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Abstract
In computational systems for visuo-haptic object recognition, vision and haptics are often modeled as separate processes. But
this is far from what really happens in the human brain, where cross- as well as multimodal interactions take place between
the two sensory modalities. Generally, three main principles can be identified as underlying the processing of the visual and
haptic object-related stimuli in the brain: (1) hierarchical processing, (2) the divergence of the processing onto substreams for
object shape and material perception, and (3) the experience-driven self-organization of the integratory neural circuits. The
question arises whether an object recognition system can benefit in terms of performance from adopting these brain-inspired
processing principles for the integration of the visual and haptic inputs. To address this, we compare the integration strategy
that incorporates all three principles to the two commonly used integration strategies in the literature. We collected data with
a NAO robot enhanced with inexpensive contact microphones as tactile sensors. The results of our experiments involving
every-day objects indicate that (1) the contact microphones are a good alternative to capturing tactile information and that
(2) organizing the processing of the visual and haptic inputs hierarchically and in two pre-processing streams is helpful
performance-wise. Nevertheless, further research is needed to effectively quantify the role of each identified principle by
itself as well as in combination with others.
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Introduction

Most envisioned applications require robots to recognize
objects well. Although vision is important for object
recognition, there are certain hard-to-overcome challenges
when relying on it alone [20]. Even the most advanced
vision-based techniques are restricted in their performance
by hardware limitations such as the quality of the camera,
environmental conditions leading to poor lighting in the
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scene, and objects that are highly translucent or reflecting.
Also, vision often cannot provide all the information needed
about an object at once; what can be seen of an object
depends on the viewpoint and on how much the object is
occluded by other objects in the scene. Then, there is an
inherent restriction to what exactly can be perceived with
vision alone: There are certain objects whose identities can
still be ambiguous even if the robot has a perfect view of
them, a good example being decorative artificial fruits and
vegetables that can sometimes look very much like real
ones. The identity of an object is defined by its purpose and
its purpose is defined by its material and form properties,
which are not all visually perceivable.

In situations, where we cannot completely rely on our
vision, be it due to the ambiguity of the object that we want to
identify, external conditions or even visual impairments, we
resort to other senses, most often to our “sense of touch.”
With the additional sensory information obtained by man-
ually exploring the objects, we are better able to recognize
them. Robots can similarly benefit from additional haptic
perception capabilities for the object recognition task, e.g.,
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[25, 66]. Usually, the object recognition process is modeled
in a way where the visual and haptic information extracted
from an object are processed separately until they finally
converge to a classification result. The human brain, how-
ever, deals with this information differently: interactions
between vision and touch take place in the cortex [39].
These interactions can be crossmodal, meaning that the
haptic stimuli activate regions traditionally believed to be
visual, or multimodal, in which case the visual and the hap-
tic stimuli converge. Incorporating these insights regarding
how the human brain combines vision and haptics to recog-
nize objects might help robots approach human proficiency,
eventually. Therefore, the objectives of this paper are the
following:

1. to present a functional description of how visuo-haptic
object recognition is performed in the brain and derive
organizational principles that could be used for robots
(see “Visuo-Haptic Principles of the Human Brain”).

2. to review existing visuo-haptic integration strategies
and assess to which extent these do (not) adopt the
identified principles (see “Towards a Brain-Inspired
Integration Strategy”).

3. to evaluate how using these principles in a unified
brain-inspired integration strategy influences the object
recognition performance in comparison with the com-
monly used integration strategies (see “Methods” and
“Results”).

Visuo-Haptic Principles of the Human Brain

The human brain’s proficiency in recognizing objects
remains unmatched by existing artificial systems, which
underlines the complexity of this task [34, 38]. Humans
can identify objects instantly and accurately, even if only
view-dependent partial observations are available caused
by occlusion in cluttered environments or variances in
the object’s pose. Moreover, our brain is highly robust to
failures: If the information about an object acquired through
vision is not reliable, it combines it with other sensory
modalities.

An especially strong link exists between vision and
haptics: If we see an interesting or unfamiliar object surface,
we will intuitively feel the urge to touch and explore
it. In many aspects, these two modalities are also quite
complementary: While haptic perception is sequential in
how the properties of an object are appreciated [41], visual
perception is instantaneous in that multiple object properties
can literally be perceived at one glance. Our skin, being
our largest sensory organ, augments the limited perceptual
space accessible with our eyes to cover more of our
environment. Hence, a uniquely rich domain of observations

is possible with the haptic system, especially when active
touch is involved. The visually and haptically perceivable
object properties constitute complementary sets for the most
part as well.

Understanding the processes within the brain that are
involved in the object recognition task, especially in
making sense of the information coming from the different
modalities, might help us building better computational
systems with capabilities comparable to that of humans [34,
38]. Despite being a very actively researched topic, how
exactly the human brain accomplishes object recognition
is still not fully known. However, the following three
processing principles can be identified as underlying
the visuo-haptic integration in the cortex during object
perception and recognition:

1. Hierarchical processing: Starting at the back of the
brain and going ventrally along the cortex, the object-
related visual stimuli is processed hierarchically and
abstracted into higher-level features (see “Hierarchical
Processing Along the Ventral Pathway for Object
Identification”).

2. Parallel processing of shape and material properties:
The processing disperses into two streams, one
dedicated to the perception of shape and the other to the
perception of the material properties (see “Substreams
for Object Shape and Material Processing”), and
involves haptic activations in both of these streams (see
“Haptic Activation Along the Substreams”).

3. Experience-driven self-organization: The ability to
process and integrate the information from the different
sensory modalities optimally is not hard-coded in
the brain but develops after birth (see “Input-Driven
Self-Organization of the Underlying Neural Circuits
During Visuo-Haptic Integration”).

Hierarchical Processing Along the Ventral Pathway
for Object Identification

Every sensory system that a human possesses is associated
with an area of the cortex that is its primary sensory area.
This is the earliest cortical area to process the stimuli
coming from the receptors of that particular sensory system.
For the visual sense, the primary sensory area is the primary
visual cortex (V1) [28, 38] located in the occipital lobe.
The orderly arrangement of the retinal cells’ receptive fields
is preserved in how the visual stimuli are projected onto
V1; this particular case of topographic organization is called
retinotopy. The visual features processed in this earliest area
are rather simple and low-level. The output of the processing
is forwarded to the subsequent visual cortical areas. These
areas are organized hierarchically so that the low-level
inputs are successively transformed into more complex and



410 Cogn Comput (2018) 10:408–425

abstract representations [28, 38, 64]: As one proceeds from
one area to the next, the receptive fields of the cells get
larger and the complexity of the features they respond to
increases.

It is widely accepted that the further processing of
the visual stimuli diverges onto two functionally separate
streams starting from V1 [46, 64], as shown in Fig. 1.
One stream extends to the posterior parietal cortex. This
dorsal processing stream is sometimes also referred to as
the “where pathway” or “how pathway.” It is said to be in
charge of perceiving the spatial relationships among objects
and coordinating visually-guided actions directed at objects,
such as reaching and grasping. The other stream reaches as
far as the inferior temporal cortex. This ventral processing
stream is also known as the “what pathway” which is in
charge of recognizing objects. Hence, this is the stream
that is of interest in the context of this work. The two
streams have also been described alternatively as “action”
and “perception” pathways [26].

