with age as a continuous, mean-centered
predictor of MSSD (either the mean of conditions or linear con-
trast of difficulty). Additionally, given the potential contribution
of vascular signals to the estimation of BOLD variability, we
additionally controlled for the influence of two major vascular
factors, HR and cerebral perfusion, including them as covariates
of no interest in both SPM models. Note that results from models
run with and without these second-level covariates did not differ
in the spatial location or extent. Voxelwise regression SPM maps
were corrected with a height threshold of P < 0.001 and cluster
correction of PFWE < 0.05.

In addition to controlling vascular factors at the second level,
physiological noise in BOLD signal can be estimated at the
participant level. See Supplemental Figure 3 for the presentation
of the results after applying first-level preprocessing noise

reduction techniques (Independent Components Analysis Auto-
matic Removal of Motion Artifacts [ICA-AROMA, https://fsl.fmri
b.ox.ac.uk/fsl/fslwiki/OtherSoftware]; Physiologic EStimation by
Temporal ICA [PESTICA, https://www.nitrc.org/projects/pesti
ca]); as an attempt to “clean” the data at the participant level
prior to the calculation of BOLD variability. These preprocessing
steps result in highly similar results to the models using second-
level covariates only (Supplemental Fig. 3) and do not appear to
remove a significant amount of signal that might potentially
be related to physiological noise. Therefore, results presented
herein are those utilizing HR and CBF as covariates at the second
level, without the additional first-level preprocessing.

Testing for MSSD Effects on Cognition

From voxelwise SPM models, participant-level estimates of sig-
nificant MSSD effects were extracted from each cluster using
MarsBaR toolbox v0.42 (Brett et al. 2002) to examine associations
with cognitive function. General linear models were tested using
these MSSD estimates, age, and their interaction as predictors
of cognitive performance (task accuracy and Digit Span scores)
using RStudio version 1.2.5033 (R Core Team 2019). Significant
interactions between these continuous variables were probed
with simple slopes analyses and the Johnson-Neyman proce-
dure (Preacher et al. 2006) using the “interactions” package in
RStudio (Long 2019). Graphs were created with the ggplot2 pack-
age (Wickham 2016). The authors have made these data and
associated code publicly available upon publication at https://o
sf.io/hvejn/?view_only=b2ac4d588ae14902b1e4d7147f94f423.

Partial Least Squares-Correlation (PLS-C)

Given that multivariate techniques have been frequently
employed when examining age-related BOLD variability (e.g.,
Garrett et al. 2010, 2011), PLS-C was additionally utilized to
further investigate the association between age and MSSD. PLS-C
was conducted using the Command-Line PLS application (http://
pls.rotman-baycrest.on.ca/) via Matlab 2019a. The first table
contained 171 rows representing each participant and columns
for each voxel of mean MSSD across WM task conditions, while
the second table consisted of again 171 rows and one column of
age. A correlation matrix between the two tables was calculated
and then decomposed using singular value decomposition,
resulting in a single latent variable (regular behavioral PLS
method; Supplemental Fig. 2A for a flowchart of the PLS-C
analysis steps). “Brain saliences” were the left singular matrix
(U) and were determined significant if the absolute value of the
bootstrap ratio from 1000 bootstrap iterations was greater than
3 (|BSR| > 3). “Brain scores” were calculated as the dot product of
the first table and significant brain saliences within gray matter
voxels.

Results
Task Performance

Accuracy and response time were recorded for all trials and
performance differences across WM load levels and age has
been reported for this sample previously in Kennedy et al.
(2017). In brief, for accuracy, there were significant effects of
age (F [1169] = 50.13, P < 0.001) and WM load (F [3507] = 280.11,
P < 0.001), with accuracy declining as both age and WM load
increased, qualified by a significant age × WM load interaction
(F [3507] = 12.68, P < 0.001) indicating lower accuracy with
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Figure 1. Regional BOLD variability relative to the mean for each of the n-back conditions. For each level of WM load, BOLD variability is displayed relative to the mean
of MSSD within condition. Warm-colored voxels evidence greater BOLD variability for that condition, while cool-colored regions show lesser variability than the mean

for that condition. Regions at the mean MSSD are shown in black.

increasing age and greater difficulty. Response time increased
with increasing WM load (F [3507] = 335.95, P < 0.001), and age
(F [1169] = 9.78, P = 0.002), and there was a trend for an age × WM
load interaction (F [3507] = 2.40, P = 0.067).