Substreams for Object Shape andMaterial
Processing

There is significant evidence that the ventral stream is
functionally further specialized into separate processing
pathways, for the object form and surface properties
respectively [13, 14]: The posterior-lateral regions of the
occipitotemporal cortex, encompassing the lateral occipital
area (LO), were shown to be engaged in object form
perception. The perception of surface properties such as
texture and color, on the other hand, is dealt with in more
medial areas of the ventral pathway. Here, the area along the
collateral sulcus (CoS) was identified as texture-specific,
but no color-specific area was found. It is believed that
the extraction of information about surface color occurs
relatively early in the ventral stream compared to surface
texture. Interestingly, there seems to be an overlap between
regions that are form-selective and those thought to be

Fig. 1 The dorsal ( ) and ventral ( ) processing streams emanating
from V1 ( ). (Image source Wikipedia)

involved in object recognition. The same appears to be
the case for regions that are selective to surface properties
and those that have been associated with face and scene
recognition.

These findings were confirmed and extended in further
studies [16, 17]: The medial portion of the ventral pathway
was found to be organized into multiple “foci,” where
each one processes the stimuli related to a particular
surface property. These interact with each other to perceive
the material properties of an object. A texture-selective
region appears to be located posterior to a color-selective
one. Also, regions responsive to shape, texture and
color together were found to be located beside regions
exhibiting single-feature selectivity [16, 17]. These areas
lie within the fusiform gyrus (FG) in the temporal lobe,
apparently corresponding to the same areas associated
with the perception of more complex stimuli such as
faces and places, which is in line with existing evidence
[14].

Haptic Activation Along the Substreams

The primary sensory area for the sense of touch is the
primary somatic sensory cortex (S1) [34, 56] located in
the postcentral gyrus of the parietal lobe. It processes the
sensory inputs that it receives from the tactile and kines-
thetic senses, typically during active manual exploration
[19], for the purpose of texture and form discrimination.
Whereas the tactile stimuli come from receptors distributed
over the whole skin surface, the kinesthetic stimuli come
from receptors that are embedded in the muscles, joints and
tendons [19]. As in V1, these stimuli are also processed
in a hierarchical manner here. S1 is organized somato-
topically, a special case of topographical organization like
retinotopy, meaning that there are complete maps of the
body at different levels of processing. The body is not repre-
sented in actual proportion; the area dedicated to each body
part in S1 directly reflects the density of receptors contained
in it.

The functional divergence onto separate pathways might
not be specific to the visual system alone. It is very likely
that there is an analogue in the somatosensory system
with two or potentially more separate pathways [33, 58].
However, different views exist regarding how the neural
substrates underlying haptic perception are organized into
such streams (see [33] for a review of three of them). Object-
related haptic activation outside the somatic sensory cortex
has been found in certain regions along the ventral visual
pathway. We already know the lateral occipital complex
(LOC) for its involvement in visual shape processing [37,
43]. Figure 2 shows the part of the LOC that responds
selectively to objects in both vision and haptics. This
subregion has been named lateral occipital tactile-visual
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Fig. 2 Regions in the LOC exhibiting visual ( ) and haptic ( )
object selectivity shown on the right brain hemisphere (top: lateral
view; bottom: ventral view) (Image source: [40], with permission of
Springer)

region (LOtv). Based on this finding, it was concluded that
the LOC is a bimodal convergence area involved in the
recovery of the geometric shape of objects [4, 5]. That
the neurons in the LOtv are truly bimodal and form a
visuo-haptic object-related integration site was confirmed
later [61]. Haptic activation related to the perception of
surface texture also occurs in certain regions within the
medial occipitotemporal cortex [54, 55, 65]. These regions
are not bimodal in the same way that the shape processing
regions are the following: While they are in very close
proximity to those on the CoS responsive to surface texture
during visual perception, they are spatially distinguishable.
It may be that the visual and haptic texture information
are represented differently from the visual and haptic shape
information. However, it is possible that the processing is
not completely independent and that the regional adjacency
facilitates crossmodal interaction.

Interestingly, there is evidence that object weight is
represented in the ventral visual pathway as well, specifi-
cally in the medial regions [24]. This might explain what
we know from our own experience: We can directly per-
ceive the weight of an object when we explore it haptically
but we can also infer this information from the visually
perceived properties. Also, an object’s weight is a part of
its identity, as it contributes to its distinguishability from
other objects. Hence, this finding is indeed in line with
the ones presented above, especially the ones related to
the role of the ventral visual pathway in object recognition
[35]. It also gives rise to the assumption that other prop-
erties, such as object hardness, are dealt with in a similar
way.

Input-Driven Self-Organization of the Underlying
Neural Circuits During Visuo-Haptic Integration

Our brain integrates object-related visual and haptic
information in a manner that is statistically optimal,
weighting each sense according to its reliability [21, 30].
Not much is known about the particulars of how the
neural substrates of object perception combine the visual
and haptic experiences to more abstract and meaningful
perceptual experiences for learning or recognition. There
are many indications though that this capability, in general,
is not an inherent one. It is a result of self-organization
among the neurons driven by the experience accumulated
during development, that is, input-driven [45].

Multisensory integration at the level of single neurons
has been studied primarily in the cat superior colliculus (see
[60] for an extensive review). Newborn cats are already
capable of detecting certain cross-modal correspondences
but not of integrating the information coming from the
different senses. The latter develops after birth based
on their cross-modal experiences of the environment, to
which the underlying neural circuitry adapts in a way that
optimizes their multisensory integration capabilities. The
contributing unisensory systems do not have to reach a final
point in maturation for this development to begin; both
happen in parallel.

The occurrence of self-organization in the primary
sensory areas suggests that it is a fundamental mechanism
in the brain. The V1 neurons respond selectively to certain
features such as orientation and color, forming different
cortical feature maps. There is a pattern to how these feature
preferences are spatially organized in these maps [45]: Their
coarse structure, which is fixed before birth, is determined
by retinotopy, whereas the finer structure emerges only after
birth, being shaped by visual experience. Experiments have
shown that physiological deficits of varying degree can
be caused in kittens by depriving them of normal visual
experience, especially in the first few weeks after birth, a
critical period in their development: Suturing their eyelids
shut causes disorganization in the visual cortex and can even
lead to permanent blindness if the eyes are kept that way
until after the critical period (e.g., [32]). Kittens exposed to
an environment consisting entirely of horizontal or vertical
stripes for some time have a lot of difficulty processing
complex visual scenes (e.g., [9, 10]). The somatic sensory
maps develop in a dynamic fashion as well, possibly starting
as soon as the first body movements occur in the womb [47].

The most convincing argument in favor of our visuo-
haptic integration capabilities being the result of input-
driven self-organization comes from a behavioral study with
humans [27]. It seems that a human’s ability to integrate
visual and haptic information during object form perception
becomes statistically optimal only at the age of 8 to 10. Until
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then, the importance that children give to either modality
often does not reflect its reliability in a particular situation.
That being the case, there must be some “trigger” that
causes associative links between unimodal experiences to
be established. Perceptual illusions, such as the rubber hand
illusion (RHI), reveal that the temporal co-occurrence of
visual and haptic stimuli is important. There is also a spatial
aspect to it: The integration of the two modalities becomes
likelier if it is known that the stimuli come from the same
object [30].

Towards a Brain-Inspired Integration
Strategy

The review in “Visuo-Haptic Principles of the Human Brain”
of how the human brain performs visuo-haptic object
perception has revealed that the processing of the visual
and haptic information is organized hierarchically, that
it diverges onto two separate processing streams, one
dedicated to object shape perception and the other to
object material perception, and that the mechanisms behind
the processing and integration of information are self-
organized. In this section, we review existing integration
strategies and we describe up to what extent the identified
brain-inspired processing principles have been tried already.

ExistingWork on Visuo-Haptic Object Recognition

The idea of integrating vision and touch for the purpose
of generating descriptions of object surfaces dates back to
1984 [2] and has been extended to encompass the whole
object recognition task [3]. Since then, a lot of work has
been done on recognizing objects based on either vision
or haptics alone [66]. Despite the significant progress
achieved in object recognition based on either modality,
the combination of both has attracted less attention in
comparison [66]. The relevant approaches are listed in
Table 1. There, they are roughly organized into three
main categories according to the taxonomy of information
fusion approaches presented by Sanderson and Paliwal [57],

namely pre-mapping, midst-mapping and post-mapping
fusion. The difference between these approaches is the point
at which the information coming from the different sources
(here modalities) converges in the process of mapping from
the feature space to the decision space.

Pre-mapping Fusion In pre-mapping fusion, all available
feature descriptors are simply concatenated into a single
vector before the mapping on the decision space is
performed. Güler et al. [25], for instance, use this approach
in their work on identifying the content inside a container
based on vision and touch: A three-fingered Schunk
Dextrous Hand explores a cardboard container, either empty
or filled with water, yoghurt, flour, or rice, by performing
grasping and squeezing actions on it. The effects of these
actions on the container, that is, the pressure exerted
on the contact points and the deformation achieved, are
extracted as touch and visual cues, respectively. The visual
data is collected with a Kinect camera that is placed
one meter away from the robot platform and consists
of the change in depth values around the contact points
registered during the grasp. The tactile data comes from
the touch sensing arrays on the fingertips of the robot
hand. After standardizing the data to zero mean and unit
variance, principal component analysis (PCA) is applied
to the visual and tactile data combined to cope with the
high dimensionality. The combined data then serves as input
to different supervised and unsupervised learning methods,
namely k-means, quadratic discriminant analysis (QDA),
k-nearest neighbors (kNN) and support vector machines
(SVM). The results show that the classification accuracy
benefits from combining visual and haptic input. However,
there is one general problem with the pre-mapping fusion
approach in that there is no explicit control over how much
each modality contributes towards the final decision [57].
The influence of each modality is proportional to how much
its respective feature vector makes up the combined feature
descriptor.

Midst-Mapping Fusion In midst-mapping fusion, the fea-
ture descriptors are provided to the system separately, which

Table 1 Existing work on
visuo-haptic object recognition
organized according to
Sanderson and Paliwal’s
taxonomy of information
fusion approaches [57]

Related work Information fusion approaches

Pre-mapping Midst-mapping Post-mapping

Güler et al. (2014) [25] ×
Yang et al. (2015) [66] ×
Liu et al. (2017) [42] ×
Nakamura et al. (2007) [49] ×
Corradi et al. (2017) [18] × ×
Castellini et al. (2011) [15] × × ×
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then processes them in separate streams and integrates them
while performing the mapping.

An example of this information fusion approach is the
method that Yang et al. [66] propose for visuo-tactile
object recognition of common household objects. The visual
information is extracted from an image of the object by
means of the so-called covariance descriptor (CovD). This
representation is obtained by computing the covariance
matrix for a set of feature vectors, where each vector is
associated with one pixel. Meanwhile, the tactile input is
composed of the tactile sequences coming from the sensors
of the three-fingered BarrettHandTM. A kNN classifier
finally performs the fusion of these representations. The
weighted sum of distance measures defined for each sensory
modality is used as the overall distance measure for
determining the nearest neighbors. Depending on how the
weight values are chosen, the kNN classifier’s input can
range from tactile-only to visual-only information. These
results support the conclusion that the performance of the
combination is better than relying on a single modality [25].
Here, the authors experiment with different weightings of
the modalities, but the downside is that the weights have to
be set manually by trial and error.

Liu et al. [42] employ the same hardware and feature
extraction techniques but a different visuo-tactile integration
method, which is based on kernel sparse coding (KSP). KSP
maps data to a high-dimensional feature space and generates
a dictionary of atoms in terms of which the data can then
be encoded sparsely. However, this method fails to capture
the intrinsic relations between the different data sources: It
can only be applied to each modality separately, resulting
in two different coding vectors. The authors address this
problem by proposing an extension, which they call kernel
group sparse coding (JKGSC). By taking into account
constraints that characterize the intrinsic relations between
the different modalities, JKGSC produces for each modality
coding vectors that are pattern-wise similar to each other
for the same object. The results of their experiments show
that fusing the visual and tactile information using the
JKGSC method leads to a higher classification accuracy
than applying the KSP method to each modality separately.

Another example of the midst-mapping fusion approach
[48, 49] endows a robot with the capability of exploring
objects and categorizing them in an unsupervised fashion
based on the gathered visual, haptic and auditory informa-
tion. The robot grasps an object, inspects it from different
viewpoints and listens to the sound it makes. The data col-
lected in the process comprises the images taken with the
robot’s camera and the signals recorded with the micro-
phones and the pressure sensors on the robot’s hand. The
information is represented in a bag-of-words (BoW) model
for each modality. A codebook is generated by identifying
patterns of co-occurring features, referred to as codewords,

using k-means clustering over the detected features. The
codewords are then the centers of the learned clusters. The
visual, haptic and auditory information collected about a
single object over the entire observation period is described
in terms of the respective codebook by counting the fre-
quency of occurrence of each codeword in that information.
The number of codewords in a codebook determines the
length of the final representation. The codebook for the
visual modality is generated from descriptors computed
with the scale-invariant feature transform (SIFT) algorithm
for the salient regions in the image data and contains 600
codewords. The haptic information is comprised of the sum
of the digitized voltages coming from the pressure sen-
sors and the change in angle between the two fingers until
the completion of grasp, resulting in a codebook with five
words for this modality. Finally, a codebook of size 50 is
obtained for the auditory modality from the Mel-Frequency
Cepstral Coefficients (MFCCs) computed for the speech
and noise signals. The categorization of the objects is car-
ried out with a proposed extension to the probabilistic latent
semantic analysis (pLSA). The evaluation results show that
the proposed method performs best when all three modali-
ties are included. An advantage is that it learns the optimal
weighting of the modalities.