Neuroimaging Results

Spatial Distribution of BOLD Variability during n-back Conditions
As a means of providing the spatial pattern of variability for
each condition, voxel-wise variability was plotted relative to the
condition mean across all participants, for each condition (0-
, 2-, 3-, 4-back) in Figure 1. Warm color scale depicts the brain
regions that demonstrate greater BOLD variability relative to the
mean within the condition, while cool colors represent regions
that evidence lesser BOLD variability, and voxels exhibiting the
mean BOLD variability for that condition are presented in black.
For example, medial frontal/frontal pole and lateral occipital
cortices evidenced the least variability, relative to the mean,
whereas medial temporal and subcortical variability was greater
than the mean variability per condition for the whole lifespan
sample.

Age-related BOLD Variability during n-back (Mean Condition MSSD)
The voxelwise multiple regression SPM model utilizing age
as a continuous, mean-centered predictor of Mean Condition
(across 0-, 2-, 3-, and 4-back) MSSD, controlling for vascular

factors, resulted in widespread cortical and subcortical regions
that evidenced greater BOLD variability with increasing age.
Table 2 displays regional cluster information for mean MSSD.
Figure 2A displays parametric maps of the gray matter regions
that demonstrate significantly greater BOLD variability with
increasing age, which included superior temporal, parahip-
pocampal and fusiform gyri, superior parietal lobule, angular,
precentral, superior frontal, middle frontal, and inferior
frontal gyri, amygdala, nucleus accumbens, thalamus, and
dorsal anterior cingulate cortex. Figure 2B illustrates the
mean MSSD across all significant regions plotted against
continuous age. No voxels evidenced lower MSSD with age
in any condition. Age parametric maps are provided for each
n-back condition in Supplemental Figure 1 and coordinates in
Supplemental Table 1.

Partial Least Squares-Correlation (PLS-C) Analysis
To ease comparison to previous work that used a PLS approach
to model BOLD variability, we also tested PLS-C model for the
mean MSSD data (see Supplemental Fig. 2A). Significant brain
scores, (i.e., BSR > 3 following 1000 bootstrap iterations), were
positively associated with age (Supplemental Fig. 2B) in almost
identical gray matter brain regions (Supplemental Fig. 2C)
as found in the SPM analysis. This complimentary analysis
provides supporting evidence for the univariate analyses
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Table 2 Regions demonstrating age-related increases in BOLD variability (mean condition MSSD) during n-back conditions (0-, 2-, 3-, 4-back)

Cluster label BA k X Y Z t-value Cluster- level
PFWE < 0.05

L/R fusiform gyrus 37 2418 −54 −54 −24 6.71 <0.001
42 −72 −18 6.64

R lateral cerebellum 52 48 −60 −36 6.16
R parahippocampal gyrus 36 1756 21 −30 −9 6.56 <0.001
L amygdala 53 −24 3 −21 6.45
R nucleus accumbens 15 6 −12 6.33
L precentral gyrus 6 1055 −18 30 63 5.55 <0.001
R/L sup. parietal lobule 7 9 −66 72 5.50

−18 −51 81 5.26
R mid. frontal gyrus 9 1111 42 18 33 5.19 <0.001
R precentral gyrus 6 30 −12 57 4.82
R inf. frontal gyrus 45 51 27 12 4.78
L anterior cingulate gyrus 24 243 −9 −9 30 5.18 <0.001

−9 6 27 4.96
−15 24 15 4.70

R anterior cingulate gyrus 24 106 15 24 15 5.17 0.007
12 9 24 4.30
12 −12 30 4.17

R/L thalamus 50 117 0 −15 6 5.09 0.004
0 −6 3 5.00

−6 −21 12 4.15
L insula 13 339 −42 −18 3 4.82 <0.001
L sup. temporal gyrus 22 −57 −36 9 4.79
L insula 13 −36 −24 12 4.58
L angular gyrus 39 285 −36 −51 42 4.67 <0.001
L postcentral gyrus 1 −33 −36 57 4.49
L sup. parietal lobule 40 −45 −39 51 4.48
L mid. frontal gyrus 9 208 −42 36 45 4.42 <0.001
L sup. frontal gyrus 8 −39 12 36 4.20

−45 18 45 4.10
R mid. temporal gyrus 21 75 69 −36 3 4.03 0.032
R sup. temporal gyrus 22 69 −21 −6 3.83

51 −21 −15 3.42

Note: BA, Brodmann area; L, left; R, right; sup., superior; mid., middle; inf., inferior.

reported above using SPM. Notably, both analytical methods
result in widespread cortical and subcortical regions that
evidence higher BOLD variability with increasing age, and no
regions that evidence lower BOLD variability with increasing
age.

Age-Related BOLD Variability Modulation to Difficulty (Linear Slope
MSSD)
The voxelwise multiple regression SPM model testing age effects
on BOLD variability modulation of MSSD in response to increas-
ing WM load (controlling for vascular factors), identified a sig-
nificant age × difficulty interaction in a cluster spanning left
posterior cingulate, right precuneus, and right cuneus regions.
See Table 3 for cluster information and Figure 3A for parametric
map illustration. Greater BOLD variability modulation to diffi-
culty was observed with increasing age (Fig. 3B). To probe the
interaction between age and task difficulty on BOLD variability,
Figure 3C plots the association between age and condition vari-
ability at each level of n-back difficulty. This figure illustrates
that in this cluster, BOLD variability decreases with age during
the easiest task condition (0-back) whereas at higher levels of
WM load, BOLD variability increases with older age. In other
words, younger adults display a pattern of decreasing variability

or down-modulation as the task increases in difficulty, whereas
this association flips across the lifespan where older adults
exhibit increasing or up-modulation of BOLD variability as the
task becomes more difficult. Although the slopes of BOLD vari-
ability across the lifespan do not significantly differ from zero,
the pattern is suggestive of a differing association that tracks
with difficulty.

Associations between Age-Related BOLD Variability and WM
Performance
To test for associations between BOLD variability and WM per-
formance, MSSD was extracted from the significant clusters
from each of the two models (i.e., mean condition and linear
slope MSSD). Clusters from the effect of age on mean condition
BOLD variability were combined into one average MSSD variable,
after the effects discussed below were found to be consistent
across cortical and subcortical regions (given previous literature
suggesting age-related differences in BOLD variability cortically
vs. subcortically). The single significant cluster from the effect
of age on BOLD variability modulation (i.e., in posterior cingu-
late/precuneus) was examined separately. GLMs were conducted
to examine whether estimates of MSSD (from mean condition
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Figure 2. Effects of age on regional BOLD variability (mean condition MSSD) during n-back task. (A) Displays regions that are significantly increased in variability (greater
MSSD) with increasing age during task conditions (mean MSSD during 0-, 2-, 3-, and 4-back), overlaid on coronal slices. Regions demonstrating increased age-related
BOLD Variability (mean MSSD) include parahippocampal gyrus, amygdala, nucleus accumbens, fusiform gyrus, thalamus, superior parietal lobule, precentral, superior
frontal, middle frontal, angular, superior temporal, and inferior frontal gyri, and dorsal anterior cingulate cortex. (B) Illustrates the slope of MSSD increase with age in

these regions.

Table 3 Regions demonstrating age-related BOLD variability modulation in response to WM load (linear contrast of 0-, 2-, 3-, 4-back)

Cluster label BA k X Y Z t-value Cluster- level
PFWE < 0.05

L posterior cingulate gyrus 31 46 −12 −57 27 4.34 0.026
R cuneus 19 15 −69 30 3.81
R precuneus 7 3 −72 30 3.66

or linear slope contrasts) predict WM accuracy during scan-
ning and/or WM performance assessed by WAIS Digit span. All
variables were continuous and mean-centered.