Corradi et al. [18] perform a comparison between two
midst-mapping fusion approaches and one pre-mapping
fusion approach. A KUKA KR-650 arm is used to explore
objects. The tactile sensor mounted on this arm consists of
an enclosure covered by a silicone rubber membrane, with
a camera and several LEDs, illuminating the membrane,
inside. The rubber deforms when in contact with an object
and creates shading patterns that are then captured by
the camera. After normalizing the camera output, Zernike
moments are computed and PCA is applied to reduce
the dimensionality to 20. As for the visual data, the
BoW model is applied to the speeded up robust features
(SURF) extracted from it to create a codebook of size
100. The visual and tactile information are then fused in
three different ways: (1) The extracted feature vectors are
concatenated and the object label is predicted with kNN,
(2) the posterior probabilities (the probability of the label
given the observation) are estimated for each modality and
the object label that maximizes their product is chosen,
and (3) the object label that maximizes the sum of these
posterior probabilities weighted by the number of training
samples available for each modality is chosen. All three
fusion approaches yield higher classification accuracies
than either modality alone. When compared with each
other, the posterior product approach outperforms the other
two.

Post-Mapping Fusion In post-mapping fusion, the mapping
from the feature space to the decision space is performed
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on each feature separately before the resulting decisions
are finally combined. Castellini et al. use this approach in
their work on recognizing everyday objects using visual
and kinesthetic input [15]. Actually, they test all three
information fusion approaches and compare the results. The
data comes from recording the act of grasping an object in a
particular way performed by different subjects on different
objects. From the obtained image sequences, some frames
are selected in which the object is perfectly visible. The
regions of interest (ROIs) showing the object are identified
by performing background subtraction and change detection
with respect to a background model on the remaining
frames. The SIFT descriptors extracted from these ROIs
are used to construct the BoW model resulting in a
codebook with 200 codewords. The kinesthetic information
is captured with the CyberGlove, a sensorized glove.
The posture of the hand when grasping the object is
described with a total of 22 values. The proposed classifier
handles two conditions: In one condition, both visual and
haptic object-related information are available, while in
the other, only the visual portion is available. In the latter
case, the motor features are reconstructed from the visual
information. The classifier is implemented in an SVM-
based framework and can combine the visual and haptic
cues on three different levels. Again, the conclusion is
that the integration of multiple modalities improves the
classification performance. Among all three approaches for
information fusion, the mid-level one achieves the highest
accuracy, closely followed by the high-level approach.

Relating the ExistingWork to the Identified
Brain-Inspired Processing Principles

The review of the existing work reveals a concentrated effort
to prove the benefits of integrating vision and haptics for
the object recognition task. Although the reviewed research
covers a number of different integrations strategies, they
all lack a clear rationale for why a particular integration
strategy was chosen. To the best of our knowledge, a
comprehensive comparison has only been attempted by
Castellini and colleagues [15] thus far. Their results suggest
that midst-mapping fusion is the most promising approach
in terms of performance. At the same time, it is the
information fusion approach that has been pursued the most
often according to Table 1 and that also reflects by definition
two of the processing principles seen in “Visuo-Haptic
Principles of the Human Brain”: The processing of the
visual and haptic inputs is organized hierarchically and in
two processing streams.

What has not been examined yet is organizing the
streams to process object shape and material separately (cf.
the second principle, see “Substreams for Object Shape and
Material Processing” and “Haptic Activation Along the

Substreams”). Interestingly, in all instances of midst-
mapping fusion presented above, the processing of the
information is separated based on the modality instead.
One reason for this rather straightforward organization
might be that the small number of object properties that
are considered does not allow for a more sophisticated
combination of the visual and haptic inputs. Although there
are many more haptically perceivable object properties, for
example, the only ones that have been taken into account
in the presented works are the object’s shape or hardness.
Another reason might be the use of global general-purpose
feature descriptors, like SIFT, instead of decomposing
the information into discrete object properties. Also, none
of the presented research makes use of self-organizing
mechanisms for the processing and integration of the
visual and haptic object-related information (cf. the third
principle, see “Input-Driven Self-Organization of the
Underlying Neural Circuits During Visuo-Haptic Integration”).

The question arises whether pursuing the brain-inspired
processing principles for object recognition outlined in
“Visuo-Haptic Principles of the Human Brain” would be
beneficial for robot applications. To explore this question,
we examine the three integration strategies illustrated in
Fig. 3: (a) The monolithic integration strategy, which is an
instance of the pre-mapping fusion approach and therefore
performs the classification on the concatenation of all object
descriptors, (b) the modality-based integration strategy,
which is used the most often and where the visual and
haptic inputs are processed in two separate streams before
the results of the pre-processing are integrated in the final
object label predictor, and finally (c) the brain-inspired
integration strategy, which incorporates all of the above-
mentioned processing principles. It is also an instance of the
midst-fusion approach, but unlike in the previous integration
strategy, the shape- and the material-related inputs are pre-
processed separately so that the integration of the modalities
takes place as soon as the first layer.

Methods

This section presents the various methods used for
collecting data, extracting the relevant visual and haptic
features and implementing the neural classifiers that
combine the information from the two modalities according
to the three integration strategies to be compared.

Data Collection

Robot Platform The object exploration was performed with
the humanoid robot NAO by SoftBank Robotics. It is
available in different body types; we used the torso-only
model, NAO T14. One advantage of using the NAO robot
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The monolithic integration strategy.

The modality-based integration strategy.

The brain-inspired integration strategy.

(a)

(b)

(c)

Fig. 3 Integration strategies

is that it offers sensing capabilities for most of the object
properties that we wish to extract: The visual data can be
collected with either one of the two RGB cameras built
into its head. For the haptic data for the object properties
that involve kinesthesis, namely shape and weight, the joint
angle values and the currents delivered to the motors in both
arms can be used. Both types of information are readily
accessible via the standard API (v2.1.4.13).

On the other side, NAO lacks sensors for the other
two haptic object properties, which are related to tactile
perception, namely haptic texture and hardness. While here
are capacitative tactile sensors on some parts of the body
including the head and hands, these are meant for user input.
Our solution to this problem is inspired by Harrison and
Hudson [29]: Here, an inexpensive sensor was incorporated

into a mobile device to capture user input in the form of sounds
produced with a finger on the surface below the device.
Similarly, such inexpensive sensors could be attached to
NAO’s arms or the table below to record the vibrations
transmitted across the surface during object exploration.
The robot can then perform simple scratching and tapping
actions on the object to explore its texture and hardness,
respectively. Ideally, the sensors could be placed on the
skin surface from inside the robot arm. We use contact
microphones as sensors. When in contact with solid objects,
this form of microphone is very sensitive to structure-
borne vibrations, but pretty much insensitive to air-borne
ones. The use of microphones is also biologically plausible:
It allows to emulate how the so-called mechanoreceptors
work, which are one type of somatic sensory receptors that
react to mechanical pressure or vibration [56].

In particular, we use the inexpensive Harley Benton
CM-1000 clip-on contact microphones and the 4-Channel
ALESIS iO4 audio recording interface in order to be able
to work with multiple sensors at the same time. Two of the
contact microphones are attached to the table, one clipped
onto the end of the ridged stick pointing towards the robot
and the other clipped onto the edge of the table surface on
the opposite side. The other two microphones are attached to
the left arm of the robot, see Fig. 5. To make things short and
easy, the contact microphones will henceforth be referred to
as channels 0 to 3, based on the number of the input channel
they were assigned to on the audio interface, in the order
mentioned.