Accuracy During fMRI n-back Task

BOLD variability (mean condition MSSD)
A GLM was tested with age, mean condition MSSD, and their
interaction term entered as predictors of mean task accuracy
(across 0-, 2-, 3-, and 4-back conditions). There was a significant
effect of Mean MSSD (F [1167] = 9.40, P = 0.003), as well as an
age × mean MSSD interaction (F [1167] = 9.57, P = 0.002) on
n-back accuracy. Simple slopes analyses and the Johnson-
Neyman procedure were used to deconstruct the significant
interaction (Preacher et al. 2006) and indicated a significant
negative slope between accuracy and BOLD variability that
weakened as age increased, suggesting greater variability is
associated with lower accuracy in adults aged 20–66 years,
after which the association becomes nonsignificant (see
Fig. 4A).

BOLD Variability Modulation (linear slope MSSD)
A second GLM was tested with age, BOLD variability modulation
MSSD (from posterior cingulate/cuneus), and their interaction
as predictors of task accuracy. There was a significant effect
of MSSD on n-back accuracy (F [1167] = 4.91, P = 0.03), and no
significant age × MSSD interaction (F [1167] = 1.24, P = 0.27),
indicating that greater BOLD variability modulation to difficulty
was associated with poorer accuracy on the task, an association
that was not age-dependent (see Fig. 4B).

Performance on Digit Span Test

BOLD variability (mean condition MSSD)
Three separate GLMs were conducted with age, mean condi-
tion MSSD, and their interaction, predicting digit span forward,
backwards, and sequencing. There were no significant effects
of Mean MSSD on digit span forward, (F [1167] = 0.01, P = 0.91),
nor on sequencing: (F [1167] = 0.87, P = 0.35). However, there was
a significant effect of mean MSSD (F [1167] = 11.00, P = 0.001),
qualified by an age × mean MSSD interaction (F [1167] = 5.70,
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Figure 3. Effects of age on BOLD variability modulation to difficulty. (A) Displays

regions that evidence a significant age-dependent increase in variability (greater
MSSD) in response to difficulty (linear slope of 0-, 2-, 3-, and 4-back), overlaid
on axial slices, including left posterior cingulate gyrus, right cuneus, and right

precuneus. (B) Illustrates the slope of BOLD variability modulation increase with
age in these regions. (C) Plots condition MSSD-age associations for each level
of WM load. During the easiest condition (0-back), BOLD variability decreases
across the lifespan, while the more difficult WM load conditions (2-, 3-, 4-back)

exhibit increased MSSD with older age. To put it differently, younger adults
evidence decreasing MSSD with increasing difficulty while older adults display
the opposite, namely increasing BOLD variability with higher levels of difficulty.
The slopes in 3C were estimated with full data, however for ease of illustration

the data range is truncated.

P = 0.02) on digit span backwards. Simple slopes analysis indi-
cated that greater mean BOLD variability was associated with
poorer WM performance, from age 20 until 73, when the associ-
ation becomes no longer significant (see Fig. 5A).

Figure 4. Association between age-related increased BOLD variability (mean
condition MSSD and linear MSSD) and n-back task performance. (A) Illustrates
the interaction among age, BOLD Variability (mean MSSD), and n-back task
accuracy. The region of significance is indicated in the top right, with a signif-

icant association identified in ages 20–66. The plot on the left represents the
slope between MSSD and accuracy for participants aged 30, 50, 70, and 90. (B)
Illustrates the association between BOLD variability modulation and accuracy
on the n-back task.

BOLD variability modulation (linear slope MSSD)
GLMs were created with age, linear MSSD, and their interac-
tion, separately predicting digit span forward, backwards, and
sequencing. A significant effect of linear MSSD emerged for
digit span forward: (F [1167] = 4.69, P = 0.03), see Fig. 5B and a
trend was observed for digit span backwards: (F [1167] = 3.41,
P = 0.066), illustrated in Fig. 5C, such that greater BOLD variabil-
ity modulation was associated with poorer digit span forward
and backward performance, an association that did not depend
upon age. There was an effect of BOLD variability modulation (F
[1167] = 10.42, P = 0.002), as well as a significant age × BOLD vari-
ability modulation interaction (F [1167] = 5.55, P = 0.02) on digit
span sequencing. Simple slopes estimation indicated that there
was a significant slope between BOLD variability modulation
and digit span sequencing performance between the ages of 20
and 66. Greater BOLD variability modulation to difficulty was
associated with poorer sequencing performance, until the mid-
60s, after which the association becomes nonsignificant (see
Fig. 5D).