Object Exploration NAO’s three-fingered hands only allow
for very small and light objects to be held in one hand.
The problem is that the fingers then completely cover the
objects so that no surface area is left for the other hand
to explore haptically. Bigger objects are much more likely
to vary in weight, which makes the use of this property
to distinguish between the objects meaningful, but require
the robot to hold them with both hands. Having it hold
the object throughout the whole haptic exploration process
means that there will be no free hand to explore the object’s
texture and hardness. Hence, a custom table was built for
the robot to explore objects on, with a stick to serve as an
additional finger attached on top. Small ridges were added
to this stick, inspired by the fine ridges on our fingertips, to
increase the friction when in contact with an object surface.
The overall sequence of exploratory movements that the
robot performs was hard-coded. For a smooth execution,
some human intervention is necessary at certain points in
time to make sure that the object is in the expected spot.

The overall object exploration process is organized in
two phases: In the first phase, visual-only exploration takes
place. The robot opens up its arms to move them out of the
way for a perfect view and waits for the object to be placed
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within its visual field. Once the visual data is collected,
the object is positioned on the table so that, upon moving
gradually closer to each other, the hands end up enclosing
it. Once the robot has grasped the object, the second phase
starts and the object is explored haptically. After having
appreciated the shape of the object in its grasp, the robot lifts
it up to weight it and then places it back down on the table
surface. Then the robot moves the object laterally along the
ridged stick on the custom table and hits it against the same
stick three times to perceive its surface texture and hardness,
respectively. Finally, the robot releases the object.

Object Set The set of 11 objects used in the data collection
is shown in Fig. 4. It is comprised of objects big enough to
not slip through the robot’s hands or be completely covered
by the fingers. At the same time, they are small and light
enough for the robot to pick them up with both hands
without the fingers being in danger of being damaged. The
choice also covers both visually and haptically ambiguous
objects. Examples of objects that are visually ambiguous
are the blue softball and the blue footbag, which are very
similar in their visible shape, texture and color. The red
and blue softballs are examples of the latter, the only
difference being their colors. Not included are translucent
objects, although they would have been quite interesting,
in particular, because they pose a challenge to any object
recognition techniques that are based on vision only.

Conditions The overall data collection set-up is shown in
Fig. 5. It consists of the robot, a custom table that it explores
the objects on, the four clip-on contact microphones and the
audio interface that all of them are connected to.

The data was collected under two conditions. First,
ten observations were collected for every object in the

Fig. 4 The set of objects used for the data collection from left to
right, [top to bottom: red softball, red mesh sponge, blue softball, blue
footbag, toy corn, sponge, decorative apple, green footbag, styrofoam
piece, styrofoam ball], white mesh sponge

Fig. 5 Left: The overall robotic set-up for the data collection, Right:
The placements of the four contact microphones (two of them on the
table and the other two on the robot’s arm)

object set under controlled and reproducible lab conditions:
The ceiling lamps were switched on and the curtains were
closed. A standing lamp was placed behind the robot to light
the surface of the custom table and to ensure that the objects
placed on top during visual exploration cast as little shadow
as possible, which yields better object segmentation results.
The observations for each object were added in a 70:30
ratio to the training and test sets. Another three observations
per object were collected under uncontrolled real-world
conditions: The standing lamp was removed from the set-
up and the curtains were opened. We let the robot perform
some of the object exploration runs in a slightly imprecise
manner. The assignment of these additional observations to
the training and test sets was done in the same way as above.

Feature Extraction

From the collected image, sound and motor data, the feature
descriptors for the objects’ visual and haptic shape and
surface texture, color, weight and hardness were extracted.1

Visual Features Images were taken with NAO’s lower head
camera with a resolution of 1280 × 960 pixels, which were
then processed using standard image processing techniques
from the open-source Python libraries OpenCV (v3.1.0)
[12] and scikit-image (v0.17.1) [53]. Two images were
collected in each object exploration run, one of only the
scene background and the other of the same scene with
the object in it. Background subtraction [59] was applied
to each such pair of images to segment the objects before
finally extracting the shape, color, and texture descriptors
from the identified regions of interest.

The shape descriptor is composed of the seven so-called
Hu moments [12, 31]. These result from different linear
combinations of centralized and normalized moments.
Usually, the first and seventh Hu moments have the largest
and smallest values, respectively. The color descriptor is

1The full dataset is available online at https://figshare.com/s/555a20d9
972e74fae355 [63].

https://figshare.com/s/555a20d9972e74fae355
https://figshare.com/s/555a20d9972e74fae355
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obtained by concatenating the normalized color histograms
for each color channel in BGR order, resulting in a total
length of 768. As for the texture descriptor, it is a normalized
histogram of so-called local binary patterns (LBP) [50]
with 26 entries in total. The LBPs capture textural patterns
(primitive micro-features, such as edges, corners and spots)
defined by local pixel neighborhoods: The differences in
gray value between a center pixel and its neighboring pixels
are encoded as a binary pattern which is then converted into
a decimal representation.

Haptic Features The four haptic object properties that are
considered here can be divided into two groups: One group
is comprised of shape and weight, which are kinesthetically
perceived object properties, while the other contains the
tactile object properties texture and hardness. The data for
each group was collected from a different source.

The kinesthetic data is comprised of the joint angles and
electric currents measured in both of the robot’s arms. The
joint position of the arms retrieved after the robot has fully
enclosed an object with both hands is used as the shape
descriptor. With 6 degrees of freedom (DOF) in one arm, its
overall length is 12. As for the weight descriptor, the electric
currents recorded in both arms while the robot is holding up
the object were used in addition. The assumption is the fol-
lowing: The more an object weighs, the higher the electric
currents will be in order to compensate for gravity and to
reach the desired joint position with the arms. With the
joint positions (both desired and actually achieved) and the
electric currents, this descriptor is comprised of 36 values.

The tactile data was collected with the clip-on contact
microphones attached to different places of the overall data
collection set-up. One-second sound snippets were recorded
with a sampling rate of 44,100 Hz before and while the robot
executed the exploratory movements for texture or hardness.
On each pair of sound snippets, spectral subtraction [11]
was performed to suppress the background noise and
thereby isolate the tactile vibrations. Figure 6 shows one
example of the resulting clean signal. The final descriptor is
the one-sided magnitude spectrum of the resulting Fourier
transform, which is computed by taking its absolute value.
It has 22,050 dimensions in total.

Data Preparation

When all the feature descriptors are taken together, the num-
ber of dimensions amounts to 44,949. The problem is that
training a classifier on such high-dimensional data requires
a lot of time. For that reason, principal component analysis
(PCA) [62], which is a dimensionality reduction technique
that projects data onto a lower-dimensional space while
keeping the loss of variance at a minimum, was performed
separately on each portion of the data corresponding to an

Fig. 6 An example of the clean signals (one for each channel) obtained
after performing spectral subtraction on the 1 s sound snippets that
were recorded during the haptic texture exploration of the red ball

object property. The transformation matrix was computed
for the training set data and then applied to the data in the
test set. Multiple runs were performed in order to identify
the number of dimensions that the variance in the original
data can be fully explained with. In addition, all columns
in the resulting data were standardized [62] to zero mean
and unit standard deviation to prevent that those with larger
values have the largest impact on the classification results.

Classification

To incorporate the third processing principle identified
in “Visuo-Haptic Principles of the Human Brain”, the
integration strategies shown in Fig. 3 were implemented
on the basis of a self-organizing neural network model,
namely the growing when required (GWR) [44]. Unlike
the popular self-organizing map (SOM) [36], it has the
advantage of not being limited in its learning capability by
being fixed in its size and topology. It is capable of growing
like the growing neural gas (GNG) [22, 23], without the
drawback that a new node can only be added every time
a certain number of adaptation steps have passed. The
GWR can grow whenever necessary, can adapt better to any
changes in the input distribution and converges faster. These
characteristics make the GWR ideal to model the ongoing
adaptive behavior of the brain cortex after birth.

TrainingAlgorithm The algorithm for training a GWR is out-
lined in Algorithm 1. Basically, the neurons of the network
compete for the ownership of every input vector presented
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to it. The decision of whether a new node is necessary
is then made based on the activity and the habituation of
the best matching node. If its activity in response to the
input vector is not high enough despite having been trained
enough times, a new node is needed to better represent
the input vector. This node is inserted into the network
between the best and second best matching nodes. If the
best matching node is not sufficiently trained yet, the
best matching node and its neighboring nodes are moved
closer to the input vector instead, the latter to a lesser
extent.

Algorithm 1 The GWR training algorithm

1: procedure TRAIN(training set , number of training
epochs , activity threshold , habituation threshold

, learning rates and , habituation rates and
maximum connection age )
require: 0 1 and 0 1 and
0 1

2: , where 1
nodes

3: , where connections
4: 0 current epoch
5: for do
6: for all do input vector
7: arg min DISTANCE

best match
8: arg min DISTANCE

second best
9: connection

10: if then
11: 0 connection age
12: else
13:

14: exp DISTANCE

best activity
15: if then
16: , where

1
17:

18: else
19: weights
20:

habituation
21: for all where do
22:

23:

24:

25:

26:

27: += 1

The following hyperparameters are required for the
training process: The number of epochs π indicates how
many times the GWR network is exposed to the entire
training set. The activity threshold aT specifies when the
activity of the best matching node is considered high
enough, while the habituation threshold hT specifies when
the node is trained sufficiently. Both thresholds are between
0 and 1. The two learning rates εb and εn control to what
extent the weight vectors of the best matching node and
its neighbors are adapted. The values should be chosen so
that 0 < εn < εb < 1 holds. There are two habituation
rates τb and τn as well. Apart from controlling how fast
the habituation of the best matching node and its neighbors
should converge to zero, these rates play a role during
weight adaptation. Similar to before, the values should be
chosen so that 0 < τn < τb < 1 holds. αT is the maximum
allowed age before a connection is removed from the GWR
network. Finally, although actually not a hyperparameter,
the distance function DISTANCE is treated as one here.

Implementing the Integration Strategies Implementing the
three integration strategies in Fig. 3 using GWR networks
as building blocks involves figuring out how to integrate
multiple cues (irrespective of whether they are from
the same modality or from different modalities), classify
observations and perform hierarchical learning with them.
Integration was achieved by simply concatenating the input
vectors coming from different sources before feeding them
to a GWR. To use a GWR network, which originally
is an unsupervised learning method, as a classifier, the
training algorithm was extended in two ways: The label
provided alongside the input vector is either assigned to
the newly created node or used to update the label of
the best matching node during network adaptation. As for
hierarchical learning, it was accomplished by serving the
node activations of one GWR as input to the subsequent
GWR in the hierarchy.

Hyperparameter Optimization The research question was
refined into a series of experiments where the goal of each
was to find hyperparameter values that achieve the highest
classification accuracy. The classifiers tested in such an
experiment were either GWR networks trained on a subset
of the considered object properties or neural classifiers
implementing a particular integration strategy trained on
the complete set of object properties. The experiments
were carried out with hyperopt [6–8], a Python library for
hyperparameter optimization. Table 2 is an overview of all
the settings that were used in these hyperopt experiments.
The tree of Parzen estimators (TPE) method was used
for optimization and 500 trials were performed in each
experiment.
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Table 2 The settings used for the hyperopt experiments

General settings

Number of trials 500

Optimization method TPE

Configuration space

DIST. L2, L1, COS

aT , hT [0.4, 0.8], [0, 0.2]
εb, εn [0.2, 0.5], [0, 0.2]
τb, τn [0.2, 0.5], [0, 0.2]
π , αT 200, [62.5, 250]

Considering too many dimensions in the configuration
space might be problematic as 500 trials might not be
enough to cover it appropriately, lowering the chances of
finding good values. The ranges for most of the hyperpa-
rameters were therefore restricted to cover values that have
been shown to work well in many instances (e.g. [44, 51,
52]). π was set to 200 to give the GWRs enough time to
converge during training. As for DISTANCE, three options
were available, namely the Euclidean distance (or L2-norm,
L2), the Manhattan distance (or L1-norm, L1) and the
cosine (dis)similarity (COS). L2 loses its usefulness in high-
dimensional space: Because the data becomes sparse in such
a space, it becomes difficult to find best matching neurons
for the input vectors. It has been shown that L1 is prefer-
able to L2 for high-dimensional data [1]. COS does not take
the vector magnitudes into account and hence could per-
form better than the other two options. The results of COS
were used in degrees instead of radians as this matches the
concept of distance better.

Results

We set out to answer the research question of whether incor-
porating all three the brain-inspired processing principles
in one integration strategy helps improve the classification
accuracy. However, due to the complexity of the prob-
lem and systems used we need to answer a few additional
questions beforehand:

1. How suitable are the contact microphones for tactile
sensing? Which one of the four placements is the best
to capture as much of the tactile vibrations as possible?

2. How discriminating is each object property? Are the
object properties of one modality generally more
discriminating than the other?

3. How discriminating are the unimodal and bimodal com-
binations of object properties as found in the first layer
of the modality-based and brain-inspired integration
strategies? Does combining object properties help?

4. Which of the three integration strategies yields the
highest classification accuracy? Do they outperform the
previous combinations?

The results that are featured in the following correspond
to the (or a) best trial among all that were performed in the
respective hyperopt experiment.

Using Contact Microphones as Tactile Sensors To assess the
usefulness of the contact microphones as tactile sensors and
to determine the optimal placement in the overall set-up
for capturing discriminating tactile data, we classified the
objects based on their tactile properties with the information
coming from the four contact microphones shown in Fig. 5.
For each tactile object property considered (i.e., texture and
hardness) and for each of the four audio input channels, a
separate hyperopt experiment was run. The results of their
best trials are listed in Table 3.

It is possible to discriminate objects based on the data
from the contact microphones: In all best trials, the achieved
classification accuracies were a lot higher than what would
be achieved with random guessing (1/11 ≈ 9%). These
results make the idea of attaching them to the robot from the
inside, in particular the fingertips, worth considering.