Discussion
The current study demonstrated that BOLD variability, on
average across all participants within condition, evidenced
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Figure 5. Association between age-related BOLD variability (mean condition MSSD and linear MSSD) and WM performance. (A) Illustrates the interaction among age,

mean MSSD, and digit span backwards performance (number correct). The region of significance is demonstrated in the top right, with a significant association found
for ages 20–73. The plot on the left illustrates the slope between MSSD and digit span performance for representative participants aged 30, 50, 70, and 90. The effect
of BOLD Variability modulation on digit span forward (B) and backward (C) illustrate greater BOLD Variability Modulation demonstrating an association with poorer

performance that did not depend upon age. (D) Exhibits the interaction among age, BOLD variability modulation and digit span sequencing performance. The region
of significance is indicated in the top right, with a significant association identified in ages 20–66. The plot on the left represents the slope between BOLD variability
modulation and number correct on sequencing for participants aged 30, 50, 70, and 90.

differential patterns across the cerebral cortex, with relatively
greater BOLD variability in subcortical regions and relatively
lesser BOLD variability in cortical regions (Fig. 1). However, both
cortical and subcortical regions robustly demonstrated greater
variability during the n-back task with increasing age, including
in the superior temporal, parahippocampal and fusiform gyri,
superior parietal lobule, angular, precentral, superior frontal,
middle frontal, and inferior frontal gyri, amygdala, nucleus
accumbens, thalamus, and dorsal anterior cingulate regions
(Fig. 2A). Furthermore, this pattern of effects appears to be
robust to analysis method, (PLS-C; Supplemental Fig. 2), and
to controlling for potential vascular confounding effects (i.e.,
cerebral perfusion and HR).

The current study also demonstrated that BOLD variabil-
ity modulates with difficulty. In posterior cingulate and pre-
cuneus regions, younger adults evidenced down-modulation of
BOLD variability with increasing difficulty, while older adults
demonstrate the opposite or up-modulation of BOLD variability
with greater task difficulty (Fig. 3). Namely, during the 0-back,
BOLD variability decreased across the lifespan in this sample
while the opposite, increased BOLD variability with older age,
was observed during the more difficult WM load conditions.

Importantly, we also demonstrate that in both instances of age-
related increases in variability (i.e., on the task overall, and
in response to difficulty), increased variability was associated
with both poorer accuracy during the task and on working
memory (WM) measured outside of the scanning environment.
Sampling individuals across the adult lifespan allowed for the
investigation of when in the lifespan these variability effects
were most related to cognitive performance (Figs 4 and 5). For
individuals aged ∼20–66 years old, greater BOLD variability was
associated with poorer performance on both the in-scanner and
outside-of-scanner WM assessments suggesting, as predicted,
that this age-related BOLD variability increase is detrimental up
until the mid-60. This age is representative of the mean age
of the older group utilized in many previous investigations of
age-related BOLD variability (Garrett et al. 2010; Garrett et al.
2013). For the oldest adults, variability was no longer predictive
of performance, possibly due to the wide array of alterations
that the brain has undergone by this stage of the lifespan (e.g.,
gray matter shrinkage, white matter connectivity degradation,
white matter lesions, beta-amyloid, and iron deposition). If the
current study had not incorporated middle-age and oldest-age
spans, portions of the lifespan which are frequently overlooked

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa243#supplementary-data
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in studies of healthy aging, these differential age effects of BOLD
variability would have been missed.