With the inputs from the channel 0 microphone, which is
the one that is the closest to where the tactile exploration of
the objects takes place on the table, the highest accuracies
were obtained for both texture and hardness. As this is the
placement closest to the scene of exploration, it makes sense
that the most discriminating tactile vibrations are captured
here. The tactile data from this channel was hence used
for the remaining experiments. Also, more observations
were labeled correctly based on haptic texture than based
on hardness for all channels. The overall results indicate
that tactile sensing is indeed possible with the contact
microphones.

Discriminating Power of the Object Properties Hyperopt
experiments were performed for the visual and kinesthetic
object properties as well to find out how discriminating
these are and whether the object properties of one modality
are more discriminating than the other ones. Table 4 shows
for all object properties the trial that performed the best, also
including the best trials for haptic texture and hardness for
the sake of completeness.

The most discriminating visual object property is color,
while the least discriminating one is shape. Among the
haptic object properties, shape is the most and hardness the
least discriminating. No modality performed clearly better
than the other at the level of these single object properties:
Color and visual shape are also overall the most and least
discriminating, respectively.



420 Cogn Comput (2018) 10:408–425

Table 3 The suitability of the contact microphones as tactile sensors

emoctuOlairttseBtupnI

Property Channel Length DIST. #Nodes Accuracy

Texture 0 98 COS 0.640 0.103 0.388 0.064 0.419 0.073 128 309 68.2%

1 98 COS 0.488 0.079 0.284 0.159 0.369 0.174 62 292 61.4%

2 98 COS 0.657 0.128 0.421 0.141 0.325 0.160 113 272 59.1%

3 98 COS 0.506 0.048 0.354 0.126 0.330 0.197 103 258 56.8%

Hardness 0 98 COS 0.424 0.107 0.428 0.101 0.372 0.115 63 218 52.3%

1 98 COS 0.658 0.101 0.464 0.007 0.391 0.045 149 268 52.3%

2 98 COS 0.492 0.093 0.323 0.073 0.219 0.022 120 224 47.7%

3 98 COS 0.655 0.165 0.349 0.113 0.443 0.141 79 320 45.5%

The highlighted rows correspond to the hyperopt experiment, in which the highest classification accuracy was recorded

Uni- Versus Bimodal Combinations of Object Properties In
the modality-based and brain-inspired integration strategies,
the object properties are split up and processed in two
separate streams in the first layer before their outputs are
integrated in the next layer. Thus, it would be practical to
quantify how well objects can be recognized based on each
combination provided to one of these streams before turning
towards the actual research question. It is especially interest-
ing to know whether combining the object properties yields
higher classification accuracies than when each object prop-
erty is considered alone. That is why hyperopt experiments
were conducted for these uni- and bimodal combinations, of
which the best trials are summarized in Table 5.

More observations were classified correctly by combin-
ing the visual object properties than by combining the haptic
ones. As for the bimodal combinations, a slightly higher
classification accuracy was achieved with the combination
of all material-related properties. Overall, the visual-only
combination yields the best results. This is at the same
time the only case where the classification based on a

combination yields better results than any of the constituent
object properties on its own. Judging by these results, it is
likely that the modality-based integration strategy with the
modality-specific processing streams performs better than
the brain-inspired one, where the two streams are dedi-
cated to processing the shape- and material-related object
properties.

Performance of the Integration Strategies The final three
hyperopt experiments were conducted to evaluate the
integration strategies from Fig. 3 and to find out which
one yields the best classification results. The best trials
are shown in Table 6. To reduce the training time in the
experiments for the modality-based and the brain-inspired
integration strategies, the hyperparameters were optimized
only for the second-layer components in charge of the
actual classification. The hyperparameters for the first-layer
components were taken from the previous experiments for
the uni- and bimodal combinations of object properties (see
Table 5). The information on the best trial provided in these

Table 4 The discriminating power of the object properties

emoctuOlairttseBtupnI

Modality Property Length DIST. #Nodes Accuracy

Visual Shape 7 COS 0.624 0.086 0.372 0.072 0.441 0.042 69 204 40.9%

Color 98 L1 0.510 0.194 0.276 0.050 0.265 0.132 167 313 88.6%

Texture 26 L2 0.465 0.194 0.445 0.053 0.273 0.110 171 162 79.5%

Haptic Shape 12 L1 0.446 0.088 0.431 0.175 0.470 0.106 107 175 81.8%

Weight 26 L1 0.477 0.079 0.473 0.115 0.236 0.063 137 231 75.0%

Texture 98 COS 0.640 0.103 0.388 0.064 0.419 0.073 128 309 68.2%

Hardness 98 COS 0.424 0.107 0.428 0.101 0.372 0.115 63 218 52.3%

The occurrence of L2 as the optimal distance function in the case of visual texture is an exception

In all the hyperopt experiments performed, there was only this one best trial with L2 as the distance function

The highlighted rows correspond to the hyperopt experiment, in which the highest classification accuracy was recorded
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Table 5 The discriminating power of some uni- and bimodal combinations of object properties

emoctuOlairttseBtupnI

Combination Length DIST. #Nodes Accuracy

Unimodal Visual 131 L1 0.470 0.103 0.388 0.136 0.412 0.109 109 309 90.9%

Haptic 234 COS 0.800 0.163 0.441 0.050 0.230 0.164 55 290 75.0%

Bimodal Shape 19 L1 0.459 0.169 0.310 0.005 0.475 0.004 80 228 77.3%

Material 346 COS 0.611 0.184 0.312 0.003 0.405 0.171 137 331 79.5%

The highlighted rows correspond to the hyperopt experiment, in which the highest classification accuracy was recorded

two cases therefore only refer to this component in the
second layer.

As expected based on the previous results, the use of
the modality-based integration strategy led to the best clas-
sification results with an accuracy of 86.4%, quite closely
followed by the brain-inspired integration strategy with
81.8% and the monolithic integration strategy with 79.5%.
While the full availability of the data (and not only portions
of it as before) gives reason to expect higher classifica-
tion accuracies than in the previous experiments, this is
not the case for all integration strategies: Predicting the
labels based on color or haptic shape alone results in a
higher accuracy than when all the object properties are com-
bined according to the monolithic integration strategy (see
Table 4). Also, the number of correctly classified observa-
tions is higher when using only the visual object properties
in combination than combining all object properties as in
the modality-based integration strategy (see Table 5). In
contrast, the use of the brain-inspired integration strategy
improves the classification results compared to only consid-
ering the shape or the material properties (see Table 5).

Discussion

The main goal of the hyperopt experiments presented
in “Results” was to find out how well objects can be
recognized with a visuo-haptic integration strategy that
incorporates the brain-inspired processing principles from

“Visuo-Haptic Principles of the Human Brain” as opposed
to the integration strategies prevalent in the literature. In this
setting, the use of the brain-inspired integration strategy did
not lead to the highest performance, but we argue that its
performance was still competitive.

A positive effect on the classification accuracy can
definitely be observed for at least the first principle of
hierarchical processing: The best classification accuracies
achieved with the modality-based and the brain-inspired
integration strategies, where the processing of the inputs
is organized hierarchically and in two parallel streams, are
higher than the one achieved with the monolithic integration
strategy. As for the difference in the best accuracies
obtained with these more complex integration strategies, it
can be attributed to the different combinations of object
properties are presented to these streams in each integration
strategy: Less labels were predicted correctly with the brain-
inspired integration strategy, where the shape and material-
related inputs are processed separately (cf. the second
principle), compared to the modality-based integration
strategy, where the visual and haptic inputs are processed
separately. Nevertheless, it is quite difficult to dismiss the
second principle as not helpful based on this alone. A
possible explanation could be issues with the quality of
the data as hinted by the correlation between the optimal
distance function and the 2-D projection of the input data.