Some previous research has suggested that age-related
variability patterns may be region-dependent, differing between
cortical and subcortical areas, such that younger, better-
performing adults typically demonstrate greater cortical BOLD
variability, while older, slower performers evidence greater
subcortical BOLD variability (Garrett et al. 2011). Indeed, the
spatial pattern of age-related greater BOLD variability seen
within the current adult lifespan sample was strikingly similar
to the pattern seen in previous investigations in subcortical
regions (Garrett et al. 2010; Garrett et al. 2011). However, whereas
the subcortical pattern of greater variability in older adults
appears highly consistent across studies, several studies have
also observed selective cortical regions that demonstrate higher
BOLD variability in older adults (e.g., in superior frontal and
inferior temporal gyri and cerebellum; Garrett et al. 2010).
Further, in individuals with probable AD, BOLD variability
was higher in right-lateralized regions, including the superior
frontal gyrus compared to healthy controls (Scarapicchia
et al. 2018). Additionally, higher WMH burden was associated
with greater cortical and subcortical BOLD variability in the
healthy control group and was linked with poorer memory
performance (Scarapicchia et al. 2018). Therefore, whereas it
has been previously postulated that BOLD variability is greater in
subcortical and lower in cortical regions, this is not consistently
reported in the literature, and the findings appear to be more
mixed with a lack of apparent regionally differential aging
patterns.

Prior examinations of BOLD variability support the notion
that this metric captures modulatory effects to n-back difficulty
(Garrett et al. 2013; younger adults, placebo effects), from task
compared to fixation (Garrett et al. 2011), and a gradation of
increasingly variable response to rest, internal, and external
task demands (Grady and Garrett 2018). Modulatory effects on
BOLD variability are often observed in younger adults, but less so
in older age groups. In the current study, in a focal region in the
parietal lobe, we demonstrated that variability tracks with diffi-
culty. These age-related differences in the modulation of BOLD
variability in response to difficulty seem to be driven by differ-
ences between 0-back and the WM conditions. Here, older adults
displayed up-modulation of BOLD variability with increasing
difficulty, while younger adults displayed down-modulation
with greater difficulty. This is generally supportive of previous
investigations that observed the up-modulation of BOLD
variability from control conditions to task conditions (Grady and
Garrett 2014; Grady and Garrett 2018). Potentially, the present
task samples difficulty levels beyond those that evidence
modulation of BOLD variability, hence the observation that this
effect may be driven by differences between task and control.
This is in line with previous literature where younger adults
modulated BOLD variability in response to n-back difficulty
up until 2-back in a previous investigation (Garrett et al. 2015
placebo effects), whereas 2-back was the “easiest” level of WM
load represented in the current study.

Currently, the potential mechanisms leading to age-related
differences in BOLD variability are not yet established. Possibly,
other age-related deficits such as declines in dopaminergic
neuromodulation (Karrer et al. 2017) or age-related losses
of structural integrity (Raz et al. 2005; Pur et al. 2019) may
promote age-related differences in BOLD variability. Age-related
declines in dopaminergic neuromodulation may lead to greater
age-related BOLD variability, especially in subcortical regions

(Guitart-Masip et al. 2016). One investigation demonstrated
that BOLD variability during a spatial WM task was greater in
subcortical regions with older age and slower responses, and
further, was associated with lower D1 receptor density in the
caudate and dorsolateral prefrontal cortex in a PET investigation
(Guitart-Masip et al. 2016). Specifically, lower dopamine was
associated with greater subcortical BOLD variability in regions
including the hippocampus, amygdala, thalamus, caudate, and
midbrain (even when controlling for age), while the majority
of voxels in the neocortex were unrelated to D1 receptor
density.

Notably, BOLD variability has also been studied across various
disorders and disease states, with differences in BOLD variability
evident between patient and healthy control groups. These dif-
ferences have arisen in studies of attention deficit hyperactivity
disorder (Depue et al. 2010; Sørensen et al. 2016; Mowinckel et al.
2017; Nomi et al. 2018), autism spectrum disorder (Dinstein et al.
2010; Dinstein et al. 2012), schizophrenia (Fryer et al. 2015; Xie
et al. 2018), Parkinson’s Disease (Zhu et al. 2019), 22q11.2 deletion
syndrome (Zöller et al. 2017; Zöller et al. 2018), and Multiple
Sclerosis (Petracca et al. 2017). Across studies, BOLD variability is
altered (generally increased) in these patient groups compared
to healthy controls, and further, alterations in BOLD variability
are linked to the severity of disorder symptomatology.