In all the hyperopt experiments that we ran, the optimal
distance function turned out to be either L1 or COS,

Table 6 The performance of the integration strategies

emoctuOlairttseBtupnI

Strategy Length DIST. #Nodes Accuracy

Monolithic 365 COS 0.778 0.151 0.374 0.146 0.338 0.130 149 284 79.5%

Modality-baseda 365 COS 0.564 0.056 0.452 0.106 0.268 0.194 107 213 86.4%

Brain-inspireda 365 COS 0.639 0.048 0.374 0.188 0.212 0.025 102 228 81.8%

aThe provided information refer to the second-layer component

The highlighted rows correspond to the hyperopt experiment, in which the highest classification accuracy was recorded
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Haptic shape only. All haptic features combined.(a) (b)

Fig. 7 The 2-D projection of the input data for two of the hyperopt
experiments (data points with the same color belong to the same
object)

the only exception being the best trial for visual texture.
This shows that L2 is usually not very useful in high
dimensions (cf. [1]). We projected the input data (in its
original dimensionality) for every hyperopt experiment onto
2-D space using PCA and looked at the distribution of the
data points in the resulting scatter plot to find the following
relation to the optimal distance function (see Fig. 7 for
an example): When the data points belonging to the same
object form more or less compact and distinguishable
clusters, the distance function of the best trials in a
hyperopt experiment is L1. COS appears as the optimal
distance function when there is no real structure in how
the data points are organized in this scatter plot. Mostly,
the data points densely populate one particular area. For
some objects, the data points are spread out quite widely.
Considering the number of occurrence of COS as distance
function in the best trials as well as the data dimensionalities
in Table 4, the haptic object properties appear to be far more
affected by the lack of structure than the visual ones. Also,
the number of hyperopt experiments, where COS appears
as distance function in the best trial, increases with the
number of object properties considered as input as the lack
of structure adds up in proportion to the dimensionality
of each object property, see Tables 5 and 6. This explains
why the best classification accuracy obtained with the brain-
inspired integration strategy is slightly worse than the one
obtained with the modality-based integration strategy: In
the former, the information from the two modalities are
integrated in the first layer already so that the visual data
is affected earlier by the lack of structure in the haptic data
than in the latter integration strategy.

COS increases the chances of finding some structure in
the data by weakening the inductive bias of the learning
algorithm: Originally, the assumption with the extended
GWR is that neighbors in the feature space are likely to
belong to the same class. COS projects the data points
onto a unit hypersphere and measures neighborship on that

hypersphere in terms of angles. Basically, the magnitude
information is ignored and it is enough that data vectors
point in the same direction. The fact that the inductive bias
has to be modified in such a way to obtain a useful classifier
in some of the experiments can be taken as an indication for
the necessity of better data. Different hardware (i.e., a more
dexterous robot equipped with better sensors, especially for
tactile sensing) and a more sophisticated object exploration
scheme might help in this respect. Especially, the result
of the experiments with regard to the second principle
of processing the shape and the material-related object
properties in separate streams might change with better
haptic data.

As for the effects of self-organization (cf. the third princi-
ple), they are difficult to assess because all three integration
strategies were implemented using the same neural network
model in an effort to make them easier to compare. In order
to find out how advantageous incorporating this processing
principle is to the classification accuracy, it would be good
to compare for every integration strategy the performance of
the brain-inspired implementation with that of other imple-
mentations not using any brain-inspired learning methods.
Generally, future research with a larger dataset is needed
to quantify how important each brain-inspired processing
principle actually is for robot applications.

There are, of course, a few details with regard to how
the parts of the brain responsible for performing visuo-
haptic object recognition are organized in “Visuo-Haptic
Principles of the Human Brain” that we omitted in
our model for feasibility reasons. One such insight is
that the sensory stimuli are processed hierarchically in
the brain and increasingly abstract features are extracted
in the process, see “Hierarchical Processing Along the
Ventral Pathway for Object Identification” and “Haptic
Activation Along the Substreams”. We extracted the
features from the collected data using rather simple
means. The convolutional neural network (CNN), for
example, follows the principles of how visual stimuli
are processed in the visual cortex and could therefore
be examined in further investigations for the extraction
of features in both modalities instead of the general-
purpose feature extraction techniques used here. Another
omitted detail is the difference in how the substreams
along the ventral pathway for object shape and material
processing themselves are organized (see “Substreams for
Object Shape and Material Processing”). The LOtv is a
bimodal convergence area, whereas the regions within the
medial occipitotemporal cortex appear to be organized
in crossmodally interacting foci that all process the
information related to a particular material property. In
the neural classifier that implements the brain-inspired
strategy, both processing streams were simply modeled
by instances of the self-organized GWR network. Finally,
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the brain is capable of combining the sensory information
from the different modalities based on their reliability (see
“Input-Driven Self-Organization of the Underlying Neural
Circuits During Visuo-Haptic Integration”), which the self-
organizing neural network model that was used in our
implementations of the integration strategies to process the
object-related information is not: The different types of
information are integrated via vector concatenation so that
the there is an implicit weighting of the object properties
fixed by the length of the respective descriptors. When
included, these details might actually prove to be helpful
performance-wise.

Conclusion

An increasing body of evidence suggests that multi- as well
as crossmodal interactions between vision and haptics take
place in the brain during object perception and recognition.
This motivated us to take on the research question of
whether the object recognition performance of artificial
systems can be improved by incorporating the processing
principles that are involved in the integration of the visual
and haptic object-related information in the brain. Three
such principles were derived here based on the current state
of knowledge: the visual and haptic stimuli are processed
hierarchically and in two separate streams, dedicated to
object shape and material perception respectively, and the
underlying mechanisms that perform the integration of the
two modalities are self-organized.

To evaluate the importance of these three principles
on the object recognition performance, an integration
strategy that incorporates all of them was compared to
the most common integration strategies in related works:
A robot equipped with inexpensive contact microphones
for tactile sensing was used to explore objects and
extract various visual and haptic features from them. The
different integration strategies were implemented as neural
classifiers, which were then trained on the collected data
in a series of hyperparameter selection experiments. Based
on the results of these experiments, processing the visual
and haptic inputs hierarchically and in two parallel streams
seems to improve the object recognition performance,
whereas organizing these streams to process the shape and
material properties separately did not lead to the expected
improvements.

In summary, our contributions are the following: 1. We
identified three main processing principles that the visuo-
haptic object recognition process in the brain is based on, 2.
we considered a large number of haptic object properties in
the evaluation of these principles and explored the concept
of self-organization in the context of visuo-haptic object
recognition, 3. we introduced the novel sensory concept of

using inexpensive contact microphones to record vibrations
across surfaces for tactile sensing and showed its feasibility,
and 4. we found out that COS is good for measuring the
distance between data points in high dimensions and should
be preferred to L1 for the case of unstructured data.
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