Although the field is just beginning to investigate and under-
stand BOLD variability in the context of healthy aging, examina-
tion of this metric in neurodegenerative conditions such as mild
cognitive impairment and Alzheimer’s disease (AD) may provide
some relevant insight. Initial investigations have shown ele-
vated physiological fluctuations in white matter (PFWM) (Make-
donov et al. 2016), as well as greater BOLD variability in right-
lateralized regions in those with AD compared to healthy adults
(Scarapicchia et al. 2018). Heightened levels of PFWM and BOLD
variability have been associated with negative outcomes such as
lower levels of glucose metabolism and memory scores in those
with probable AD (Makedonov et al. 2016), and even within the
healthy control group, lower memory scores and higher volume
of WMHs are seen with greater variability (Scarapicchia et al.
2018). Our findings, thus, support this notion that increased
brain signal variability occurs in a less than optimal brain state.

Mounting evidence, including the current study, suggests a
detrimental association between greater BOLD variability and
age, given findings of higher WMH burden, poorer cognition, and
financial decision making, and reduced D1 binding with greater
BOLD variability (Samanez-Larkin et al. 2010; Guitart-Masip et al.
2016; Scarapicchia et al. 2018; Scarapicchia et al. 2019). How-
ever, there remain age-group comparison studies that indicated
greater BOLD variability in younger, better cognitively perform-
ing adults compared to older adults (Garrett et al. 2011, 2013,
2015). These investigations posit that greater BOLD variability
grants flexibility to switch between states, permitting greater
dynamic range and allowing for favorable cognitive outcomes
on the tasks at hand. It is plausible that both increases and
decreases in BOLD variability may occur differentially across the
adult lifespan and the consequence of these differences may
vary by brain region or neural network. Longitudinal investi-
gations of BOLD variability will allow for a clearer picture to
emerge, which is currently underway in this sample.

Replication of the current study in a different lifespan sample
is essential, as it is one of few examinations of whole-brain
task-based BOLD variability in an adult lifespan cohort. Char-
acterization of the lifespan trajectory of BOLD variability will
allow for the further study of modifiers of BOLD variability, such
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as genetic influences on the aging process (e.g., the resource-
modulation hypothesis; Lindenberger et al. 2008), as well as
other current guiding hypotheses of aging such as the CRUNCH
model or STAC model (Reuter-Lorenz and Cappell 2008; Park and
Reuter-Lorenz 2009), which may provide insight into potential
mechanisms leading to age-related alterations in BOLD vari-
ability. Considerations for future examinations of age-related
differences in BOLD variability include simultaneous recording
of physiological signals during fMRI scanning to help more
directly quantify and remove other contributing factors to the
estimate of BOLD variability, including those of vascular nature
at the participant level. The inclusion of HR measurement and
ASL-based estimates of cerebral perfusion at the group-level
did not influence the results of the present study; however, the
BOLD variability body of literature would benefit from focused
examinations of vascular (and other physiological sources of
nonneural BOLD signal) contributions to the calculation of BOLD
variability.

Conclusions
In sum, the present adult lifespan examination of BOLD vari-
ability provides evidence for greater age-related BOLD variability
in widespread cortical and subcortical regions during n-back
conditions, and more focal parietal regions that displayed age-
dependent modulatory effects of difficulty on BOLD variabil-
ity, controlling for two major vascular factors. Notably, greater
age-related BOLD variability (both on average, and in response
to task difficulty) were predictive of poorer n-back task accu-
racy and WM ability measured outside of the scanner up until
older age. Overall, this study provides further evidence that
greater age-related BOLD variability is associated with detri-
mental outcomes and may serve as a marker of decline in
cognitive functioning that may be observed prior to oldest age
(Samanez-Larkin et al. 2010; Guitart-Masip et al. 2016; Scara-
picchia et al. 2018, 2019). Longitudinal examination of within-
person change in variability across an adult lifespan sample will
be a critical test for the replication of the current findings.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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